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Production cross sections of heavy neutron-rich isotopes are calculated by employing quantal transport
description in 250Cf + 232Th collisions. This quantal transport description is based on the stochastic mean-field
approach, and it provides a microscopic approach beyond time-dependent Hartree-Fock theory to include mean-
field fluctuations. Deexcitation of primary fragments is determined by employing the statistical GEMINI++ code.
Calculations provide predictions for production cross sections of neutron rich transfermium isotopes without any
adjustable parameters.
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I. INTRODUCTION

In recent years extensive experimental and theoretical in-
vestigations have been carried out for the production of heavy
elements close to the superheavy island with proton numbers
Z > 100 [1–16]. Fusion reactions are a natural mechanism
for the production of very heavy nuclei. Superheavy elements
are identified by following the decay pattern of the primary
heavy fusion product. Thus far super heavy elements have
been synthesized either in cold fusion reactions [17] or in hot
fusion reactions [14,18], using actinide nuclei. Highly excited
compound nuclei deexcite mostly by neutron emission and
secondary fission. As a result, fusion reactions may not be the
most efficient way to produce neutron rich heavy isotopes.

As an alternative mechanism, for the production of neutron
rich heavy isotopes, multinucleon transfer (MNT) processes
have been experimentally investigated with actinide targets
near barrier energies, and more investigations are currently
in progress. Such investigations may provide a more efficient
mechanism for the production of heavy neutron rich isotopes.
The multinucleon transfer mechanism has been investigated
using several phenomenological approaches including the
multidimensional Langevin model [19–25], dinuclear sys-
tem model [26–28], and quantum molecular dynamics model
[29–31]. In order to provide more accurate description of col-
lision dynamics and for the MNT mechanism it is important
to develop microscopic approaches, which also provide a test
for phenomenological models. Time-dependent Hartree-Fock
(TDHF) theory provides a microscopic description for the
mean evolution of collective dynamics at low bombarding
energies [32–41]. However, the TDHF theory has a severe
limitation: it can only describe the most probable dynamical
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path of the collision dynamics with small fluctuations around
it. It describes mean kinetic energy loss due to one body
dissipation rather well, but it cannot describe the large dis-
persions of mass and charge distribution of the fragments. To
remedy this problem one must go beyond TDHF [42–45]. The
time-dependent random phase approximation of Balian and
Vénéroni provides an important improvement of the mean-
field description. This approach has been applied for analysis
of multinucleon transfer in several studies [46–50]. However,
the approach is limited to calculating dispersions of charge
and mass distributions in symmetric collisions.

The stochastic mean-field (SMF) approach provides a fur-
ther improvement of the TDHF theory beyond the mean-field
approximation [45,51], and can be applied to asymmetric
collisions. In Sec. II we present results of TDHF calculations
for the collisions of the 250Cf + 232Th system at Ec.m. = 950
MeV. In Sec. III, we briefly describe the quantal transport de-
scription of multinucleon transfer based on the SMF approach.
We present an analysis of multinucleon transfer mechanism
for the same reaction. This analysis is essentially a comple-
mentary description of the work of Kedziora and Simenel
[52], in which the multinucleon transfer mechanism has been
investigated in the TDHF approximation alone. In Sec. IV,
we present results of quantal transport description based on
the SMF approach for the 250Cf + 232Th reaction. Our calcula-
tions can describe primary and secondary isotope production
cross sections including mean values and fluctuations without
any adjustable parameters except standard parameters of the
Skyrme energy density functional. In Sec. V, conclusions are
given.

II. MEAN-FIELD DESCRIPTION

The microscopic TDHF theory, employing effective
Skyrme type energy density functionals, has been used
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FIG. 1. Blue curves show the drift path of Cf-like fragments in the head-on collision of the 250Cf + 232Th system at Ec.m. = 950 MeV in
tip-tip (XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) geometries. Labels A, B, and C indicate intervals used in determining the average
values of the reduced isoscalar curvature parameter β in Eqs. (9)–(11).

extensively for describing heavy-ion collisions and nuclear
fusion [32–36,39–41]. The mean-field theory provides a good
description for the most probable dynamical path of the col-
lective motion at low energy heavy-ion collisions, including
the one body dissipation mechanism. The TDHF is a deter-
ministic approach for many body dynamics in the sense that
mean-field evolution starting with a given initial condition
leads to a single, deterministic final state. For example, for a
collision with a given charge and mass asymmetry it leads to a
single exit channel with a certain charge and mass asymmetry.

In the 250Cf + 232Th system, both projectile and target nu-
clei exhibit strong prolate deformation in their ground states.
As a result, the collision dynamics and multinucleon transfer
mechanism strongly depend on the collision geometry. We
consider four different initial collision geometries at the same
bombarding energy Ec.m. = 950 MeV. In analogy with the
work of Kedziora and Simenel of Ref. [52], we indicate initial
orientation of the target or projectile along the beam direction
with letter X , and perpendicular to the beam direction with
letter Y . Four different collision geometries are represented
as XX , XY , Y X , and YY and correspond to tip-tip, tip-side,
side-tip, and side-side geometries, respectively (see Figs. 2
and 3 of Ref. [52]). Based on the work of Ref. [52], it is
expected that the Y Z collision geometry will give similar
results as the YY orientation. As a result, we did not include
the Y Z geometry in our calculations. As a convention, the
first letter indicates the initially heavy partner of the colliding
system. Table I exhibits results of TDHF calculations for

different values of initial orbital angular momentum �i, final
values of mass and charge numbers of Cf-like A f

1 and Z f
1

and Th-like A f
2 and Z f

2 fragments, final total kinetic energy
(TKE), total excitation energy (E∗), and scattering angles
in the center of mass frame θc.m. and laboratory frame θ lab

1
and θ lab

2 for the four different collision geometries. The ta-
ble also includes asymptotic values of neutron dispersion
σNN (�), proton dispersion σZZ (�), mixed dispersions σNZ (�),

and mass dispersion σAA(�) =
√

σ 2
NN (�) + σ 2

ZZ (�) + σ 2
NZ (�),

for each orbital angular momentum. These dispersions are de-
fined as σ 2

NN (�) = δNλδNλ, σ 2
ZZ (�) = δZλδZλ, and σ 2

NZ (�) =
δNλδZλ. In the quantities the bar indicates ensemble averages
of the product of fluctuating neutron δNλ and proton δZλ

numbers, which are discussed in Sec. IV A. To reduce the
computation time, we have chosen the initial orbital angular
momentum in steps of 40h̄. The calculations presented in the
rest of the paper employed the TDHF code [53,54] using the
SLy4d Skyrme energy density functional [55], with a box size
of 60 × 60 × 36 fm in the x-y-z directions, respectively.

