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The dynamics of the charge equilibration (CE) and the effects on the production of the neutron-rich isotopes
around N = 126 in multinucleon transfer reactions are still not well understood. In this work, we investigate
the mechanism of the CE from different viewpoints by using the extended version of the dinuclear system
model (DNS-sysu) and the improved quantum molecular dynamics (ImQMD) model. From the macroscopic
and microscopic dynamical viewpoints, we find incomplete CE for the mass asymmetry reaction systems even
in very deep collisions, and the behavior of “inverse CE” that the tendency of the fragments is away from the N/Z
value of the compound system in the reaction 140Xe + 198Pt. Unlike the slow process presented in the ImQMD
model, the behavior of fast equilibration with the characteristic time ≈0.52 zs is obtained based on the DNS-sysu
model, which is consistent with the experimental data. By performing a systematic calculation, the correlation
between the CE and the mass asymmetry of the reaction systems is clarified, which not only accounts for the
observed intriguing phenomena of the CE but also sheds light on the optimal combinations for producing the
neutron-rich isotopes around N = 126.
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I. INTRODUCTION

Because of the promised potential for producing exotic
nuclei [1–13], the multinucleon transfer (MNT) process in
massive nuclei collisions has attracted a lot of attention [14].
In particular, for producing neutron-rich heavy nuclei around
N = 126, which are not only interesting for their nuclear
structure but also contribute significantly to the understanding
of the so called r process [15], the great advantages of the
cross sections in the MNT reactions have been demonstrated
[16–21].

Deep inelastic collisions (DICs) between nuclei in contact
result in the profound reconstruction of the initial nuclei with
the incident energy dissipation. The DICs at low energies
show great potential to study the charge equilibration (CE)
by tracking the differential motion of protons and neutrons
[22]. The equilibration of neutron-to-proton ratios (N/Z) that
takes place at the early stage of the collision has been noticed
[23–30]. Based on the time-dependent Hartree-Fock (TDHF)
method, Simenel et al. compared the timescale for the CE and
other processes, and indicated that the CE should not be the
sole dissipation way [31]. On the other hand, several works
have suggested that the CE is related to the quantum features,
e.g., the giant dipole resonance (GDR) mode [32–34]. How-
ever, the interplay between equilibration and dissipation in
quantum systems is still not well understood.

The difference in the N/Z of reaction partners influ-
ences the nucleon transfer direction and then the formation
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probabilities of exotic fragments in the MNT process [35–37].
Moreover, inspired by the broad range of N/Z values, the
developments of radioactive beam facilities around the world,
such as FRIB (USA) [38], RIKEN (Japan) [39], SPIRAL2
(France) [40], and HIAF (China) [41], provide a great op-
portunity for getting deep insight into the mechanism of the
CE and the favorable projectiles for producing exotic isotopes.
The better understanding of CE will lead to more reliable pre-
dictions for producing neutron-rich isotopes around N = 126
in MNT reactions.

In this work, the mechanism of the CE in the MNT reac-
tions induced by Xe isotopes is studied by using the extended
version of the dinuclear system model (DNS-sysu) and the
improved quantum molecular dynamics (ImQMD) model. To
interpret the CE behaviors and provide the essential informa-
tion for producing N = 126 neutron-rich isotopes in the MNT
process, the correlations between the CE mode and the mass
asymmetry η [= (Atarget − Aprojectile )/(Atarget + Aprojectile )] of
the combinations are investigated in a systematic study.

II. MODELS

The DNS-sysu model has been successfully used to de-
scribe MNT reactions [42–44]. In the DNS-sysu model, (1)
the master equation is extended by introducing the dynamical
deformation degree of freedom, (2) the temperature depen-
dence of potential energy surface (PES) is involved, and
(3) the unified description of fusion and MNT processes is
achieved with the extension of the fusion concept [44]. In the
DNS-sysu model, the production cross sections of the primary
products with proton number Z1 and neutron number N1 can
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be calculated as follows:

σpr(Z1, N1, Ec.m.) = π h̄2

2μEc.m.

Jmax∑
J=0

(2J + 1)Tcap(J, Ec.m.)

