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Color coherence effects in the reaction 2H(p, 2p)n
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The hard proton knock-out by the proton from the deuteron at relativistic energies is considered with a focus
on the color transparency (CT) effect which influences the initial- and final-state interactions. The calculations
are performed in the framework of the generalized eikonal approximation supplemented by the quantum
diffusion model of CT. The main results of the previous calculations [Frankfurt et al., Phys. Rev. C 56, 2752
(1997)] at the beam momentum below 20 GeV/c are confirmed, including the dependence of the nuclear
transparency on the transverse momentum of the spectator neutron, pst , and on the relative azimuthal angle
φ between proton and neutron: absorption at pst < 0.2 GeV/c and enhancement at pst > 0.3 GeV/c due to
rescattering on the neutron, the change of φ dependence between these two regions, and the enhancement of CT
effects with plab. The study is then generalized to higher beam momenta, up to 75 GeV/c. It is shown that such
behavior of the transparency is mainly preserved up to plab � 50 GeV/c, but changes significantly at higher
beam momenta due to the interference of valence quark configurations of small and large sizes. As a result, the
transparency at small pst exhibits oscillations as a function of the beam momentum (the nuclear filtering effect).
The tensor analyzing power due to the longitudinal polarization of the deuteron is calculated. The event rate at
Nuclotron-based Ion Collider fAcility (NICA) is estimated.
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I. INTRODUCTION

The search for the color transparency (CT) phenomenon
started about four decades ago after prediction [1,2] that in the
hadron-induced semiexclusive reactions h + A → h + p +
(A − 1)∗ with large momentum transfer (Q2 = −t � −u �
1 GeV2) in the elastic hp scattering the nucleus becomes trans-
parent for the incoming and outgoing particles. As a result, the
cross section will be A times the cross section on the nucleon.
CT is a consequence of the reduced, ∼1/Q, transverse size
of the quark configurations participating in the hard process
and their color neutrality, see Refs. [3–5]. So far, the most
successful attempts to find CT were undertaken for reactions
with mesons in the initial or final states, such as the coherent
diffractive dissociation of π− into two jets [6], incoherent
electroproduction of π+ [7] and ρ0 [8]. This is apparently
explained by the smaller number of quarks in the meson.
Thus, for the same Q2, the pair qq̄ has more chances to end
up in a small-size, so-called pointlike configuration (PLC), as
compared to the qqq triple.

The key quantity in the studies of CT is the nuclear trans-
parency

T = σ

σIA
, (1)

where σ is the production cross section on the nucleus in the
specific kinematics and σIA is the same cross section but eval-
uated in the impulse approximation (IA). Neglecting nuclear
Fermi motion, σIA = Aσp where σp is the production cross
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sections on the free proton. The recent measurements of the
nuclear transparency for the 12C(e, e′ p) reaction [9] exclude
CT for Q2 up to 14.2 GeV2. Calculations based on the Glauber
model, including short-range NN correlations [10], describe
these data without taking into account the effects of CT. On
the other hand, in quasielastic proton knock-out reactions, the
onset of CT might be shifted to larger Q2 values [11].

In the alternating gradient synchrotron (AGS) experiments
(see Ref. [12] and references therein), the nuclear trans-
parency in the proton knock-out reaction A(p, pp) at �c.m. =
90◦ on heavy targets (Li, C, Al, Cu, Pb) in the beam momen-
tum range from 5.9 to 14.4 GeV/c (that corresponds to Q2 =
4.8–12.7 GeV2) clearly deviates from the Glauber model pre-
dictions. The transparency starts rising from Glauber level at
5.9 GeV/c reaching the maximum at 9.5 GeV/c and then
returns back to the Glauber level or below at 12 GeV/c and
higher beam momentum. The rise is clearly consistent with
CT [13]. However, the decrease of T at larger beam momenta
cannot be explained within a pure CT mechanism and requires
us to introduce the interference of small- and large-size con-
figurations [14–18].

