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Knockout nuclear reactions, in which a nucleon is removed from a nucleus as a result of the collision with
another nucleus, have been widely used as an experimental tool, both to populate isotopes further removed from
stability and to obtain information about the single-particle nature of the nuclear spectrum. In order to fully
exploit the experimental information, theory is needed for the description of both the structure of the nuclei
involved, and the dynamics associated with the nucleon removal mechanisms. The standard approach, using
theoretical shell-model spectroscopic factors for the structure description coupled with an eikonal model of
reaction, has been successful when used in the context of the removal of valence nucleons in nuclei close to
stability. However, it has been argued that the reaction theory might need to be revisited in the case of exotic
nuclei, more specifically for highly asymmetric nuclei in which the deficient species (neutrons or protons)
is being removed. We present here a new formalism for the nucleon-removal and -addition reaction through
knockout and transfer reactions, that treats consistently structure and reaction properties using dispersive optical
potentials. In particular, our formalism includes the dynamical effects associated with the removal of a nucleon
from the projectile, which might explain the long standing puzzle of the quenching of spectroscopic factors in

nuclei with extreme neutrons-to-protons ratios.
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I. INTRODUCTION

Radioactive ion beams (RIBs) facilities are transforming
the field of low-energy nuclear physics by setting short-lived,
exotic isotopes within experimental reach. The availability of
new experimental data has been matched by theoretical efforts
towards the description of nuclear systems away from the
stability valley, and, more generally, towards an understanding
of nuclear structure in an exotic context [1]. The correspond-
ing paradigm shift in the theory of nuclear structure has to
be complemented by a revision of nuclear reaction theory,
needed for the description of the experiments in which ra-
dioactive ions are involved. Within this context, a considerable
effort has been devoted recently to the description of reactions
with weakly-bound nuclei (see, e.g., [2-5], see also [6] and
references therein).

However, the study of neutron-rich (respectively, proton-
rich) raises a complementary question about the behavior of
the deeply-bound protons (respectively, neutrons) belonging
to the same nucleus. This question has been highlighted in
publications by Gade and collaborators [7-9], in which they
present a review of results of one-neutron (respectively, one-
proton) knockout experiments expressed as a function of the
difference AS =S, — S, between the neutron S, and proton
separation S, energies (respectively, AS =S, —§,). In this
work, they arrive at the puzzling conclusion that theory is
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unable to account for as much as 80% of the quenching of
single-particle strength when the knocked out particle belongs
to the deficient species in systems with a large value of AS.
Several authors have suggested that nuclear structure calcula-
tions might fail to fully account for short-range correlations
between neutrons and protons in highly asymmetric systems,
leading to an overestimation of the single-particle content of
the states populated in knockout reactions [10,11].

On the other hand, the fact that the strong dependence on
AS of the spectroscopic factor quenching is not observed in
transfer and quasifree scattering experiments has led some
authors to suggest that the issue might be in the theory asso-
ciated with the description of the reaction process in the case
of knockout experiments [12—16] (see Ref. [17] for a recent
review). Knockout experiments are often described within the
eikonal model [18,19], assumed to be valid for high beam
energies. The sudden and the core spectator approximations,
in which the nuclear degrees of freedom are frozen during
the collision process, are used to describe the one-nucleon
removal from the projectile. The core spectator approximation
is based on the assumption that the characteristic decay times
of the core states populated in the nucleon removal process are
large compared to the collision time. This seems reasonable
when the nucleon is removed from a state not too far away
from the Fermi energy on a stable nucleus, since the narrow
associated energy width is small, the corresponding damping
(decay) time being therefore rather large.

However, it has been well known since knockout exper-
iments were performed in the early 1960s (see, e.g., [20])
that hole states associated with the removal of deeply-bound
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nucleons have much larger widths, sometimes of the order of
tens of MeV. In other words, hole states resulting from the
removal of a deeply-bound nucleon can decay into compli-
cated many-body nuclear states rather quickly, in times of the
order of 10723-10722 s, which is comparable to the short col-
lision times associated with fast knockout experiments. This
damping process results in dissipative effects associated with
the dynamics of hole states in nuclei, not taken into account
within the core spectator approximation. These effects have
already been estimated in Ref. [21] within the intranuclear
cascade approach, showing that they can excite the core above
the particle emission threshold, leading to particle evaporation
and a loss of flux in the outgoing channel that could account
for the observed spectroscopic factor quenching. This discus-
sion applies to the cases in which the residual core is the only
species detected in the experiment, such as in most standard
knockout reactions.