×
∑
β2

P(Z1, N1, β2, J, Ec.m., τint )

× Wsur(Z1, N1, J, E∗), (1)

where Tcap means the capture probability which is calcu-
lated with the Hill-Wheeler formula in the consideration of
Coulomb barrier distribution. For heavy systems without po-
tential pockets, the value of Tcap is estimated as 1 if the
incident energy is above the interaction potential at the contact
configuration. P is the distribution probability of the primary
fragments with proton number Z1 and neutron number N1. β2

is the dynamical deformation parameter of the DNS. Wsur is
the deexcitation probability of the excited primary fragments.
The contact time τint can be calculated by the deflection func-
tion method [45,46].

The distribution probability P can be obtained by solving
the master equations numerically with the corresponding po-
tential energy surface, which can be written as [47]

dP(Z1, N1, β2, J, t )

dt

=
∑

Z ′
1

WZ1,N1,β2;Z ′
1,N1,β2 (t )[dZ1,N1,β2 P(Z ′

1, N1, β2, J, t )

− dZ ′
1,N1,β2 P(Z1, N1, β2, J, t )]

+
∑
N ′

1

WZ1,N1,β2;Z1,N ′
1,β2 (t )[dZ1,N1,β2 P(Z1, N ′

1, β2, J, t )

− dZ1,N ′
1,β2 P(Z1, N1, β2, J, t )]

+
∑
β ′

2

WZ1,N1,β2;Z1,N1,β
′
2
(t )[dZ1,N1,β2 P(Z1, N1, β

′
2, J, t )

− dZ1,N1,β
′
2
P(Z1, N1, β2, J, t )], (2)

where WZ1,N1,β2;Z ′
1,N1,β2 denotes the mean transition probability

from the channel (Z1, N1, β2) to (Z ′
1, N1, β2), which is simi-

lar to N1 and β2. dZ1,N1,β2 is the microscopic dimension (the
number of channels) corresponding to the macroscopic state
(Z1, N1, β2). For the degrees of freedom of charge and neutron
number, the sum is taken over all possible proton and neutron
numbers that fragment 1 may take, but only one nucleon trans-
fer is considered in the model (Z ′

1 = Z1 ± 1; N ′
1 = N1 ± 1).

For the β2, we take the range of −0.5 to 0.5. The evolution
step length is 0.01. The transition probability is related to
the local excitation energy [48], in which the memory time
is 0.25τ0/A. Here, τ0 ≡ 2π h̄/(1 MeV) ≈ 4 × 10−21 s, and A
means the total nucleon number of the reaction [49].

The potential energy surface (PES) can be written as

U (Z1, N1, β2, J, r = Rcont ) = �(Z1, N1) + �(Z2, N2)

+ V (Z1, N1, β2, J, r = Rcont )

+ 1
2C1

(
δβ1

2

)2 + 1
2C2

(
δβ2

2

)2
.

(3)

TABLE I. The model parameters (IQ2) adopted in this work.

α β gsur gτ Cs κs ρ0

(MeV) (MeV) γ (MeV fm2) (MeV) η MeV (fm2) (fm−3)

−356 303 7/6 7.0 12.5 2/3 32.0 0.08 0.165

Here, �(Zi, Ni ) (i = 1, 2) is the mass excess of the ith
fragment [50]. The last two terms are the deformation en-
ergies which can be calculated using the methods shown in
Refs. [47,51]. Rcont is the position where the nucleon transfer
process takes place [42].

The effective nucleus-nucleus interaction potential V con-
sists of the long-range Coulomb repulsive potential, the
attractive short-range nuclear potential, and the centrifugal
potential:

V (Z1, N1, β2, J, r) =VN(Z1, N1, β2, r)

+ VC(Z1, N1, β2, r) + (Jh̄)2

2ζrel
. (4)

where ζrel is the moment of inertia for the relative motion of
the DNS. More detailed descriptions of Coulomb potential VC

and nuclear potential VN can be found in Refs. [52,53]. To
systematically study the evolution of the CE, all reactions in
this work are calculated and studied at 1.2 times interaction
potential energies at the contact positions.