The deuteron, being the lightest (and simplest) nucleus
may be a natural starting point to look for nuclear medium
effects of any kind. The deuteron target has been suggested for
the studies of CT in several wide-angle processes: 2H(e, e′ p)n
[19,20], 2H(p, 2p)n [21], and 2H( p̄, π−π0)p [22]. By varying
the transverse momentum of the spectator nucleon, it is pos-
sible to regulate the strength of initial- (ISI) and final- (FSI)
state interactions. This gives more control over CT effects as
compared to the case of heavier nuclear targets where the
nuclear remnant is usually not detected. On the other hand,
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the ISI/FSI in the deuteron are small effects in a quasifree
kinematics. To amplify them, one has to look into the
kinematical ranges where the production cross sections might
be extremely small and have to be at least estimated for plan-
ning new experiments.

The first stage of the experimental program of the NICA
Spin Physics Detector (SPD) project includes studies of pp,
pd , and dd collisions at

√
sNN = 3.4–10 GeV with possible

polarization of one or both colliding particles [23]. In the full
operation mode of NICA SPD, pd collisions with

√
sNN up to

19 GeV will be possible [24]. This will allow to study both the
generalized parton distributions of the proton and neutron and
the CT effects. In fact, the generalized parton distributions and
CT are closely related, since CT is a necessary condition for
the applicability of factorization [25]. This is because in the
absence of CT the multiple gluon exchanges before and after
hard process cannot be suppressed. Thus, the CT behavior for
the 2H(p, 2p)n reaction is regulated by the perturbative and
nonperturbative QCD mechanisms of the wide-angle elastic
pp scattering.

The present work extends the studies of Ref. [21] for
the reaction 2H(p, 2p)n at large center-of-mass (c.m.) angle
to the energy range covered by NICA. The focus is on the
CT effects including the interference of small- and large-
size configurations. The calculations are performed within the
generalized eikonal approximation (GEA) complemented by
the quantum diffusion model (QDM) to account for CT, see
Refs. [21,22,26,27].

The structure of the paper is as follows. The underlying
theoretical approach is explained in Sec. II starting from
Feynman diagrams. The parametrizations of elementary am-
plitudes are described, including the separation of small- and
large-size quark configurations in the hard elastic pp scatter-
ing. Then, on the basis of QDM, the effects of CT are included
in the soft elastic pn amplitudes. The used observables, i.e.,
four-differential cross section, transparency, and tensor ana-
lyzing power, are explained in Sec. III. Section IV contains the
results of numerical calculations for several values of beam
momentum in the range from 6 to 75 GeV/c. In Sec. IV A, the
four-differential cross section and transparency are calculated
as functions of the transverse momentum of the spectator
neutron and the relative azimuthal angle between the scattered
proton and the neutron in the kinematics when the neutron
momentum is almost transverse to the beam direction [αs = 1,
see Eq. (44)]. In Sec. IV B, the tensor analyzing power for the
longitudinally polarized deuteron is calculated. In Sec. IV C,
the event rate at NICA SPD is estimated based on the calcu-
lated cross sections. The summary and conclusions are given
in Sec. V. Appendix includes the calculational details of the
four-differential cross section.

II. BASIC FORMULAS

The GEA formalism for the 2H(p, 2p)n reaction has been
already given in Ref. [21]. Nevertheless, for completeness,
I sketch the derivations and provide explicit expressions for
the partial amplitudes used in the present calculations. Some
moderate differences with the formalism of Ref. [21] are also
described here.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 1. Feynman diagrams for the process pd → ppn with a
slow spectator neutron. The wavy lines denote soft elastic scattering
amplitudes. The four-momenta of the deuteron, neutron, beam pro-
ton, struck proton, and outgoing protons are denoted as pd , ps, p1, p2,
p3, and p4, respectively. The primed and double-primed quantities
denote the four-momenta of intermediate particles in the amplitudes
(b), (c), (d), (e), (f), (g), and (h) with rescatterings.