As seen from Table I, distinct geometries result in different
nucleon transfer mechanisms. The different nucleon transfer
mechanisms for head-on collisions are observed more clearly
from the time evolution of neutron N (t ) and proton Z (t )
numbers of Cf-like fragments or Th-like fragments. In Fig. 8
of the Appendix, we plot the time evolution of neutron and
proton numbers for the Cf-like fragments for the four differ-
ent geometries studied. In standard TDHF calculations, time
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TABLE I. Results of the TDHF and SMF calculations for the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip (XX ), tip-side (XY ),
side-tip (Y X ), and side-side (YY ) geometries.

Geometry �i (h̄) Z f
1 Af

1 Z f
2 Af

2 � f (h̄) TKE E∗ σNN σZZ σNZ σAA θc.m. θ lab
1 θ lab

2

XX 0 89.9 230.7 98.1 251.3 0.0 612.8 335.9 8.6 5.5 5.5 13.6 180.0 0.0 0.0
40 90.7 232.7 97.3 249.3 27.1 606.7 342.6 8.6 5.6 5.6 13.7 171.9 3.7 28.6
80 92.9 238.4 95.1 243.6 63.1 603.9 345.4 8.7 5.7 5.7 13.9 163.2 7.6 47.6
120 95.9 246.5 92.1 235.5 92.4 589.0 362.6 8.8 5.7 5.7 14.0 154.0 11.5 55.9
160 98.6 253.3 89.4 228.7 123.3 571.1 375.8 8.9 5.8 5.8 14.1 144.5 15.3 57.8
200 98.9 253.9 89.1 228.1 147.9 564.3 381.4 8.8 5.7 5.7 14.1 135.2 19.1 56.0
240 98.3 252.7 89.7 229.3 178.1 563.6 384.1 8.8 5.7 5.7 14.0 125.3 23.3 53.1
280 96.9 248.9 91.1 233.0 219.5 567.0 382.3 8.7 5.6 5.6 13.8 115.3 27.8 49.3
320 97.2 249.7 90.8 232.3 243.4 590.4 358.8 8.4 5.5 5.5 13.4 106.9 31.6 47.1
360 97.5 250.0 90.5 232.0 258.7 625.5 324.5 8.0 5.2 5.2 12.7 100.9 34.7 45.8
400 96.6 247.5 91.4 234.4 283.8 668.3 279.9 7.4 4.8 4.8 11.6 95.8 37.8 44.4
440 96.7 248.4 91.3 233.6 330.9 718.7 229.5 6.6 4.3 4.3 10.3 90.5 41.0 43.2
480 97.2 249.1 90.8 232.9 398.7 774.9 174.4 5.6 3.7 3.7 8.5 85.7 44.1 42.0

XY 0 87.1 222.4 100.9 259.6 0.0 627.4 316.3 7.8 5.2 5.8 12.4 180.0 0.0 0.0
40 87.5 223.5 100.5 258.5 30.7 624.7 322.7 7.8 5.2 5.8 12.4 169.7 4.9 31.3
80 88.7 227.0 99.3 255.0 64.7 625.0 321.8 7.8 5.2 5.8 12.4 159.1 9.9 47.7
120 90.3 231.4 97.7 250.6 98.6 612.5 336.2 7.8 5.2 5.8 12.5 148.4 14.6 52.9
160 91.6 235.1 96.4 246.9 141.6 592.2 358.0 7.9 5.2 5.8 12.5 137.1 19.5 52.7
200 93.2 239.1 94.8 242.9 181.7 586.2 364.0 7.9 5.2 5.8 12.5 125.9 24.2 51.3
240 93.9 241.3 94.1 240.7 212.1 591.6 359.1 7.8 5.2 5.8 12.4 116.4 28.2 49.1
280 95.4 245.0 92.6 237.0 244.7 569.0 380.9 7.7 5.1 5.7 12.2 107.6 31.3 46.0
320 96.3 247.4 91.7 234.6 258.7 607.0 343.2 7.4 4.9 5.4 11.7 102.1 34.1 45.4
360 96.8 248.2 91.2 233.8 286.5 634.0 314.2 7.1 4.8 5.1 11.2 96.1 37.0 43.8
400 97.3 249.6 90.7 232.4 316.7 667.6 280.1 6.8 4.5 4.8 10.6 91.4 39.4 42.7
440 97.3 249.7 90.7 232.3 363.7 708.3 239.4 6.3 4.2 4.4 9.8 87.4 42.0 41.7
480 97.8 251.3 90.2 230.7 400.7 745.3 203.4 5.7 3.8 3.8 8.7 83.5 44.2 40.7