The ImQMD model [54] is an improved version of the
quantum molecular dynamics model [55]. In this version, the
Hamiltonian of the system is written as the sum of the kinetic

energy T = ∑
i

p2
i

2mi
and effective interaction potential energy:

H = T + UCoul + Uloc. (5)

Here, UCoul is the Coulomb interaction potential energy,

UCoul = 1

2

∫∫
ρp(r)

e2

|r − r′|ρp(r′)dr dr′

− e2 3

4

(
3

π

)1/3 ∫
ρ4/3

p dr. (6)

with ρp the density distribution of protons of the system. Uloc

is the nuclear interaction potential energy, which is obtained
from the integration of the Skyrme energy density functional
Uloc = ∫

Vloc(r)dr without the spin-orbit term. The nuclear
interaction potential density Vloc can be written as

Vloc = α

2

ρ2

ρ0
+ β

γ + 1

ργ+1

ρ
γ

0

+ gsur

2ρ0
(∇ρ)2

+ Cs

2ρ0
[ρ2 − κs(∇ρ)2]δ2 + gτ

ρη+1

ρ
η

0

, (7)

where δ is the isospin asymmetry. The parameters are shown
in Table I. The density distribution in the coordinate space
ρ(r) is given by

ρ(r) =
∑

i

1(
2πσ 2

r

)3/2 exp

[
− (r − ri )2

2σ 2
r

]
, (8)
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FIG. 1. Left panels: Calculated average N/Z values of the PLF
and TLF in the reactions 129Xe + 198Pt (a), 140Xe + 198Pt (c), and
136Xe + 198Pt (e) as a function of the contact time within the DNS-
sysu and ImQMD models. The N/Z values of compound systems
are also shown with the black horizontal dashed lines. Right panels:
Contour plots of the PES (in MeV) with the drift trajectories of the
first moments of PLF distributions in the 〈ZPLF − ZProjectile〉, 〈NPLF −
NProjectile〉 plane for the reactions 129Xe + 198Pt (b), 140Xe + 198Pt (d),
and 136Xe + 198Pt (f). (g) The discrepancies of average N/Z values
between the TLF and PLF as a function of the interaction time
calculated in the DNS-sysu model for the reactions 129Xe, 136Xe,
140Xe + 198Pt. The incident energies Ec.m. = 470, 476, and 466 MeV
for the reactions induced by 129,136,140Xe.

where σr is the Gaussian wave pocket variation. The IQ2
parameter sets (see in Table I) are adopted in this work. The
fermionic nature in ImQMD is treated as the method pro-
posed by Papa et al [56]. In MNT reactions, the total kinetic
energy-mass distributions of the primary binary fragments
in different contact time ranges [57] or impact parameters
[58] can serve as an effective basis for classifying different
channels. The exotic fragments or specific objective nuclei
could be produced in the channels of deep-inelastic colli-
sions, quasifission, and quasielastic collisions. Therefore, the
events from central collisions to grazing are considered in
this work.To get the production cross sections of the final
products after the deexcitation process, the code GEMINI++
[59] is used to treat the deexcitation process of primary
fragments. Subsequent de-excitation cascades of the ex-
cited fragments via emission of light particles (neutron,
proton, α, etc.) and γ rays competing with the fission pro-
cess leads to the final mass distribution of the reaction
products.

III. RESULTS AND DISCUSSIONS

To clarify the N/Z asymmetry effect in MNT reactions,
Fig. 1(a) shows the average N/Z values of the projectilelike

fragments (PLF) and targetlike fragments (TLF) as a function
of the contact time in the reaction 129Xe + 198Pt within the
framework of the DNS-sysu model. The large discrepancy
of N/Z values between 129Xe and 198Pt, e.g., N/Z = 1.39
for 129Xe, N/Z = 1.54 for 198Pt, is expected to confirm the
presence of CE behaviors. One interesting behavior can be
seen: the average N/Z values of the PLF and TLF trend toward
the N/Z value of the compound system (N/Z = 1.48) but do
not lead to being identical even in very deep collisions. We
also show the results from the ImQMD model. Incomplete
CE is also noticed. Besides, unlike the results from the DNS-
sysu model, the CE takes place at the whole collision stage
gradually.