The above parlance highlights the general need to integrate
in a consistent theoretical framework the structure and dy-
namics of many nucleons in a nucleus, and the description
of reactions used to study them in an experimental context.
An attempt to account for the dynamics between a nucleus
and a transferred nucleon has already been implemented in
the the Green’s function transfer (GFT) formalism, albeit in a
one-nucleon addition context [22,23] (see also equivalent the-
ories in Refs. [24-26]). We present here an extension of this
idea, the Green’s function knockout (GFK), which describes
one-nucleon removal processes.

In Sec. I, we derive the general formalism for one-nucleon
removal reactions, such as knockout and (p, d), and we show
in Sec. III its connection to one-neutron addition processes
and the GFT formalism. In Sec. IV we discuss different ap-
proximations that can be made in the context of the GFK,
before concluding in Sec. V with a summary and outlook of
future developments.

II. GREEN’S FUNCTION KNOCKOUT FORMALISM

Let us introduce the GFK by considering a reaction involv-
ing a projectile nucleus P of mass mp impinging on a target 7'
of mass my. This system is described by the solution W of the
many-body Hamiltonian A,

H|V) = E|W), (1

where E is the energy of the system in the center of mass
frame. We are interested in the reaction channel in which a
nucleon N is knocked out from the projectile and only the
residual core c is detected with a kinetic energy Ey,. Since
the final state of the N-T system is often not measured, we
focus here on deriving the inclusive cross section in both
the core ¢ and N-T systems, i.e., summed over all energy-
conserving final states fyr of the N-T system and over all the
energetically available states f, of the core ¢ [19,27,28]. When
expressed as a function of the deflection angle of the core 2
and its final kinetic energy E, the cross section in the prior

T

FIG. 1. Set of coordinates used in this article: the c-N, ¢-T, and
N-T relative coordinates r, R.r, and Ry, respectively.

representation reads

do _ 27‘[,le7‘
dEﬁTdQ o hszT

X Z |<‘I’(fNTsfc)IVpri0r|¢(T0>¢§)0)]_—>|2
It fe

x 8(E — Ey, — E;. — Ey,,), 2)

o(Er, )

where W(fyr, f.) is the solution of Eq. (1) subject to the
boundary condition consisting in having an outgoing wave
containing the core in a state f. moving with kinetic energy
Ey, with respect to the target, and the N-T system is in
a state fyr. The many-body wave functions ¢;0) and ¢1(,0)
correspond to the ground state of the target and the projectile,
respectively, while F describes the relative motion between
the projectile and the target in the incoming channel. The term
p(Ep,) = ,uchZT / [(27 3R] is the asymptotic phase space
factor (density of states) of the core fragment, ka and kpr
are, respectively, the final ¢-T and initial P-T wave numbers,
Uer and wpr being the ¢-T and P-T reduced masses.

In its exact form, the prior potential Vprior depends on the
¢-T and N-T many-body potentials, respectively V.7 and Vy7,
and on the potential V; used to compute the incoming scatter-
ing function F,

Vprior = ACT + VNT - ‘71 3

The exact prior potential therefore depends on the N-T and
c-T relative coordinates, respectively, Ryr and R.r (see
Fig. 1), and the intrinsic coordinates of the target and the
core, respectively, & and &.. In this formalism, we neglect
the dependence of the prior potential on the core intrinsic co-
ordinates &_, although the role of reaction channels in exciting
the core is accounted for with the inclusion of an imaginary
part. In Sec. IV, we will discuss different possible choices of
FandV.
We now approximate the exact wave function as

W(fvr, f) =~ x5V R Ryr EnW (&), @)
where x C(]TC”') is the wave function describing the final c-T rel-
ative motion, and the final wave functions of the core and the
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N-T systems, respectively, Y and w,(\,f}v"'), are many-body
objects. These functions satisfy the Schrodinger equations

(Ej, —ho) (&) =0, (5)

(Efyy — Tnr — Ve — he) v\ Ry, £2) =0, (6)

where we define the many-body core (h.) and target (hr)
Hamiltonian operators, and the kinetic energy operator Ty7.
Then,

do 27T/LPT
E
dE,dQ ~ Fkpy PR 2
¢ Int . fe

x |<xf#” v v

X (S(E — Ef(.T —Ef(.