The processes taken into account in the present calculations
are shown in Fig. 1. Included are the IA amplitude [Fig. 1(a)],
the amplitudes with single rescattering [Figs. 1(b)–1(d)], and
the amplitudes with double rescattering [Figs. 1(e)–1(h)]. In
the notations of Ref. [28], the invariant matrix element of the
IA amplitude is expressed as

M (a) = Mhard(p3, p4, p1)
i�d→pn(pd , ps)

p2
2 − m2 + iε

, (2)
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where Mhard(p3, p4, p1) is the invariant matrix element of the
hard elastic pp scattering amplitude, �d→pn(pd , ps) is the
deuteron decay vertex function, and m is the nucleon mass.
Summation over intermediate spin indices is always assumed
implicitly. If the spectator neutron is on the mass shell, i.e.,
p0

s = Es ≡ (m2 + p2
s )1/2, then one can show by considering

the Fermi motion in the deuteron nonrelativistically and pro-
jecting the deuteron wave function (DWF) onto plane-wave
states (cf. Ref. [29]) that the following relation holds in the
deuteron rest frame:

i�d→pn(pd , ps)

p2
2 − m2 + iε

=
(

2Esmd

p0
2

)1/2

(2π )3/2φλd (p2), p2 = −ps,

(3)

where φλd (p2) is the DWF, λd = 0,±1 is the z projection of
the deuteron spin, md is the deuteron mass,1 and p0

2 = md −
Es is the energy of the off-shell struck proton.

The DWF contains the S- and D-state components and can
be represented as follows [30,31]:

φλd (p) = 1√
4π

[
u(p) + w(p)√

8
S(p)

]
χλd , (4)

where

S(p) = 3(σ p p)(σn p)

p2
− σ pσn (5)

is the spin tensor operator and χλd is the eigenfunction of the
spin = 1 state with spin projection λd ; σ p and σn are the Pauli
matrices acting, respectively, on the proton and neutron spin
indices of χλd . The DWF is normalized as∫

d3 p|φλd (p)|2 = 1. (6)

In calculations, the Paris potential model [32] will be used
for the DWF. [Note that the D-state wave function is defined
with negative sign, i.e., w(p) < 0.] Spin quantum numbers
and indices will be omitted below if this does not lead to
misunderstandings.

Since the DWF quickly drops with increasing momentum,
the momentum dependence of the prefactor in Eq. (3) can be
neglected which results in the following expression for the IA
amplitude:

M (a) = 2m1/2(2π )3/2φ(−ps)Mhard(s, t ), (7)

where the hard scattering amplitude is expressed in terms of
the Mandelstam variables defined as

s = (p3 + p4)2, t = (p1 − p3)2, u = (p1 − p4)2. (8)

Equation (7) and all expressions below where the DWF ap-
pears are applicable in the deuteron rest frame. The z axis
directed along the beam momentum p1 is chosen as the spin
quantization axis.

1The deuteron binding energy is unimportant on the energy scale of
the studied processes. Thus, md = 2m will be set in final expressions.

The amplitude (b) with rescattering of the outgoing proton
4 can be written as

M (b) =
∫

d4 p′
s

(2π )4

i�d→pn(pd , p′
s)

p2
2 − m2 + iε

Mhard(p3, p′
4, p1)

× i

p′2
4 − m2 + iε

i

p′2
s − m2 + iε

iMel(p4, ps, p′
4), (9)

where Mel(p4, ps, p′
4) is the invariant matrix element of the

pn elastic scattering amplitude. The integration over d p′0
s can

be performed by closing the integration contour in the lower
part of the p′0

s complex plane where the positive energy pole,
E ′

s = (m2 + p′2
s )1/2, of the intermediate neutron propagator

provides the main contribution. Thus, by putting the inter-
mediate neutron on the mass shell and then using Eq. (3) the
following formula can be obtained:

M (b) = m−1/2
∫

d3 p′
s

(2π )3
(2π )3/2φ(−p′

s)Mhard(p3, p′
4, p1)

× i

p′2
4 − m2 + iε

iMel(p4, ps, p′
4). (10)

The inverse propagator of the fast intermediate proton allows
for further simplification:

p′2
4 − m2 + iε = (p4 + ps − p′

s)2 − m2 + iε

= 2p4(ps − p′
s) + (ps − p′

s)2 + iε

= 2|p4|
(
p′z̃

s − pz̃
s + �4 + iε

)
, (11)

where the z̃ axis is directed along p4 and

�4 ≡ E4(Es − E ′
s )

|p4|
+ (ps − p′

s)2

2|p4|
� (E4 − m)(Es − m)

|p4|
.