In principle, the MNT process can be described as the
reaction upon the so-called PES, where the dynamical evo-
lution of a dinuclear system can be treated as the process of
exchanging the independent particles between the nuclei [60].
Plotted in Figs. 1(b), 1(d), and 1(f), the PES can be defined
as the contour of the first moments of the PLF distributions,
i.e., 〈ZPLF − ZProjectile〉, 〈NPLF − NProjectile〉. Taking the reaction
129Xe + 198Pt in Fig. 1(b) as an example, the trajectory starts
from the injection point and relaxes to the valley of the PES
driven by the PES gradient [see the red line in Fig. 1(b)],
which indicates that the projectile tends to lose protons and
absorb neutrons from the target.

In Fig. 1(c), we also show the results of the re-
action 140Xe + 198Pt. The N/Z value of the projectile
140Xe is 1.59, which is larger than that of the tar-
get. However, unlike the reaction 129Xe + 198Pt, the in-
verse relationship (N/Z(PLF) < N/Z(TLF)) is noticed during
the evolution. Smilar behavior is also apparent from the
ImQMD calculations, except the crossover appears at a
quite delayed contact time. The transfer of neutrons from
140Xe to 198Pt is promoted, due to negative values of
�U in the neutron stripping channels, such as �U−1n =
−2.6 MeV, �U−2n = −4.8 MeV, and �U−3n = −6.8 MeV.
Here, �U−xn [= U (ZP, NP − x, β2 = 0, J = 0, r = Rcont ) −
U (ZP, NP, β2 = 0, J = 0, r = Rcont )] represents the driving
potential needed to be overcome in the neutron transfer pro-
cess. A detailed description of U is shown in Eq. (3). The
system 140Xe + 198Pt with negative values of �U−xn tends to
enhance the average N/Z values of the TLF and decrease those
of the PLF.

Compared with the initial entrance channel, the behavior
called “inverse CE,” producing the fragments with the average
N/Z values farther from the N/Z value of the compound
system (N/Z = 1.56), is noticed. This is a strong indication
that the underlying mechanism behind the CE does not only
depend on the N/Z asymmetry in the entrance channel.

Furthermore, considering the different initial N/Z values
for the projectile and target in the reaction 136Xe + 198Pt
(N/Z = 1.52 for 136Xe, N/Z = 1.54 for 198Pt), the behavior of
CE should also be noticed on some levels. However, as shown
in Fig. 1(e), the almost flat variation of the average N/Z values
with the interaction time is presented in both the DNS-sysu
and ImQMD model calculations. The PES of the reaction
136Xe + 198Pt is shown in Fig. 1(f). Since the trajectory sticks
to the bottom of the valley, the weak variation of the average
N/Z values can be explained.
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To compare the above systems, in Fig. 1(g), we show the
differences between the average N/Z values of the TLF and
PLF (〈N/Z〉TLF − 〈N/Z〉PLF) as a function of the interaction
time calculated in the DNS-sysu model for the reactions
129,136,140Xe + 198Pt. It is interesting to see that for all three
systems the values of 〈N/Z〉TLF − 〈N/Z〉PLF evolve to a satu-
ration value of 0.04, rather than 0.

From the equilibration perspective timescale, the CE
process is believed to be the fastest one among all the equi-
libration modes [61]. To compare the equilibration timescale
of various systems, we introduce a general “normalized” ob-
servable δI (t ) = [I (t ) − I∞]/(I0 − I∞) [31]. Here, I0 and I∞
respectively denote the initial and expected saturation N/Z
values of the projectile. During the evolution, it is reasonable
to see that the δI decays from 1 to 0. The so-called character-
istic time τ can be adopted to characterize the CE process,
which is the parameter denoting the decay of δI following
δI = y0 + A0 exp(−t/τ ).

In Fig. 2(a), several systems are calculated to present a
comprehensive timescale of the CE in this work. The in-
cident energy of Ec.m. = 1.2V (r = Rcont ) is used for each
reaction. The values of V (r = Rcont ) are 143, 276, 423,
439, 573, 650, and 618 MeV, respectively, for the reac-
tions 58Ni + 124Sn, 92Kr + 208Pb, 112Sn + 238U, 118Xe + 238U,
186W + 238U, 196Hg + 239Pu, and 198Pt + 238U. Despite the
fluctuations, all systems exhibit a similar and fast decay pat-
tern. By fitting the data in the above reactions, 0.52 zs for
the characteristic time τ is obtained in this work (red line),
which is in the same order of magnitude as the experimental
data (τ ≈ 0.3 zs) in Ref. [25], the measurement (τ ≈ 0.14 zs)
by Kratz et al. [23], and 0.5 zs from the TDHF calcula-
tions [26]. Applying the microscopic stochastic mean-field
approach [28], Ayik et al. performed a similar CE calcu-
lation. The system reaches equilibrium after 1 zs from first
touching, which is also consistent with the result in this
work.