prlor |¢(0)¢;20)‘F>|2
- EfNT )- 7

We now write the sum over § functions in Eq. (7), which
enforces energy conservation, in terms of the imaginary part
of the Green’s function [29]

Z |I//(fNT)wC(fL w(ft),l//(fNT)|8(E _ Ech _ EfL.
Nt fe

- EfNT)

1. .
=— —ImG(E —Ey,), ®)
T

which expresses the relationship between the spectral function
and the many-body Green’s function
1

G = l1m — 9)
0& —he — Tyr — Vyr — hr +in’

Making use of the complete set of product states w(f’v r)

(ff) , the Green’s function can be written in the Lehmann
representatlon,

(fNr) (fe) (fe) ) (fnr)
G(f,’)—hmz| Ve W

. (10
E—Er —E;, +in
or in two other equivalent representations,
| (fNT))( (fnr)
Gu(E) = lim , (11)
" VIHOZS—EfNT—hC—Fiﬂ
Inr
) ) |w£fc))< (Efc)
Gyr(€) = lim 12
wr(€) =Tlim 3 (12)

0= E—E; —Tyr —Vyr —hr +in

Using Eq. (10) we can rewrite Eq. (7) as
do  2upr
dEfLTdQ - hszT

xIm GE = Ex )" [Vvior |7 85 F)
(13)

IO(Ech )<¢(0) (O)F |Vprlor’ X(ch))

or, equivalently,
do 2upT
dE;,dQ ~ Whkpr

x 1m Gy(E — Ep xr™ [Vorior |07 03" F)-
4

PENGL PO F [Viior| 1 L7)

This expression is still difficult to handle as it contains the
many-body operator G,

In order to reduce the dimensionality of the problem, we
average the Green’s function over the ground state of the
projectile

( (0)|Gh(E Esz)|¢(0))
— hm Z |I//(fNT) (fNT)

fNT
1
0) (0)
<¢ E— Efr»’r - EfNT - i\lc +1in ’(p )
— hm Z |1/f(fNT) (fNT)‘GOp[(E E;, EfNT)’ (15)
Int

where we have defined the optical reduction of the Green’s
function

Gy (B = lim (@7 By — he + i) ™" [9})

= lim (B, — T — Oy + i)™, (16)
n—

which is a one-body operator. In this equation, we have

defined the one-particle 7}, kinetic and U, hole potential

operators, which in general is nonlocal, complex, and energy-

dependent [30]. The eigenstates of the hole Hamiltonian

correspond to discrete overlap functions

w;.ﬂ)(r) ( (0)|w(fc > (17)
solutions to the Schrodinger equation [29,30]
(Ey = Ty = O v () = 0. (18)

The energy needed to promote a nucleon of the projectile
P to a zero-energy state, leaving the core in its ground state, is
the nucleon separation energy S " which we define positive
for particle-bound systems, according to the standard conven-
tion. Therefore, the core ground state is obtained by creating
a hole of energy E;, = —Sl(f) in the projectile. An excited
state of the core with energy Ey, is obtained by delivering the
corresponding additional energy, thus creating a deeper hole,

Ey=—E; — Sy (19)

Note that Eq. (18) does not constrain the proper normalization
of 1//,if"), namely, its spectroscopic factor S. Since a dispersive
optical potential can be identified with the self-energy of the
nucleon in the nuclear medium, the spectroscopic factor is
connected with the energy dependence of the hole potential,

-1
S(Eﬁ)=<1—aUh(E) ) . (20)
Ep

oE

The above equation is verified only for dispersive potentials,
and expresses the relationship between the optical potential
and the energy distribution of single-particle strength [29,30].
It highlights the importance of the use of dispersive potentials
in the present formalism, where it is essential to have an
accurate description of the spectral function, including the
verification of sum rules based on the conservation of the
number of particles.
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By also defining the transition amplitudes

T Ryr, Rer)
= /_F(RCT,RNT,STM’(TO)(&T)

X Y Ryr, & Wosior Ryt Rer, E7)dEp,  (21)

and the source term
PP () = / X4 Re) T Ry Rep)dRer. (22)

Eq. (14) becomes

do 2upr
JE,dS2 1k P
UG, @
Int

where the argument of the Green’s function reflects energy
conservation, i.e.,

Efr = E - EfrT - EfNT’ (24)
complemented with [see Eq. (19)]
E, = Ech + EfNT —E - SI(VP)' (25)

Equation (23) can be interpreted in terms of the source term
(22) expressing the probability of the production of a hole in
the projectile P at a position r, while the Green’s function
describes the dynamical evolution of the core-hole system.
Dissipative effects associated with core excitations are con-
nected with the imaginary part of the optical potential, and
are fully accounted for. When these excitations take place at
energies above the nucleon emission threshold they can result
in particle evaporation, and thus reduce the knockout cross
section of deeply-bound nucleons [21].