Y X 0 103.5 266.5 84.5 215.5 0.0 647.7 297.1 7.6 5.1 5.4 11.9 180.0 0.0 0.0
40 103.6 266.7 84.4 215.3 30.8 647.3 296.4 7.6 5.1 5.4 11.9 169.9 4.4 70.0
80 103.4 266.3 84.6 215.7 73.4 644.5 298.2 7.6 5.1 5.4 12.0 159.6 8.9 71.7
120 103.2 265.3 84.8 216.7 96.8 632.4 311.6 7.6 5.1 5.4 12.0 149.6 13.1 68.0
160 102.5 263.4 85.5 218.6 133.0 613.8 330.9 7.6 5.2 5.5 12.0 139.1 17.5 62.8
200 101.4 260.5 86.6 221.5 177.4 607.1 336.6 7.6 5.2 5.5 12.0 128.6 22.0 58.1
240 100.4 257.3 87.6 224.7 207.5 601.3 344.8 7.6 5.1 5.5 12.0 119.0 26.1 53.5
280 99.0 253.6 89.0 228.4 238.9 597.5 348.2 7.6 5.1 5.4 11.9 110.1 30.1 49.2
320 97.2 249.9 90.8 232.1 265.0 615.7 332.0 7.4 5.0 5.2 11.6 103.1 33.6 46.4
360 96.5 248.6 91.5 233.4 286.2 642.3 307.0 7.1 4.8 5.0 11.2 97.6 36.4 44.7
400 96.2 247.5 91.8 234.5 315.1 668.2 282.9 6.8 4.7 4.7 10.6 92.3 39.3 42.8
440 96.1 247.2 91.9 234.8 346.4 700.5 249.7 6.4 4.4 4.3 9.9 87.9 41.9 41.5
480 96.1 247.2 91.9 234.8 387.8 740.5 209.7 5.9 4.0 3.8 8.9 84.2 44.3 40.5

YY 0 97.4 250.0 90.6 232.0 0.0 620.0 327.7 9.3 6.1 6.8 14.7 180.0 0.0 0.0
40 98.2 252.2 89.8 229.8 27.3 634.6 315.2 9.3 6.1 6.8 14.7 167.6 5.5 55.3
80 97.8 251.5 90.2 230.5 51.1 632.9 316.8 9.2 6.0 6.8 14.6 155.0 11.2 62.1
120 97.5 251.1 90.5 230.9 90.9 627.0 321.7 9.2 6.0 6.7 14.5 142.8 16.5 60.6
160 96.8 248.9 91.2 233.1 135.7 613.6 335.7 9.1 6.0 6.7 14.4 130.7 21.8 56.2
200 96.7 248.3 91.3 233.7 177.0 616.9 331.3 8.9 5.8 6.5 14.1 120.7 26.3 52.9
240 97.2 249.7 90.8 232.3 199.3 639.5 308.2 8.6 5.7 6.2 13.6 113.1 29.8 51.2
280 97.0 249.0 91.0 233.0 236.8 638.0 311.3 0.0 5.5 6.0 13.2 105.1 33.2 47.7
320 97.4 249.8 90.6 232.2 280.7 627.6 320.1 8.2 5.4 5.8 12.8 97.5 36.1 44.4
360 97.6 250.3 90.4 231.7 312.6 638.7 310.6 7.8 5.1 5.5 12.1 93.0 38.1 42.8
400 97.5 250.4 90.5 231.6 341.0 659.1 290.9 7.3 4.8 5.1 11.3 87.5 40.8 40.8
440 97.5 250.5 90.5 231.5 378.4 687.9 260.8 6.8 4.5 4.6 10.5 83.8 42.9 39.7
480 97.4 250.3 90.6 231.7 416.4 725.6 222.1 6.3 4.2 4.0 9.4 81.2 44.9 39.2
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FIG. 2. Neutron and proton diffusion coefficient in the head-on collision of the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip (XX ),
tip-side (XY ), side-tip (Y X ), and side-side (YY ) collision geometries.

evolutions of macroscopic variables for a dinuclear complex,
such as the charge and mass of targetlike or projectilelike
fragments, are not utilized explicitly. Often just the values
of macroscopic variables at the exit channel are employed in
the analysis of the reaction mechanism. Drift paths, which

show the evolution of the system in the N-Z plane, carry
more detailed information about the nucleon transfer mech-
anisms. As a result of shell effects on dynamics, drift paths
exhibit different behavior in different collision geometries and
include detailed information of time evolution of the mean

FIG. 3. Blue curves show the drift path of Cf-like fragments in the head-on collision of the 240Cf + 246Th system at Ec.m. = 950 MeV in
tip-tip (XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) geometries. Labels A and B indicate intervals used in determining the average
values of the reduced isovector curvature parameter α in Eqs. (12)–(14).
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values of macroscopic variables. On the other hand, the time
evolution of macroscopic variables becomes very important
for the diffusion mechanism, as we discuss in Sec. IV. The
blue curves in Fig. 1 show drift paths in head-on collisions
of different geometries for Cf-like fragments. In these fig-
ures, thick black lines indicate equilibrium charge asymmetry
with (N − Z )/(N + Z ) = 0.22. This line is referred to as the
isoscalar path, which follows nearly parallel to the bottom
of the stability line. The isoscalar path extends all the way
toward the lead valley on one end, and toward the superheavy
valley on the other end, making about a φ = 32◦ angle with
respect to the horizontal neutron axis. We observe that in all
geometries,Cf-like fragments drift nearly along the isoscalar
direction with charge asymmetry approximately equal to 0.22.
Figure 1(a) shows the drift path for the tip-tip collision. As
usually observed in quasifission reactions, Cf-like heavy frag-
ments lose nucleons and the system drifts toward symmetry.
In the side-tip collision, shown in Fig. 1(c), the nucleon
drift mechanism is very different than the tip-tip geometry.
Here, the heavy fragment gains neutrons and protons and
the system drifts along the isoscalar path toward asymme-
try. This kind of drift path is not very common, and it is
referred to as the inverse quasifission reaction. Figure 1(d)
shows the drift path for the side-side collision. The drift path
in side-side collisions is different than other geometries. It
appears that a small number of nucleons transfer, and the
neutron and proton numbers of the final fragments are nearly
the same as those of the initial fragments. This observation
seems to indicate a particular result of shell effects in the
side-side collision geometry. As a result, the dinuclear sys-
tem wanders in the vicinity of a local equilibrium state of
the potential energy surface in the N-Z plane without a no-
ticeable drift in the symmetry or asymmetry directions. As
seen in Fig. 1(b), in the tip-side collision, the nucleon drift
mechanism is very different than those in other geometries.
The dinuclear system drifts along the isoscalar path with the
same charge asymmetry toward symmetry. However, Cf-like
heavy fragments continue to lose neutrons and protons until
they nearly reach thorium at the exit channel. In Ref. [52],
this type of drift was named as the swap inverse quasifission
reaction.