Furthermore, seen from Fig. 1, the average N/Z values of
PLF or TLF, estimated based on the DNS-sysu and ImQMD
models, show quite a different trend with contact time elapsed.
The slow CE process shown in the ImQMD model might be
due to the absence of the spin-orbit coupling in the interaction
and the details of the Pauli blocking treatment [62,63].

The shell effects on the CE are also investigated in the
reactions 78Kr + 208Pb and 129Xe + 198Pt within the DNS-sysu
model at Ec.m. = 347 and 470 MeV, respectively. Note that the
characteristic time extracted from the reaction 78Kr + 208Pb
with shell corrections (0.31 zs) is greater than that without
shell corrections (0.22 zs). The delayed CE is because the
nucleon transfer process would be inhibited due to the doubly
magic 208Pt target. However, an enhancement of the shell
effects in the equilibrium speed can be observed in the reac-
tion 129Xe + 198Pt (τwith-shell ≈ 0.27 zs, τwithout-shell ≈ 0.38 zs).
This enhancement can be attributed to the attraction of the
proton shell closure Z = 82 for transferring protons from
129Xe to 198Pt. In addition, the phenomenon that 129Xe is
preferably driven to lost protons by the PES gradient can also
be seen clearly in Fig. 1(d). As we can see, for each reac-
tion, our calculations demonstrate that the shell effects could
influence the neutron and proton flow strongly. In Fig. 2(c),

FIG. 2. (a) The evolution degree of the CE [δI (t )] as a func-
tion of contact time from DNS-sysu calculation of the reactions
58Ni + 124Sn, 92Kr + 208Pb, 112Sn + 238U, 118Xe + 238U, 186W + 238U,
196Hg + 239Pu, and 198Pt + 238U. The green and black dashed lines
show the expected equilibration, assuming the rate constants of 0.14
zs reported experimentally by Kratz et al. [23] and 0.3 zs reported
experimentally by Jedele et al. [25], respectively. (b) Evolution of
δI as a function of contact time from DNS-sysu calculations of
78Kr + 208Pb (squares) and 129Xe + 198Pt (circles). The solid symbols
and open symbols denote the results with and without shell correc-
tions, respectively. The solid line and dashed line denote the expected
fitting results with and without shell corrections, respectively. (c) The
CE characteristic time τ as a function of the incident energy for
the reaction 78Kr + 208Pb calculated in the DNS-sysu model. The
horizontal dashed line is used to guide the eye.

we show the CE characteristic time τ as a function of the
incident energy. Interestingly, τ gradually decreases with the
increase of incident energy and reaches saturation for incident
energy higher than 405 MeV [1.4V (r = Rcont )]. The high in-
cident energy enhances the energy dissipating into the interior
of the system, which promotes the process of equilibration.
However, the timescale of equilibrium shows a limit, which
can be roughly estimated by dividing the size of a nucleus
by the speed at which isospin waves or nucleons propagate.
Note that the absence of microscopic characteristics prevents
using the DNS model to further investigate the CE process
from the viewpoint of quantal fluctuation, which might play
an important role in the fast CE process.

014614-4



DYNAMICS OF CHARGE EQUILIBRATION AND EFFECTS … PHYSICAL REVIEW C 107, 014614 (2023)

FIG. 3. The values of N/Z198Pt − 〈N/Z〉TLF in MNT reactions
with the target 198Pt as a function of the mass asymmetry of combi-
nations and N/Z values of the projectiles. The projectiles are selected
based on the N/Z values, which are about 1.35, 1.38, 1.42, 1.48, 1.52,
and 1.59.