In order to highlight the effect of the absorption of the core
by the hole, we will express Eq. (23) in terms of U, by first
defining the free hole propagator Gzpt’o as

GMO(Ey) = lim (B, — Ty + im) ™" (26)
r]—)
so that we can write
(Gzpt,o)fl . (Gzpt)ﬂ _ Uh- (27)

By manipulating this expression, we obtain
~opt,0r ( Aopt,0y —1 Aopty —17 20opt _ Aopt
G [(Gh ) - (Gh ) ]Gh =G, -

=G0,67,  (28)

Aopt,0
Gh

which leads to the Dyson equation
G = G0+ G0, G (29)
We can now rewrite this propagator as
G = (14 G0N GO (1 + G - GO G
(30)

The first term of Eq. (30) corresponds to scattering states of
the core-hole system. Since the hole Hamiltonian describes

the removal of a bound nucleon from the projectile ground
state, it does not have any scattering solutions and this first
term vanishes. We therefore obtain

Im G = G ' Im 0, G 31
By defining the hole wave function

¢f(ifNT)(r)

we can then write the cross section (23) as

G (Ey) o (), (32)

do _ 2upr
dE;,dQ Rkpr

P(Er) Y6 Im Un(En)| ")
vt

(33)

If we assume that for excitation energies above the first parti-
cle emission threshold S{© the core will evaporate particles,
the experimental cross section for observing the core c is
restricted to 0 < E;, < S and therefore the hole energy
is restricted to —S© — S < E, < =S, The cross sec-
tion therefore reads

do 2upr D(E; )
dE;dQ ~  Whpr
_S](V’”
x Yy e mOuED]G). 34
Ep=—8 -8\

Let us stress that the above expression is inclusive in both
the N-T and the final states of the core. The sum over all
energy-accessible final states of the core is implied in the
imaginary part of the hole potential Im U, while it is explicit
in the N-T channel, as we sum over the hole states qb,(,f”),
which contain the N-T transition amplitudes in the source
term (22). The only approximations made in the derivation
of Eq. (34) are the assumption that the prior potential does not
depend explicitly on the core internal coordinates, and the fac-
torization of the many-body wave function (4). In particular,
no sudden or core spectator approximations has been made
concerning the dynamics of the N-T and N-c¢ systems. This
is in contrast with the standard eikonal framework [7,19,27],
where dynamical, nonsudden effects associated with the nu-
cleon extraction from the projectile (or hole creation) are
neglected. It is reasonable to expect that these effects will be
particularly important for the knockout of deeply-bound nu-
cleons, creating deeply-bound holes, which could give rise to
core excitation above particle emission thresholds and there-
fore to particle evaporation. The quenching of spectroscopic
strength is further enhanced in systems with high neutron-
proton asymmetry by the fact that the emission threshold of
the deficient species tends to be low, and the sum in Eq. (34)
is severely restricted.

III. APPLICATION TO A(p, d)B AND B(d, p)A
TRANSFER REACTIONS

Let us now consider a pickup reaction, in which a neutron
is transferred from the projectile A(= B + n) to the proton
target p, resulting in the formation of a deuteron d and the core
nucleus B. In these reactions, the deuteron is detected with
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kinetic energy E,, and the residual nucleus B is not observed.
While this process is still inclusive in the core (B) channel, it
is exclusive in the n-p channel, in which the deuteron has been
detected in the only available bound state, namely its ground
state. According to the notation of the previous section,

c =B, N=n c¢c+N=A, T+N=d.