III. QUANTAL DIFFUSION DESCRIPTION

A. Langevin equation for nucleon transfer

The ordinary TDHF provides a deterministic description
for collision dynamics. A single-particle density matrix is
calculated with a given initial condition which is characterized
by a single Slater determinant. On the other hand, due to
correlations the actual initial state cannot be a single deter-
minant but should be a superposition of Slater determinants.
In the SMF approach, the correlated initial sate is represented
by an ensemble of single-particle density matrices which are
specified in terms of initial correlations [45,51]. Time evolu-
tion of the single-particle density matrix in each event in the
ensemble is determined by the TDHF equations with the self-
consistent Hamiltonian of that event. In each event of the SMF
approach, fluctuations of the random elements of the initial

density matrices are determined by Gaussian distributions the
variances of which are specified with the requirement that the
ensemble average of dispersions of one body observables in
the initial state matches the quantal expressions in the mean-
field approach.

When a dinuclear structure is maintained in the collision
dynamics, as in the case of heavy-ion collisions at near barrier
energies, we do not need to generate an ensemble of mean-
field events. Instead, it is possible to develop a much easier
transport description by employing the Langevin formalism
for the relevant macroscopic variables. This is accomplished
via a geometric projection of the SMF approach by utiliz-
ing the window dynamics. For the details of the quantal
diffusion description and the window dynamics we refer to
Refs. [56–64]. For the description of the nucleon diffusion
mechanism, we consider neutron number and proton number
of the projectilelike or targetlike fragments as the relevant
macroscopic variables. In this paper, neutron Nλ

1 (t ) and proton
Zλ

1 (t ) numbers of the Cf-like fragments denote these variables.
We can determine neutron and proton numbers of these frag-
ments, for the event λ, by integrating the particle density on
the left side or the right side of the dividing window. During
contact, as a result of nucleon flux across the window, neutron
and proton numbers of these fragments fluctuate from one
event to another, and these numbers can be decomposed as
Nλ

1 (t ) = N1(t ) + δNλ
1 (t ) and Zλ

1 (t ) = Z1(t ) + δZλ
1 (t ), where

N1(t ) and Z1(t ) are the mean values taken over an ensem-
ble of SMF events. For small amplitude fluctuations, these
mean values are determined by the mean-field description of
the TDHF theory. According to quantal diffusion approach,
small amplitude fluctuations of the neutron δNλ

1 (t ) and proton
δZλ

1 (t ) numbers evolve as a coupled linear quantal Langevin
equation [56–62]:

d

dt

(
δZλ

1 (t )
δNλ

1 (t )

)
=

(
∂vp

∂Z1

(
Zλ

1 − Z1
) + ∂vp

∂N1

(
Nλ

1 − N1
)

∂vn
∂Z1

(
Zλ

1 − Z1
) + ∂vn

∂N1

(
Nλ

1 − N1
)
)

+
(

δvλ
p(t )

δvλ
n (t )

)
. (1)

Quantities vλ
α (t ) = vα (t ) + δvλ

α (t ) are the drift coefficients
of neutrons and protons with the mean values and the fluc-
tuating parts denoted by vα (t ) and δvλ

α (t ), respectively, with
index α indicating neutron and proton labels. Drift coefficients
vλ

α (t ) represent the rate of neutron and proton flux across
the window for the event λ. The linear limit of Langevin
description presented here provides a good approximation
when the driving potential energy is nearly harmonic around
the equilibrium values of the mass and charge asymmetry.
The mean values of the drift coefficients are determined
from the rate of change of neutron and proton numbers
in Cf-like fragments, which are shown in Fig. 8 in the
Appendix. The explicit quantal expressions of the stochas-
tic parts of the drift coefficients δvλ

α (t ) can be found in
Ref. [57].

B. Quantal diffusion coefficients

The stochastic parts of the drift coefficients δvλ
p(t ) and

δvλ
n (t ) provide the source for generating fluctuations in
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mass and charge asymmetry degrees of freedom. According
to the SMF approach, stochastic parts of drift coefficients
have Gaussian random distributions with zero mean values
δvλ

p(t ) = 0 and δvλ
n (t ) = 0, and the autocorrelation functions

of the stochastic drift coefficient integrated over the history
determine diffusion coefficients Dαα (t ) for proton and neutron
transfers: ∫ t

0
dt ′δvλ

α (t )δvλ
α (t ′) = Dαα (t ). (2)

In general diffusion coefficients involve a complete set
of particle-hole states. It is possible to eliminate the entire
set of particle states by employing closure relations in the
diabatic limit. This results in an important simplification, and
as a result diffusion coefficients are determined entirely in
terms of the occupied single-particle wave functions of TDHF
evolution. Explicit expressions of the diffusion coefficients are
provided in previous publications [56–62] and for the analysis
of these coefficients please see Appendix B in Ref. [57]. The
fact that diffusion coefficients are determined by the mean-
field properties is consistent with the fluctuation dissipation
theorem of nonequilibrium statistical mechanics and it greatly
simplifies calculations of quantal diffusion coefficients. Diffu-
sion coefficients include quantal effects due to shell structure,
Pauli blocking, and the full effect of the collision geometry
without any adjustable parameters. We observe that there
is a close analogy between the quantal expression and the
classical diffusion coefficient for a random walk problem
[65–67]. The direct part is given as the sum of the nucleon
currents across the window from the targetlike fragment to
the projectilelike fragment and from the projectilelike frag-
ment to the targetlike fragment, which is integrated over the
memory. This is analogous to the random walk problem, in
which the diffusion coefficient is given by the sum of the
rate of the forward and backward steps. The second part in
the quantal diffusion expression stands for the Pauli blocking
effects in the nucleon transfer mechanism, which does not
have a classical counterpart. As examples, Fig. 2 shows the
neutron and proton diffusion coefficients in head-on collisions
of the 250Cf + 232Th system at Ec.m. = 950 MeV for different
collision geometries.