Due to the “curvature” of the β-stability line, the heavy
nuclei show the capability of possessing more neutrons than
the light ones, which could affect the nucleon flow in the
collisions. The CE would be strongly affected by the mass
asymmetry of the reaction partners. Therefore, to clarify
the interesting phenomena shown in Fig. 1, one conjecture
can be made that the initial mass asymmetry of combina-
tions also plays a significant role during the isospin transfer
process.

To investigate the correlations between the CE and the
mass asymmetry of the colliding combinations, reactions with
projectiles spanning a broad range of masses and N/Z val-
ues bombarding the target 198Pt are systematically studied.
In Fig. 3, we show the values of N/Z198Pt − 〈N/Z〉TLF as a
function of the mass asymmetry of colliding combinations
and the N/Z values of the projectiles. Each symbol denotes a
reaction system with specific N/Z asymmetry and mass asym-
metry. Despite the minor fluctuations, a correlation between
the mass asymmetry and the N/Z asymmetry is clearly shown
to influence the neutron richness of the TLF.

As shown in Fig. 3, for the case of N/Z = 1.35, the TLF
neutron richness strongly depends on the mass asymmetries
of the colliding systems. One can see that the combinations
with positive large values of η show small discrepancies
between the average N/Z values of TLF and that of 198Pt,
although the systems present large N/Z asymmetries. The
same behavior can be seen for the projectiles with N/Z =
1.59 (shown as brown circles) which is higher than 1.54 of
198Pt. This behavior supports the conjecture we made that
the mass asymmetries of the reaction combinations strongly
affect the CE process. Furthermore, it can be seen that the
mass asymmetry dependence of CE is weakened for the N/Z
symmetric combinations. For example, for the reactions in-
duced by projectiles with N/Z values close to 1.52 (shown

FIG. 4. The factor K for the reactions based on 198Pt target as
a function of the neutron and proton numbers of the projectiles.
The black open squares show nuclides along the β-stability line.
The red open squares denote the reactions with K values that are
approximately equal to 0.

as blue stars), the weak variation of N/Z198Pt − 〈N/Z〉TLF val-
ues with the mass asymmetry can be seen. This is the main
reason for the behavior shown in Fig. 1(e). Therefore, the
intriguing phenomena shown in Fig. 1, such as incomplete
CE and “inverse CE,” are mainly because of the correlation
between the CE and the mass asymmetry. Here, we point
out that the complete CE is hard reach in mass asymmetric
systems.

As stated above, the evolution of the CE can be influenced
by the N/Z asymmetry and the initial mass asymmetry. To fur-
ther understand the effect of the CE process in MNT reactions
for producing neutron-rich isotopes and provide guidance for
selecting favorable combinations, we define a relative isospin
flow factor K , which can be written as

K = (N/Z )target − 〈N/Z〉TLF

(N/Z )CN
. (9)

The negative values of K denote that there are advantages for
producing neutron-rich TLF. In contrast, for positive values
of K , the corresponding projectiles could enhance the prob-
abilities of producing neutron-deficient TLF. For example,
for the reactions 129,136,140Xe + 198Pt we studied above, the
corresponding values of the factor K are 0.034, 0, and 0.02,
respectively. Note that the value of the factor K could sensi-
tively reveal the isospin flow directions in different reactions.
We systematically investigate the K values in the reactions
based on the 198Pt target. In Fig. 4, we show the distribu-
tion of the factor K as a function of the neutron and proton
numbers of the projectiles. The red open squares denote the
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reactions for which K values are approximately equal to 0.
In other words, for the reactions to the “northwest” of these
red open squares in the chart, the average N/Z values of the
TLF are less than 1.54 of the 198Pt target. In contrast, the
average N/Z values of TLF are greater than 1.54 of the 198Pt
target for the reactions to the “southeast” of the red open
squares. For the reactions farther away from these red open
squares, more neutron-rich or neutron-deficient TLF could
be produced. The black open squares denote reactions with
the projectiles along the β-stability line. For the regions with
Z < 50 and N < 80, we notice that the red open squares are
located on the more neutron-rich side of the β-stability line.
Hence, only extremely neutron-rich projectiles in this region
could promote the production of the neutron-rich TLF. On the
other hand, for the reactions with heavy projectiles, such as the
mass symmetric reactions, it can be seen obviously that these
red open squares are close to the β-stability line. It is worth
mentioning that beams of nuclides around the β-stability line
usually show higher intensities compared to those far from
β stability. Therefore, reactions induced by heavy projectiles
would be efficient for producing neutron-rich nuclei around
N = 126.