(35)

T = p,

In this case, the deuteron ground state, with binding energy
€4 = —2.2246 MeV, is the only one to be kept in the sum
appearing in Eq. (34). The final N-T wave function corre-
sponds to the ground state of the deuteron 1//,(\/;”) = ¢4, and
the differential cross section becomes

do _ ZMPA
dE;dQ Bk

p(Er) o Im Un(Ep)lgn),  (36)

where kp, is the initial p-A wave number, 1 ,, is the p-A re-
duced mass, Ej, = Ej, + €4 — E — SY = —E;, — SW is the
B-hole energy, Ej, is the energy of the final state of the
residual nucleus B, and S™ is the neutron separation energy
of the A nucleus. The GFK formalism describes nonsudden,
dissipative processes in the core B system, and takes into
account the quantum many-body dynamics (encoded here in
the imaginary part of the hole optical potential, Im U,) to
describe its final state. Thanks to the use of dispersive optical
potentials, the GFK formalism allows a consistent descrip-
tion of pickup reactions leaving the residual nucleus in a
bound and resonant state. Typically, Im U, will be spin- and
parity-dependent. Within this context, this framework might
be useful in situations in which one is interested in the deter-
mination of the energy, spin, and parity of the final state of the
residual nucleus, as in, e.g., (p, d) surrogate reactions [31,32].

In reactions where a neutron is transferred from the target
to the projectile, such as B(d, p)A, the state of the nucleus A
is not measured. However, as for pickup reactions, the energy
of the state of the nucleus A can be deduced from the energy
of the final proton £ 1 In this case, we have

do 2uq
dE;dQ  TPky

P(Er,){($aTm U, (E,)| ), (37)

where k; is the initial wave number of the d-B system, wy
is the d-B reduced mass, E, is the excitation energy relative
to the ground state of the final nucleus A, and Un is the n-B
optical potential. Note that if the incoming scattering wave
function F is obtained within the distorted wave Born ap-
proximation (DWBA) described in Sec. IV B, this expression
is similar to Eq. (25) of Ref. [22], and the definition of the
n-B wave function ¢, is analogous to the one in Sec. II. The
framework presented here represents therefore a generaliza-
tion of the GFT [22] to describe inclusive measurements of
both one-nucleon addition and removal reactions. Compared
to previous models, the GFK is therefore applicable to both
transfer and knockout reactions. This general applicability of
the GFK is a great advantage, as it provides a theoretical
framework to compare their analysis and gives insights on
what are the reaction mechanisms at play.

Consequently, the GFK might allow to shed some light on
the discrepancy between the analyses of transfer and knock-

out experiments for projectile with large neutron-to-proton
asymmetry [7-9,12,13,17]. Since in transfer reactions, the
knocked-out nucleon is measured [in the case of (p, d), it
forms a deuteron with the proton target], any dissipative ef-
fects associated with the extraction of the neutron from the
projectile A, will not impact the cross sections (except if
the excited residual nucleus is able to emit deuterons). In
knockout reactions, since it is the residual nucleus that is
detected, the cross section is therefore directly impacted by
these particle emissions of the residual nucleus. Since these
effects are expected to be more important for the removal
of deeply-bound nucleons, this suggests that that these dis-
sipative effects might contribute to explain the discrepancy
between the analyses of transfer and knockout data as dis-
cussed in Ref. [21].

IV. COMPUTATION OF THE INCOMING
SCATTERING WAVE

To implement the GFK formalism, it is useful to approxi-
mate the incoming scattering wave JF. We present below two
possible approaches, which will also determine the choice of
the potential Vprior used in the transition amplitudes (21).

A. Eikonal approximation

Reactions measured at energies above 60 MeV /nucleon,
such as breakup reactions, are accurately described by the
eikonal model [19,33-36]. This approximation [18] assumes
that the projectile-target relative motion does not differ much
from the initial plane wave y;, strongly simplifying the three-
body problem (more details can be found in Ref. [3]). The
eikonal incoming distorted wave is given by

F =~ Syt (Ryt) Ser (Rer) iR, Rer). (38)

where Syt and S.r are, respectively, the N-T and c-T eikonal
S matrices. The eikonal model exhibit cylindrical symmetry, it
is therefore often expressed in terms of the transverse (b, c)r)
and longitudinal (Z(y,¢)r) coordinates

2 VA 2
Riy.oor = binor + Ziweyr- 39

In these coordinates, the eikonal S matrices can then be writ-
ten as

Snt(Zyt, byr) = exp [i855 (Zvr, byr)]. (40)
Ser (Zer, ber) = exp i85 (Zer, ber)]. (41)

in terms of the eikonal phases 85 and §¢ik

ik et o ’ /
Syt (Znts bar) = ——5— / Unr (Zyy, bnr)dZy
hkpr J-co
(42)
i “pr Zer ’ /
8 (Zer ber) = — oor / Uer (Zp. ber)dZly  (43)
—0oQ

with Uyt and U, the N-T and ¢-T optical potentials.
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By assuming that the nucleon and the core have the same
initial velocity as the projectile, i.e.,