C. Potential energy of the dinuclear system

After colliding nuclei form a dinuclear system, the nu-
cleon drift mechanism is determined via the potential energy
surface in the (N, Z ) plane. Potential energy of the din-
uclear system U (N1, Z1) primarily consists of the surface
energy, electrostatic energy, symmetry energy, and centrifugal
potential energy. TDHF theory includes different energy con-
tributions microscopically. Furthermore, TDHF calculations
show that the potential energy depends on the collision geom-
etry. To compute the coupled Langevin equations, in addition
to the diffusion coefficients, we need to evaluate derivatives
of the mean drift coefficients with respect to neutron and
proton numbers. The Einstein relations in the overdamped
limit [56–62] provide a convenient approach to determine
these derivatives. In the overdamped limit, drift coefficients

are related to the potential energy surface in the (N, Z ) plane
as

vn(t ) = −DNN (t )

T ∗
∂

∂N1
U (N1, Z1), (3a)

vz(t ) = −DZZ (t )

T ∗
∂

∂Z1
U (N1, Z1), (3b)

where T ∗ represents the effective temperature of the system.
In heavy dinuclear systems, the centrifugal potential energy
is not very important. Therefore, we ignore the centrifugal
potential energy and analyze potential energy of dinuclear
systems formed in head-on collisions with � = 0 relative an-
gular momentum. In four geometries that we consider, the
dinuclear system drifts along the isoscalar path toward a local
equilibrium state. For collisions of actinide nuclei, the lighter
local equilibrium state is located in the vicinity of the lead
valley with neutron and proton numbers around N0 = 128
and Z0 = 82 and the heavier local equilibrium state is lo-
cated in the vicinity of the superheavy valley with neutron
and proton numbers around N0 = NT − N0 = 166 and Z0 =
ZT − Z0 = 106. Here NT = 152 + 142 is the total neutron
number and ZT = 98 + 90 is the total proton number of the
dinuclear system, respectively. In Figs. 1 and 3 the solid
black line indicates the isoscalar path with a constant charge
asymmetry value (N − Z )/(N + Z ) = 0.22. In the collisions
of Cf + Th, drift in different collision geometries follows
nearly this isoscalar path. The lead isotope with Z = 82 and
N = 128 is located on this isoscalar path. We take this isotope
as the local equilibrium reference state rather than Z = 82 and
N = 126. This does not introduce an appreciable difference
in the calculations of the reduced curvature parameter. As
illustrated in Fig. 1, the dinuclear system formed in collision
of 250Cf + 232Th drifts nearly along the isoscalar path, which
is parallel to the equilibrium valley of stable nuclei. To extract
information about potential energy in perpendicular direction
to the stability valley, we need to choose the reaction of a
suitable neighboring system. For this purpose, the head-on
collision of the 240Cf + 246Th system provides a suitable sys-
tem. Figure 3 shows the drift path of Cf-like fragments in
the head-on collision of the 240Cf + 246Th reaction at tip-tip
(XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) ge-
ometries at Ec.m. = 950 MeV. In the Appendix, Fig. 9 shows
neutron and proton numbers of Cf fragments as a function
of time in different geometries. In this system, the initial
charge asymmetry of 240Cf is (N − Z )/(N + Z ) = 0.18 and
that of 246Th is (N − Z )/(N + Z ) = 0.27. Initially, the system
rapidly drifts towards the equilibrium valley, until it reaches
equilibrium charge asymmetry value 0.22. The perpendicular
component of this drift line is referred to as the isovector
path. Then, the system continues to drift along the isoscalar
path toward symmetry or asymmetry with the same charge
asymmetry and the same slope angle as the isoscalar path
in the 250Cf + 232Th system. The system separates before
reaching local equilibrium. Combining the drift information
of these two very similar systems, we can provide an ap-
proximate description of the potential energy surface of the
dinuclear system relative to the equilibrium value in terms of
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two parabolic forms [68]:

U (N1, Z1) = 1
2 aR2

S (N1, Z1) + 1
2 bR2

V (N1, Z1). (4)

Here, RS (N1, Z1) and RV (N1, Z1) represent perpendicular dis-
tances of a fragment with neutron and proton numbers
(N1, Z1) from the isoscalar path and from the local equilibrium
state along the isoscalar path, respectively. Because of the
sharp increase of asymmetry energy, we expect the isovector
curvature parameter a to be much larger than the isoscalar
curvature parameter b. When drift occurs toward symmetry
like in Fig. 3(d), we can express the isoscalar distance from
the local equilibrium state (N0, Z0) as RV = (N1 − N0)cosφ +
(Z1 − Z0)sinφ, and the isovector distance from the isoscalar
path as RS = (Z1 − Z0)cosφ − (N1 − N0)sinφ. When drift oc-
curs toward asymmetry like in Fig. 3(c), we can express
isoscalar distance from the local equilibrium state (N0, Z0)
as RV = (N0 − N1)cosφ + (Z0 − Z1)sinφ, and the isovector
distance as RS = (N0 − N1)sinφ − (Z0 − Z1)cosφ. The angle
φ is the angle between the isoscalar path and the N axis, which
is about φ = 32◦. It is possible to derive similar expressions
for other geometries. All have the same isoscalar path which
makes the same angle φ = 32◦ with the N axis. Because of
analytical relations of the potential energy in the Einstein
relations, we can immediately calculate derivatives of drift
coefficients to find