(12)
In the last approximate equality, the Fermi motion in the
deuteron was neglected that is essentially the GEA where
the propagator of a fast particle depends on the momentum
transfer along the particle momentum. Note that in Ref. [21],
the inverse propagator of the fast intermediate proton was
linearized with respect to the momentum transfer along the
beam direction and neglecting the term (ps − p′

s)2.
The transition to the coordinate representation is reached

by applying the identity

i

p + iε
=

∫
dz0�(z0)eipz0

, (13)

where �(x) is the Heaviside step function, and the relation
between the DWFs in the momentum and coordinate repre-
sentation is

(2π )3/2φ(p2) =
∫

d3re−ip2rφ(r), r = r2 − rs. (14)

After some algebra, this leads to the amplitude (b) in the
coordinate representation:

M (b) = i

2|p4|m1/2

∫
d3r�(−z̃)φ(r)eipsr−i�4 z̃

×
∫

d2kt

(2π )2
e−ikt b̃Mhard(p3, p′

4, p1)Mel(p4, ps, p′
4),

(15)
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where z̃ = rp4/|p4| and b̃ = r − (rp4)p4/|p4|2 are the relative
positions of the proton and neutron along and perpendicular
to p4, respectively. kt = k − (kp4)p4/|p4|2 is the transverse
to p4 component of the momentum transfer k = ps − p′

s to
the spectator neutron. The hard scattering amplitude can be
factorized out of the momentum integral, since its change on
the scale of the transferred momentum in the soft rescattering
is small. This allows one to perform the integration over angle
between kt and b̃ and leads to the following expression:

M (b) = iMhard(s, t )

4π |p4|m1/2

∫
d3r�(−z̃)φ(r)eipsr−i�4 z̃

×
∫ +∞

0
dkt kt Mel(|p4|, kt )J0(kt b̃), (16)

where it was taken into account that the soft elastic pn ampli-
tude depends on the proton momentum and on the transverse
momentum transfer. The quantity

J0(x) = 1

2π

∫ 2π

0
dφ e−ix cos φ (17)

is the Bessel function of the first kind.
The amplitude (c) with rescattering of the outgoing proton

3 is obtained by simply replacing 4 → 3 in Eq. (16). The z̃
axis is directed along p3 in this case.

The amplitude (d) with rescattering of the incoming proton
is

M (d ) =
∫

d4 p′
s

(2π )4

i�d→pn(pd , p′
s)

p2
2 − m2 + iε

Mhard(p3, p4, p′
1)

× i

p′2
1 − m2 + iε

i

p′2
s − m2 + iε

iMel(p′
1, ps, p1).

(18)

The integration over d p′0
s can be again performed by closing

the contour in the lower part of the p′0
s complex plane and

keeping only the contribution of the positive energy pole of the
intermediate neutron propagator.2 This leads to the expression

M (d ) = m−1/2
∫

d3 p′
s

(2π )3
(2π )3/2φ(−p′

s)iMel(p′
1, ps, p1)

× i

p′2
1 − m2 + iε

Mhard(p3, p4, p′
1). (19)

The inverse propagator can now be simplified to the eikonal
form:

p′2
1 − m2 + iε = (p1 + p′

s − ps)2 − m2 + iε

= 2p1(p′
s − ps) + (p′

s − ps)2 + iε

= 2|p1|
(
pz

s − p′z
s − �1

)
, (20)

2The positive energy pole of the propagator of fast intermediate
proton provides the contribution ∝ 1/E ′

1, where E ′
1 = [m2 + (p1 +

p′
s − ps )2]1/2. This contribution disappears in the high-energy limit

and, thus, can be neglected.

where

�1 = E1(Es − E ′
s )

|p1|
− (p′

s − ps)2

2|p1|
� (E1 + m)(Es − m)

|p1|
.