MUNT Mer
kyt = ——kpr; ke = .

nper nper

kpr, (44)

we have
Xi(Rnt, Rer) = exp [itkyr Zvr + kerZer)]. (45)

In the eikonal model, the prior potential Vo is chosen as the
sum of the ¢-T and n-T interactions [27,37]

Vprior = VCT + VNT- (46)

As discussed in Ref. [37], this allows to take into account
breakup effects in the entrance channel.

In order to further simplify the calculation, one can also
approximate the N-T and c¢-T final wave functions within the
eikonal model

1./

X Ryr) = Sl Rypye ®oRor —a7)
1

X Rer) = S Repye kR, 8)

where Sf:;,c)r are the eikonal S-matrices and k{N,c)T are the
(N, ¢)-T final wave vectors.

Then, by approaching the integral over the target degrees
of freedom &, in Eq. (21) in terms of an eikonal N-T final
wave function, Uyt and U,r, the transition amplitude reads

TRy, Rer) ~ Syt (Ry1)Sh (Ryt) Ser (Rer)
X [Unt (Rn7) + U (Re7)]
e_inT Rur _ZNTZ)eikLTZL'T , (49)

and the source term to be used within this eikonal framework
is

PN () ~ / Snr (RnT)SY (Ryt) Ser (Re7)S F(Rer)

X [Unt (Ry1) + Ucr (Rc7)]
Xe*inT(RNT*ZNTZ)e*iqCT(R(-T*ZcTZ)dRCT’ (50)

—kerZ
and qyr =k,{,T — kyrZ. Note that this expression can be

where we define the transferred momenta g, = k‘fT

further simplifying assuming k(fL wyr = kv, neglecting the
dynamics of the reaction, as done in the usual eikonal model.

Since the wave function (38) takes into account breakup
effects [37], the eikonal approximation is able to describe
physical process in which the hole or nucleon absorption takes
place before as well as after (or simultaneously to) the breakup
process. However, it should only be applied when the kine-
matical conditions are suitable for an eikonal approximation,
i.e., when the bombarding energy is large enough. It is impor-
tant to note that, contrary to the usual eikonal description of
knockout reactions [19,27], the cross section (34) accounts for
nonsudden effects in the breakup of the projectile, by treating
explicitly the dynamics of the core-hole system in terms of the
hole optical potential Uj,.

Finally, let us stress that the extension of the eikonal ap-
proximation to treat explicitly nonlocal N-T and c-T optical

potentials is not straightforward [38]. The issue lies in the fact
that nonlocal interactions depend on a integral over the whole
space of the wave function and the nonlocal potential, while
the eikonal wave function is not accurate at short distances.
One way to avoid this issue is to derive the local-equivalent
potentials, (i.e., local potentials producing the same elastic
phase shifts as the original nonlocal ones), and to use them
to compute the eikonal phase shifts (42)—(43).

B. Distorted wave Born approximation

In what we will call the DWBA approximation to the GFK
formalism, the distorted wave F is approximated by

F ~ xpr(R), 61V}

where ypr is the solution of the Schrédinger equation with the
projectile-target optical potential Upr,

(Trr + Upr — E)xpr(R) = 0. (52)

The potential Vprior will now include the remnant term associ-
ated with the standard DWBA,

Vprior =Vr +Vvr — Upr. (53)

In a similar spirit as the one we adopted in the eikonal ap-
proach, one can also approximate the N-T" and c-T final wave
functions x(f V) and X(f”) by the solutions of the Schrodinger
equations with the optical potentials Uy and U.r, respec-
tively. The integral over the target degrees of freedom &; in

Eq. (21) can then be evaluated in terms of a N-T final wave
function, Uy and U,7,

T (Ryr, Rer) = xpr (R) X" (Rwr)
x [Unr (Rn7) + Ucr (Rer) — Upr (R)],
(54
and the source term becomes
(fnr) ~ (fer )* R R (fnr)* R
ey~ | xor T Rer)xer R xyr (RyT)

X [Unt (Rn1) + Uer (Rer) — Upr (R)]dR 7.
(55)