∂νn

∂N1
= −DNN (α sin2 φ + β cos2 φ), (5)

∂νz

∂Z1
= −DZZ (α cos2 φ + β sin2 φ), (6)

∂νn

∂Z1
= −DNN (β − α) sin φ cos φ, (7)

∂νz

∂N1
= −DZZ (β − α) sin φ cos φ. (8)

These expressions are valid for different collision geome-
tries with different values of reduced isoscalar, β = b/T ∗,
and isovector, α = a/T ∗, curvature parameters. By inverting
Eqs. (3a) and (3b), it is possible to express the reduced cur-
vature parameters in terms of drift and diffusion coefficients.
Due to microscopic shell structure, transport coefficients de-
pend on time, and as a result the reduced curvature parameters
are time dependent as well. In simple parabolic parametriza-
tion of the potential energy surface, we ignore the time
dependence and use constant curvature parameters. Constant
curvature parameters are determined by averaging over suit-
able time intervals while colliding nuclei have sufficiently
large overlap. When drift occurs toward symmetry, the aver-
aged value of the isoscalar reduced curvature parameter over
a time interval t1 and t2 is determined as

β(12) = − 1

RV (12)

∫ t2

t1

(
vn(t ) cos φ

DNN (t )
+ vp(t ) sin φ

DZZ (t )

)
dt, (9)

where the integrated isoscalar distance is given by

RV (12) =
∫ t2

t1

{[N1(t ) − N0]cosφ + [Z1(t ) − Z0]sinφ}dt .

(10)

We can use these expressions in calculating averaged val-
ues of isoscalar reduced curvature parameters in different
geometries. In the tip-tip collision of the 250Cf + 232Th sys-
tem, we take the averaging interval, as shown in Fig. 8(a)
in the Appendix, as t1 → tA = 150 fm/c and t2 → tB = 550
fm/c, and we find the reduced isoscalar curvature parameter
in tip-tip geometry to be β(TT) = 0.005. In tip-side geometry
using the interval as t1 → tA = 200 fm/c and t2 → tB = 500
fm/c, as shown in Fig. 8(b) of the Appendix, we find the
reduced isoscalar curvature parameter in tip-side geometry
to be β(TS) = 0.009. When drift is toward asymmetry, we
can determine the averaged value of the isoscalar reduced
curvature parameter over a time interval t1 and t2 using the
negative of Eq. (9) and, by taking the integrated isoscalar
distance as RV (12) → RV (12),

RV (12) =
∫ t2

t1

{
[N0 − N1(t )]cosφ + [Z0 − Z1(t )]sinφ

}
dt .

(11)

In side-tip geometry, using the interval tA = 200 fm/c
and tB = 500 fm/c, as shown in Fig. 8(c) in the Appendix,
we find the reduced isoscalar curvature parameter to be
β(ST) = 0.009. For the side-side geometry, we estimate the
isoscalar curvature parameters in the interval tA → tB with
tA = 200 fm/c and tB = 300 fm/c, as shown in Fig. 8(d) in the
Appendix, to be β(SS) = 0.004. In the interval tB → tC with
tB = 300 fm/c and tC = 800 fm/c, we estimate the isoscalar
curvature parameter to have the same magnitude, β(SS) =
0.004.

When drift occurs toward symmetry, we estimate the
isovector reduced curvature parameters in different collision
geometries from the drift paths of 240Cf + 246Th by averaging
over time interval t1 and t2 as

α(12) = 1

RS (12)

∫ t2

t1

(
vn(t ) sin φ

DNN (t )
− vp(t ) cos φ

DZZ (t )

)
dt, (12)

where the integrated isovector distance is given by

RS (12) =
∫ t2

t1

{[Z1(t ) − Z0]cosφ − [N1(t ) − N0]sinφ}dt .

(13)

In side-side geometry, we estimate the isovector curvature
parameter by calculating the average value in the interval
tA → tB with tA = 220 fm/c and tB = 310 fm/c, as shown
by Fig. 9(d) in the Appendix. We find the reduced isoscalar
curvature parameter to be α(SS) = 0.11. In tip-side geometry,
we estimate the isovector curvature parameter by calculating
the average value in the interval tA → tB with tA = 170 fm/c
and tB = 280 fm/c, as shown by Fig. 9(b) in the Appendix.
We find the reduced isoscalar curvature parameter to be
α(TS) = 0.15. When drift occurs toward asymmetry, we es-
timate the isovector reduced curvature parameters in different
collision geometries from the drift paths of 240Cf + 246Th
using Eq. (12) in which the integrated isovector distance is
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replaced by RS (12) → RS (12):

RS (12) =
∫ t2

t1

{
[Z0 − Z1(t )]cosφ − [N0 − N1(t )]sinφ

}
dt .

(14)

In side-tip geometry, we estimate the isovector curvature
parameter by calculating the average value in the interval
tA → tB with tA = 150 fm/c and tB = 260 fm/c, as shown
by Fig. 9(c) in the Appendix. We find the reduced isoscalar
curvature parameter to be α(ST) = 0.12. In tip-tip geometry,
we estimate the isovector curvature parameter by calculating
the average value in the interval tA → tB with tA = 150 fm/c
and tB = 220 fm/c, as shown by Fig. 9(a) in the Appendix. We
find the reduced isoscalar curvature parameter to be α(TT) =
0.16.