(21)
Here, in the last step, the Fermi motion in the deuteron was
again neglected. By using Eqs. (13), (14), and (20) and as-
suming that the hard scattering amplitude can be factorized
out of the momentum integral one can express the amplitude
(19) in the coordinate representation:

M (d ) = iMhard(s, t )

4π |p1|m1/2

∫
d3r�(z)φ(r)eipsr−i�1z

×
∫ +∞

0
dkt kt Mel(|p1|, kt )J0(kt b). (22)

Let me now calculate the amplitudes with double rescat-
tering. As shown in Ref. [21], the amplitudes (e) and (f) with
rescattering of incoming and outgoing particles are equal to
zero in the pole approximation. The amplitudes (g) and (h)
with rescattering of both outgoing protons, however, do not
disappear and have to be taken into account. For the amplitude
(g), by putting both intermediate neutron propagators on the
mass shell, one has:

M (g) = 1

2m3/2

∫
d3 p′

s

(2π )3
(2π )3/2φ(−p′

s)
∫

d3 p′′
s

(2π )3

× Mhard(p′
3, p′

4, p1)
i

p′2
3 − m2 + iε

i

p′2
4 − m2 + iε

× iMel(p3, p′′
s , p′

3)iMel(p4, ps, p′
4). (23)

The transformation of inverse propagators to the eikonal form
can now be performed:

p′2
3 − m2 + iε = (p3 + p′′

s − p′
s)2 − m2 + iε

= 2p3(p′′
s − p′

s) + (p′′
s − p′

s)2 + iε

= 2pz
3

(
p′z

s − p′′z
s + �3 + iε

)
, (24)

p′2
4 − m2 + iε = (p4 + ps − p′′

s )2 − m2 + iε

= 2p4(ps − p′′
s ) + (ps − p′′

s )2 + iε

= 2pz
4(p′′z

s − pz
s + �4 + iε), (25)

where

�3 = E3(E ′′
s − E ′

s )

pz
3

+ (p′′
s − p′

s)2

2pz
3

− p3t k
′
t

pz
3

, (26)

�4 = E4(Es − E ′′
s )

pz
4

+ (ps − p′′
s )2

2pz
4

− p4t k
′′
t

pz
4

. (27)

and k′
t = p′′

st − p′
st , k′′

t = pst − p′′
st are the transverse momen-

tum transfers to the spectator neutron in the two successive
soft rescatterings. The transverse momentum transfers enter
Eqs. (26) and (27) since now the original (nonrotated) z axis
along the beam momentum is chosen. Neglecting the Fermi
motion allows one to approximate:

�3 � (E3 − m)(E ′′
s − m)

pz
3

− p3t k
′
t

pz
3

≡ �0
3 − p3t k

′
t

pz
3

. (28)
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Since the longitudinal momentum transfer in soft elastic
rescattering is much less than the transverse momentum trans-
fer, p′′

s � ps − k′′
t can be set. This leads to the approximate

expression:

�4 � (E4 + Es)(Es − E ′′
s )

pz
4

− (p4t + pst )k
′′
t

pz
4

≡ �̃0
4 − (p4t + pst )k

′′
t

pz
4

. (29)

In the same approximation, the energy of the intermediate
neutron E ′′

s � √
m2 + (ps − k′′

t )2. This allows one to integrate
over d p′′z

s in Eq. (23) closing the integration contour in the
lower part of the complex plane p′′z

s which gives

M (g) = 1

8pz
4 pz

3m3/2

∫
d3 p′

s

(2π )3
(2π )3/2φ(−p′

s)
∫

d2 p′′
st

(2π )2

× i

p′z
s − pz

s − p3t k
′
t

pz
3

− (p4t +pst )k′′
t

pz
4

+ �0
3 + �̃0

4 + iε

× Mhard(p′
3, p′

4, p1)iMel(p3, p′′
s , p′

3)iMel(p4, ps, p′
4).