Let us emphasize that x UNT) can be calculated with the help

of the optical reduction of the Green’s function Gyr (12),
Opt (EfNT )
= }YIE}) <¢’([*0)‘(Ef}vr — Tvr — Vvr — by + i)™ |¢(TO)>

1
= lim (Efm — TNT — UNT — GT + ”]) s (56)

r]—)

where 6( ) is the target ground-state energy. This single-

particle Green’s function can be calculated numerically with
Lagrange mesh techniques [39]. Although straightforward for
local potentials, computing Green’s functions for nonlocal
potentials is not trivial and will be reported in another con-
tribution [40]. The overlap can then be obtained making use
of the relation

1
(le)*(r EfNT)X(fNI)(r EfNT)_ ——ImG (I‘ r; E)‘NT)

(57)
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As mentioned in Sec. II, this procedure enforces the proper
normalization of the overlap as the spectroscopic factor is
directly encoded in the energy dependence of the Green’s
function [see Eq. (20)]. Since the cross section (34) is a
functional of x/¥* /") it is unchanged under an arbitrary
phase change Xli,f}”) — ei‘/’xlf,f}’T)
enough to provide x,f,f}”) . Once the overlap has been deter-
mined, the source term (55) and the hole wave function (32)
can be computed by numerical integration.

As for the eikonal model, the DWBA formulation of the
GFK accounts for processes in which breakup has been in-
duced. The main difference here is that the approximation
is valid for low bombarding energies, for which the eikonal
approximation may not be accurate.

, and the expression (57) is

V. CONCLUSIONS

One-nucleon knockout and transfer reactions are key
probes of the single-particle structure of nuclei away from
stability. The standard theoretical approach associated with
these observables rely on spectroscopic factors derived within
some nuclear structure formalism, and reaction cross sec-
tions, and the discrepancy between theory and experiment
is often associated with missing correlations in the structure
description [17]. A striking feature of the comparison between
the theoretical and experimental knockout observables is a
marked neutron-to-proton asymmetry dependence which is
not observed in the analysis of transfer and quasifree reactions
[7-9,12,13,16,17]. In order to understand what causes this
discrepancy, it is pressing to describe both of these reaction
processes within the same framework, providing a unified
description of structure and reaction.

In this work, we introduce a new formalism, the GFK,
which describes one-neutron knockout and transfer reactions
making use of dispersive optical potentials, hence treat-
ing on the same footing bound and scattering states. For
one-nucleon addition transfer reactions, which are typically
measured at low to medium energies (from few MeVs to 50
MeV /nucleon), the use of a DWBA incoming scattering func-
tion leads to the GFT formalism [22]. Moreover, the GFK can
also predict one-nucleon removal reactions, such as (p, d) and
knockout reactions, thus allowing the description of transfer
and knockout reactions within the same framework.

Because the GFK relies on Green’s functions, the link
between the few-body problem and the underlying nuclear

structure of the ground states of the target and the projectile is
made explicit. Moreover, no core spectator or sudden approx-
imation is made, which allows to include dynamical effects
associated with the nucleon extraction from the projectile,
such as excitation of the core above the particle emission
threshold during the collision. Our analysis suggests that the
discrepancy observed in the analysis of knockout and trans-
fer data might arise from these dynamical effects, that are
neglected in the usual eikonal model.

The main approximations made in the GFK are the as-
sumptions that the prior potential does not depend on the
intrinsic coordinates of the core and the factorization of the
many-body wave function (4), in which the effect of the pro-
jectile-target interaction is described by a incoming scattering
function F. The choice of this function reflects the approx-
imation of the few-body problem we are willing to make,
and can be adapted to a specific energy regime. In particular,
we discuss an eikonal and a DWBA approximation. We plan
to test the validity of these approximations and verify their
applicability for different systems, i.e., with various beam
energies and for nuclei ranging from the valley of stability
to the proton and neutron driplines.

In a future publication we plan to compare knockout
and transfer observables obtained within a standard reaction
model, with the GFK calculation along an isotopic chain. For
this, we plan to use the dispersive optical model developed
in Refs. [30,41-43], which provides a description of structure
and reaction properties for nuclei exhibiting different neutron-
to-proton asymmetry. This study will provide quantitative
estimates of the dynamical effects associated with the extrac-
tion of the nucleon, and might help to explain the systematic
discrepancy observed by Gade et al. [7-9].
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