IV. PRIMARY AND SECONDARY CROSS SECTIONS
OF REACTION PRODUCTS

A. Probability distributions of primary fragments

The joint probability distribution function P�(N, Z ) for
producing binary fragments with N neutrons and Z protons
is determined by generating a large number of solutions of
the Langevin Eq. (1). It is well known that the Langevin
equation is equivalent to the Fokker-Planck equation for the
distribution function of the macroscopic variables [65]. In
the special case, when drift coefficients are linear functions
of macroscopic variables, as we have in Eq. (1), the proton
and neutron distribution function for the initial orbital angular
momentum � is given as a correlated Gaussian function de-
scribed by the mean values and neutron, proton, and mixed
dispersions as

P�(N, Z ) = 1

2πσNN (�)σZZ (�)
√

1 − ρ2
�

exp(−C�). (15)

Here, the exponent Cl for each initial angular momentum is
given by

C� = 1

2
(
1 − ρ2

�

)
[(

Z − Z�

σZZ (�)

)2

− 2ρ�

(
Z − Z�

σZZ (�)

)(
N − N�

σNN (�)

)

+
(

N − N�

σNN (�)

)2
]
, (16)

with the correlation coefficient defined as ρ� = σ 2
NZ (�)/

[σZZ (�)σNN (�)]. Quantities N� = N
λ

� and Z� = Z
λ

� denote the
mean neutron and proton numbers of the targetlike or projec-
tilelike fragments. These mean values are determined from the
TDHF calculations. It is possible to deduce coupled differen-

tial equations for variances σ 2
NN (�) = δNλδNλ and σ 2

ZZ (�) =
δZλδZλ and covariances σ 2

NZ (�) = δNλδZλ by multiplying
Langevin Eq. (1) with δNλ and δZλ and carrying out the
average over the ensemble generated from the solution of the
Langevin equation. These coupled equations were presented

in Refs. [56–62]. For completeness, we provide these differ-
ential equations here [69]:

∂

∂t
σ 2

NN = 2
∂νn

∂N1
σ 2

NN + 2
∂νn

∂Z1
σ 2

NZ + 2DNN , (17)

∂

∂t
σ 2

ZZ = 2
∂νp

∂Z1
σ 2

ZZ + 2
∂νp

∂N1
σ 2

NZ + 2DZZ , (18)

and

∂

∂t
σ 2

NZ = ∂νp

∂N1
σ 2

NN + ∂νn

∂Z1
σ 2

ZZ + σ 2
NZ

(
∂νp

∂Z1
+ ∂νn

∂N1

)
. (19)

Here, DNN and DZZ indicate the diffusion coefficients for
proton and neutron transfer. Variances and covariances are
determined from the solutions of these coupled differential
equations with initial conditions σ 2

NN (t = 0) = 0, σ 2
ZZ (t =

0) = 0, and σ 2
NZ (t = 0) = 0, for each orbital angular momen-

tum. As an example, Fig. 4 shows neutron, proton, and mixed
variances, as a function of time, in the head-on collision of
Cf + Th at Ec.m. = 950 MeV for the tip-tip tip-side, side-tip,
and side-side collision geometries.

B. Cross sections of primary reaction products

We calculate the cross sections for production of primary
isotopes using the standard expression:

σ pri(N, Z ) = π h̄2

2μEc.m.

�max∑
�min

(2� + 1)Ppri
� (N, Z ), (20)

where

Ppri
� (N, Z ) = 1

2

[
Ppro

� (N, Z ) + Ptar
� (N, Z )

]
. (21)

In this expression, Ppro
� (N, Z ) and Ptar

� (N, Z ) denote the nor-
malized probability of producing projectilelike and targetlike
fragments. These probabilities are given by Eq. (15) us-
ing mean values of projectilelike and targetlike fragments,
respectively. The factor of 1/2 is introduced to make the
total primary fragment distribution normalized to unity. In
summation over �, the range of initial orbital angular mo-
menta depends on the detector geometry in the laboratory
frame. There are no nucleon transfer data available for the
250Cf + 232Th system. In calculations, we carry out summa-
tion over the range from �min = 0h̄ to �max = 480h̄. The upper
limit corresponds to quasi-elastic-scattering events with a few
nucleon transfer channels. We calculate total double cross
sections for four different tip-tip, tip-side, side-tip, and side-
side collision geometries. Figure 5 shows the double cross
sections in the N-Z plane for the production of primary frag-
ments in tip-tip (a), tip-side (b), side-tip (c), and side-side (d)
geometries. The points shown by crosses indicate colliding
nuclei 250Cf and 232Th. Equal values of primary cross sec-
tions form elliptic curves. Large values of mixed dispersions
indicate strong correlations in neutron-proton transfers. The
strong correlations are induced mainly by the symmetry en-
ergy. As a result, the major axes of equal cross-section elliptic
curves are aligned along with the valley of stability. Gross
properties of primary cross sections are similar in different
collision geometries. Due to the drift towards asymmetry di-
rection, magnitude of the cross sections along the isoscalar
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FIG. 4. Neutron, proton, and mixed variances as a function of time in the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip (XX ), tip-side
(XY ), side-tip (Y X ), and side-side (YY ) geometries.

direction extends further towards the superheavy island in
side-tip collision geometry as compared to the other collision
geometries. As an example, magnitude of the primary cross
section for production of elements (Z = 118, N = 185) is
about 0.01 mb, which is larger than those in other collision
geometries.