(30)

A similar expression for the diagram (g) has been obtained in
Ref. [21]. In the kinematics of hard scattering, one has E3 �
pz

3 � m and E4 � pz
4 � Es and thus E ′′

s practically does not
influence the sum �0

3 + �̃0
4.3 Finally, by using Eqs. (13) and

(14), Eq. (30) can be expressed in the coordinate space:

M (g) = − 1

8pz
4 pz

3m3/2

∫
d3r�(−z)φ(r)eipsr−i(�̃0

4+�0
3 )z

×
∫

d2k′
t

(2π )2
e−ik′

t b
′
Mel(p3, p′′

s , p′
3)

×
∫

d2k′′
t

(2π )2
e−ik′′

t b′′
Mel(p4, ps, p′

4)Mhard(p′
3, p′

4, p1),

(31)

where b′ = b − p3t z/pz
3, b′′ = b − (p4t + pst )z/pz

4 are the
modified impact parameter vectors of the outgoing pro-
tons due to finite transverse momenta. In Eq. (31), the
internal four-momenta p′

3, p′
4 are fixed by the on-shell condi-

tions (p′
3)2 = (p′

4)2 = m2 and by three-momentum transfers
(�3, k′

t ), (�4, k′′
t ). In principle, this fully determines the

elementary amplitudes. However, for practical calculations,
similarly to the case of single-rescattering amplitudes, one can
further simplify Eq. (31) by factorizing the hard amplitude
out of the momentum integrals and by assuming that the soft
rescattering amplitudes depend only on the longitudinal mo-
menta of outgoing protons and on the transverse momentum

3For numerical reasons, it is convenient to set E ′′
s to be independent

on the momentum transfer. By default, the value E ′′
s = (Es + m)/2

was used but I checked that increasing E ′′
s by 50% does not lead to

visible changes in the transparencies.

transfers which gives

M (g) = − Mhard(s, t )

32π2 pz
4 pz

3m3/2

∫
d3r�(−z)φ(r)eipsr−i(�̃0

4+�0
3 )z

×
∫ +∞

0
dk′

t k
′
t Mel

(
pz

3, k′
t

)
J0(k′

t b
′)

×
∫ +∞

0
dk′′

t k′′
t Mel

(
pz

4, k′′
t

)
J0(k′′

t b′′). (32)

Finally, amplitude (h) is obtained by exchanging 3 ↔ 4 in
Eq. (32). There is an asymmetry of Eq. (32) with respect to
this exchange which disappears in the limit of high energy. In
contrast, M (h) = M (g) was used in calculations of Ref. [21].

A. Elementary amplitudes

The differential cross section of hard elastic pp scattering
was parameterized in Ref. [33] as follows:

dσpp

dt
= dσ QC

pp

dt
|1 + R(s)|2F (s,�c.m.), (33)

where

dσ QC
pp

dt
= 45

μb

GeV2

(
10 GeV2

s

)10(4m2 − s

2t

)4γ

(34)

with γ = 1.6 is the formula motivated by the quark counting
(QC) prediction [34,35].

R(s) = ML/MQC = ρ1
√

s

2
e±i(φ(s)+δ1 ) (35)

is the ratio of the Landshoff and QC contributions to the
full scattering amplitude [15] with ρ1 = 0.08 GeV−1, δ1 =
−2 and

φ(s) = π

0.06
log

[
log

(
s

�2
QCD

)]
, (36)

where �QCD = 0.1 GeV. The sign of the phase in Eq. (35)
cannot be determined from pp scattering and thus both signs
are equally applicable. In default calculations, the “+” sign
was used. In some selected cases I used both signs and re-
alized that the sensitivity to this uncertainty is very weak.
The function F (s,�c.m.) was introduced in Ref. [33] to fit
the elastic pp scattering data at 60◦ � �c.m. � 90◦ for s <

15 GeV2. Since the present work is focused on larger values
of s where F (s,�c.m.) approaches unity, F (s,�c.m.) = 1 was
set in calculations.

Figure 2 shows the plab dependence of pp elastic cross
section at t = (4m2 − s)/2, i.e., at �c.m. = 90◦. To better see
the deviations from the QC prediction, the cross section is
multiplied by a factor of (s/10)10. The parametrization (33)
predicts oscillations of the cross section with the beam mo-
mentum and describes the available data [36] at plab = 5–13
GeV/c reasonably well. In the maxima (minima) the ratio R
is pure real and positive (negative). The maxima are located
at plab = 1.7, 5.4, 14.8, and 42.6 GeV/c while minima—at
plab = 3.2, 8.9, 24.8, and 75.1 GeV/c.
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FIG. 2. The scaled pp elastic scattering cross section, Eq. (33),
at �c.m. = 90◦ vs beam momentum. Experimental data are from
Ref. [36].