In order to optimize the reaction combinations for
producing unknown neutron-rich nuclei, the reactions
129Xe + 198Pt, 136Xe + 198Pt, 140Xe + 198Pt, 202Pt + 198Pt and
238U + 198Pt are investigated at incident energies of Ec.m. =
470, 476, 466, 663, and 741 MeV, respectively. In Fig. 5(a),
we show the calculated production cross sections for
N = 126 isotones with Z < 80 produced in the reactions
129,136,140Xe + 198Pt. As we expected, the reactions induced
by projectiles with high neutron richness (N/Z ≈ 1.59 for
140Xe) show great advantages of cross sections for producing
neutron-rich nuclei. This can be interpreted by the intense
CE caused by the large N/Z asymmetry. We also extract the
cross sections of the primary fragments in the proton pickup
channels for the reactions 140Xe + 198Pt, 202Pt + 198Pt, and
238U + 198Pt shown in Figs. 5(b)–5(e). It can be seen that the
production cross sections of the neutron-rich nuclei in the
reaction induced by 140Xe are lower than those in the 202Pt
and 238U induced ones, although 140Xe has an even larger
N/Z value. This is because the 140Xe + 198Pt reaction presents
the positive large value of η and the CE is inhibited, just
like the correlation behaviors between η and the CE process
we discussed above. On the other side, the saturation values
of 〈N/Z〉TLF − 〈N/Z〉PLF for the reactions 238U + 198Pt and
202Pt + 198Pt are 0.01 and 0, respectively, which are close
to the complete CE status. We know that, to choose optimal
combinations, the beam intensity should be considered. Com-
pared with the radioactive nuclides 202Pt and 140Xe, the 238U
induced reaction is a better candidate for producing neutron-
rich nuclei around N = 126.

IV. CONCLUSIONS

The mechanism of the CE is investigated within the
DNS-sysu (macroscopic approach) and ImQMD (microscopic
dynamical approach) models. It is found that the two mod-
els show different equilibration characteristic times. For the
DNS-sysu model, it is noticed that the CE occurs at the early

FIG. 5. (a) Calculated production cross sections of the N =
126 isotones in the MNT reactions 129Xe, 136Xe, and 140Xe + 198Pt
within the DNS-sysu model with GEMINI++ code. Open symbols
denote unknown nuclei. (b)–(e) The calculated production cross
sections of the primary fragments in 140Xe + 198Pt, 202Pt + 198Pt, and
238U + 198Pt.

stage of the colliding. The equilibration characteristic time
in the DNS-sysu model is about 0.52 zs, in the same order
of magnitude as the experimental data (0.3 zs) in Ref. [25],
and the TDHF calculations (0.5 zs). However, the ImQMD
calculations show that the equilibration is a slow process
and takes place in the whole colliding process. In addition,
the shell effect on CE is studied based on the reactions
78Kr + 208Pb and 129Xe + 198Pt within the DNS-sysu model.
The obvious influence of shell closures and incident energy
on CE characteristic time is noticed. In both the DNS-sysu
and ImQMD calculations, it is found that (i) the complete CE
is hard reach in the mass asymmetric reaction systems and
(ii) “inverse CE” takes place in the reaction 140Xe + 198Pt. In
this work, by performing a systematic calculation, for the first
time the correlations between the CE and the mass asymmetry
of the reaction systems are clarified, and the above intrigu-
ing CE behaviors are interpreted with superposition of the
mass asymmetry and the charge asymmetry of the colliding
combinations.

With the definition of the relative isospin flow factor K ,
the isospin flow in 198Pt target-based reactions with different
colliding partners is investigated systematically. It is found
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that light projectiles are not good candidates for producing
neutron-rich isotopes N = 126 when considering isospin flow
and relatively low beam intensities. Besides, the results in this
work suggest that the combination 238U + 198Pt is favorable
for producing unknown N = 126 isotopes.
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