C. Cross sections of secondary reaction products

Primary fragments are excited and cooled down by light
particle emission, mostly neutrons, protons, and alpha parti-
cles, or they may decay via binary fission. We analyze the
deexcitation mechanisms of the primary fragments using the
statistical code GEMINI++ [70]. We estimate the total excita-
tion energy of the primary fragments according to E∗

� (Z, N ) =
Ec.m. − TKE� − Qgg(Z, N ). In this expression TKE� is the
mean value of total asymptotic kinetic energy in collision with
initial orbital angular momentum �, and Qgg(Z, N ) denotes
the ground state Q value of the primary fragments relative to
the initial value. For collisions with an initial orbital angular
momentum, in the exit channel total spin and total excitation
energy should have distributions around their mean values. In
the present analysis, we ignore the fluctuations in excitation
energy and spin of primary fragments. We share the mean
value of the total excitation energy and the total angular mo-
mentum transfer in proportion to mass ratio of the primary
fragments. The excited parent nucleus decays by a series of
particle emissions and by secondary fission until the decay of
the parent nucleus is energetically forbidden. Starting from
an excited parent nucleus with neutron and proton numbers
(Z, N ), excitation energy E∗(Z, N ), and spin J , statistical code
GEMINI++ determines the probability W (N, Z → N ′, Z ′) of
reaching final nucleus (Z ′, N ′). The probability distribution of

secondary fragments is specified as

Psec
� (N ′, Z ′) =

∑
N�N ′

∑
Z�Z ′

Ppri
� (N, Z )W (N, Z → N ′, Z ′). (22)

Here, summation (Z, N ) covers the pairs of projectilelike
fragments and targetlike fragments of the dinuclear system
according to their probability distributions:

σ sec
� (N ′, Z ′) = π h̄2

2μEc.m.

�max∑
�min

(2� + 1)Psec
� (N ′, Z ′). (23)

Figure 6 shows the double cross sections of secondary frag-
ments in the N-Z plane for different collision geometries.
Again, the gross properties of the secondary cross sections are
very similar for different collision geometries. Below N =
100 and Z = 60, decay products consist of secondary fis-
sion of excited heavy fragments. Above this region the cross
sections are populated by light particle emission including
neutron, proton, and alpha particles. Calculations predict pro-
duction of a broad range of neutron rich isotopes for nuclei
with proton numbers in the range of Z = 70–90, with cross
sections on the order of several hundred microbarns. Figure 7
shows an enlarged view of the secondary cross sections for
heavy neutron rich nuclei for the range of proton numbers Z =
80–90 and the range of neutron numbers N = 130–160. Fur-
thermore, our calculations indicate a number of neutron rich
heavy isotopes with sizable cross sections including 246Cm
with a cross section of 159 nb for the side-side collision,
248Cm with a cross section of 80 nb for the tip-side collision,
and 253Cm with a cross section of 252 nb for the side-tip
collision. In reality, all collision orientations contribute to
the cross sections and one should weigh each one with an
appropriate geometric factor. As a result, the values provided
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FIG. 5. Primary production cross sections in the N-Z plane for the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip (XX ), tip-side (XY ),
side-tip (Y X ), and side-side (YY ) geometries.

here should be seen as order of magnitude as well as upper
limits.

V. CONCLUSIONS

We have presented an investigation of the multinucleon
transfer mechanism for the collisions of the 250Cf + 232Th
system at Ec.m. = 950 MeV employing the quantal trans-
port description based on the SMF approach. The standard

mean-field description of TDHF determines average evolution
of the most probable path of heavy-ion collision dynamics at
low energies. The SMF provides an extension to the standard
TDHF description by including mean-field fluctuations in a
manner consistent with the fluctuation-dissipation theorem
of nonequilibrium statistical mechanics. When a dinuclear
complex is maintained in collisions, we can extract Langevin
equations for macroscopic variables, such as the mass and
charge asymmetry of colliding ions. In this paper, we take

FIG. 6. Secondary production cross sections in the N-Z plane for the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip (XX ), tip-side
(XY ), side-tip (Y X ), and side-side (YY ) geometries.

014609-10



MULTINUCLEON TRANSFER MECHANISM IN … PHYSICAL REVIEW C 107, 014609 (2023)

FIG. 7. Enlarged view of secondary production cross sections in the N-Z plane for the 250Cf + 232Th system at Ec.m. = 950 MeV in tip-tip
(XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) geometries.

neutron and proton numbers of one of the collision part-
ners in the dinuclear complex as the relevant macroscopic
variables. Using the equivalence of Langevin description and
Fokker-Planck descriptions, it is possible to provide nearly an

analytical description in terms of correlated Gaussian shape
probability distribution of the primary fragments produced
in collisions. The correlated Gaussian distribution for each
orbital angular momentum is determined by the asymptotic

FIG. 8. Mean values of neutron and proton numbers of Cf-like fragments in the head-on collision of the 250Cf + 232Th system at Ec.m. = 950
MeV in tip-tip (XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) geometries.
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FIG. 9. Mean values of neutron and proton numbers of Cf-like fragments in the head-on collision of the 240Cf + 246Th system at Ec.m. = 950
MeV in tip-tip (XX ), tip-side (XY ), side-tip (Y X ), and side-side (YY ) geometries.

values of the mean neutron and proton numbers of the primary
fragments, and the neutron, proton, and mixed dispersions. We
determine these dispersions employing the quantal transport
approach. Diffusion coefficients, which provide the source for

developing fluctuations, are evaluated in terms of the occupied
single-particle wave functions of the TDHF theory. Transport
coefficients include quantal effects due to shell structure and
Pauli blocking, and do not involve any adjustable parameters

FIG. 10. Diffusion coefficients in the head-on collision of the 240Cf + 246Th system at Ec.m. = 950 MeV in tip-tip (XX ), tip-side (XY ),
side-tip (Y X ), and side-side (YY ) geometries.
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other than the standard parameters of the effective Skyrme
force used in the TDHF calculations. Highly excited primary
fragments decay by particle emission and secondary fission.
Employing the statistical code GEMINI++, we can follow
the deexcitation process of primary fragments, and calculate
the production cross sections for the secondary fragments.
Since there are no data available, we are not able to test our
prediction for the multinucleon transfer mechanism for the
250Cf + 232Th reaction.
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APPENDIX

We can estimate the averaged values of reduced isoscalar
and isovector curvature parameters with the help of Einstein
relations, Eqs. (3a) and (3b), in the overdamped limit. We
evaluate the average values of the reduced curvature parame-
ters for different geometries by carrying out the time integrals
in Eqs. (9) and (12) over suitable time intervals. These time
intervals are indicated in Figs. 8–10 for 250Cf + 232Th and
240Cf + 246Th reactions.
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