Relation to the hard pp → pp scattering amplitude is given
by a standard formula (cf. Ref. [28]):

dσpp

dt
= |Mhard|2

64π I2
pp

, (37)

where the overline denotes averaging over spin projections of
the incoming particles and summation over spin projections
of the outgoing ones and Ipp = [(p1 p2)2 − m4]1/2 = [(s/2 −
2m2)s/2]1/2 is the flux factor. The relation (37) allows one to
estimate the matrix element of hard pp → pp scattering:

Mhard = MQC + ML

=
[

16π (s − 4m2)s
dσ QC

pp

dt

]1/2

[1 + R(s)]δλ1λ3δλ2λ4 ,

(38)

where, for brevity, an unknown common phase factor is omit-
ted and the spin part is approximated by a diagonal matrix in
the spin projections λi, i = 1, 2, 3, 4. The last assumption is
rather rough, taking into account spin polarization studies in
�c.m. = 90◦ elastic pp scattering [37] but still reasonable for
the unpolarized proton beam discussed in the present work.

The soft elastic pn scattering amplitude can be parameter-
ized in the standard high-energy form used in Glauber theory
[38]:

Mel(plab, kt ) = 2plabmσ tot
pn (i + ρpn)e−Bpnk2

t /2, (39)

where σ tot
pn is the total pn cross section, ρpn =

ReMel(plab, 0)/ImMel(plab, 0) is the ratio of the real part
of the forward pn scattering amplitude to the imaginary one,
and Bpn is the slope of the dependence on the transverse
momentum transfer. Equation (39) takes into account only
the central part of the elastic pn amplitude neglecting smaller
spin-orbit and spin-flip parts (see Refs. [39–41] for a more

general form of the elastic NN amplitude). Energy dependent
σ tot

pn and ρpn are taken as Regge-Gribov fits from PDG [42]
which describe well the experimental data at plab > 2 GeV/c.
At the beam momentum plab < 9 GeV/c, the slope Bpn is
described by the parametrization from Ref. [43] while at
higher beam momentum the PYTHIA parametrization for
elastic pp scattering is applied (see Appendix in Ref. [44]):

Bpn = 5.0 + 4s0.0808, (40)

where s is in GeV2 and Bpn is in GeV−2.

B. Color transparency effects

The hard scattering amplitude, Eq. (38), includes the QC
and Landshoff contributions. The last one does not lead to the
formation of PLCs as it is described by disconnected graphs
corresponding to the independent scattering of constituents
[45] (see also discussion in Ref. [46]). Therefore, the Land-
shoff mechanism alone should lead to conventional ISI and
FSI of full-sized hadrons. In contrast, the QC contribution is
governed by the connected graphs where all propagators are of
the order of 1/s that gives an estimate of the relative distance
squared between constituents. This results in the formation
of PLCs that experience reduced ISI and FSI due to CT.
For the first time, different descriptions of nuclear absorption
for the QC and Landshoff contributions were introduced in
Ref. [15], which led to a successful description of the anoma-
lous dependence of the transparency of nuclei on the beam
momentum in A(p, pp) reactions on heavy targets. This idea
was later developed in Refs. [16–18] in more complex models
for A(p, pp) reactions.

Following Ref. [18], each of the amplitudes with rescatter-
ing, i.e., Figs. 1(b)–1(h) can be split into two terms: The first
term is proportional to MQC, so the pn rescattering amplitude
in it should be affected by CT. The second one is proportional
to ML and the pn amplitude in it remains unchanged. Thus,
unless specifically mentioned, in the present calculations CT
effects are included only in the QC part of the rescattering
amplitudes.

The effects of CT are implemented within the QDM of
Ref. [47]. This model accounts for the decrease in the trans-
verse size of quark configurations at the hard interaction point
and the gradual increase with distance from this point. Thus,
the total pn cross section in the expression for the elastic pn
amplitude (39) is replaced by the position-dependent effective
cross section:

σ eff
pn (l ) = σ tot

pn

{[
l

lc
+

〈
n2k2

t

〉
Q2

(
1 − l

lc

)]

× �(lc − l ) + �(l − lc)

}
, (41)

where l = |(r2 − rs) · p|/p is the distance between a proton
and a neutron in a deuteron along the momentum of a fast
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proton,4

lc = 2p

�M2
, (42)

is the coherence length with �M2 � 1 GeV2 being the stan-
dard setting as determined from nuclear transparency studies
for A(e, e′π ) reactions [48] (see, however, discussion in this
section below), Q2 = min(−t,−u) is the hard scale,

√
〈k2

t 〉 =
0.35 GeV/c is the average transverse momentum of a quark
in a proton, n = 3 is the number of valence quarks in the pro-
ton. Equation (41) describes the reduction of the interaction
cross section of the fast proton—that propagates from/to the
hard interaction point—with the spectator neutron within the
interval l < lc, while for l � lc the proton and neutron interact
with the usual total cross section.

According to the recent Jefferson Lab (JLab) data on the
nuclear transparency in the 12C(e, e′ p) reaction [9] the pro-
ton coherence length might be much shorter as compared
to the formula (42) with �M2 = 1 GeV2. The analysis of
Ref. [49] within the relativistic multiple scattering Glauber
approximation (RMSGA) demonstrates that the data [9] is
compatible with �M2 = 2–3 GeV2. On the other hand, the
description of the AGS data on the nuclear transparency in
A(p, 2p) reactions by the RMSGA calculations [18] is reached
for �M2 = 0.7–1.1 GeV2 with �M2 = 0.7 GeV2 being a
preferred value. Thus, the range of acceptable values of �M2

remains currently quite broad. In order to show the sensitivity
of results to the choice of coherence length, the calculations
are performed with two values of �M2 = 0.7 and 3 GeV2

which estimate the boundaries of the uncertainty range of the
proton coherence length.

CT affects not only the total interaction cross section but
also the slope of the momentum-transfer dependence of the pn
scattering amplitude. According to Ref. [20], this can be taken
into account by rescaling the proton form factor. To this end,

the amplitude (39) is multiplied by the ratio G[t · σ eff
pn (l )
σ tot

pn
]/G(t ),

where

G(t ) = 1

(1 − t/0.71 GeV2)2
, (43)

is the Sachs electric form factor of a proton, t = −k2
t .

III. OBSERVABLES

I will consider the nonpolarized as well as the polarized
along the beam axis deuteron. In both cases the modulus
squared of the reaction amplitude is rotation-invariant about
the beam axis. Therefore, the reaction cross section is fully
determined by four independent variables which can be cho-
sen according to Ref. [21] as follows:

αs = 2
(
Es − pz

s

)
md

(44)

is the light cone variable defined such that, in the infinite
momentum frame (IMF) where the deuteron moves fast back-

4For the amplitude (d) with rescattering of the incoming proton this
is equivalent to l = |z| = |z2 − zs|. According to Ref. [21], l = |z| is
also set for the amplitudes (g) and (h) with double rescattering.

ward, αs/2 is the fraction of the deuteron momentum carried
by the spectator neutron; t is the squared four-momentum
transfer in the hard scattering, Eq. (8); φ = φ3 − φs is the
azimuthal angle between transverse momenta of the scattered
proton5 and the neutron; pst is the transverse momentum of
the neutron. It is possible to show after a somewhat lengthy
but straightforward derivation (see Appendix) that the four-
differential cross section has the following form:

αs
d4σ

dαs dt dφ pst d pst
= |M|2 p3t

16(2π )4 plabmdκtκ
′
t
, (45)

where the matrix element is given by the sum of the partial
matrix elements, i.e.,

M = M (a) + M (b) + M (c) + M (d ) + M (g) + M (h). (46)

The overline means averaging over spin projections of the
incoming proton and of the deuteron (unless it is fixed) and
the sum over spin projections of outgoing particles.

κt = 2

∣∣∣∣2p3t

β
+ pst cos φ

∣∣∣∣ (47)

and

κ ′
t = 2

(
E3 + pz

3

)
(plabE3 − λE1 − pz

sE1)

λ + E3 + pz
3

(48)

are the phase-space factors,

β = 2
(
E3 + pz

3

)
E1 + md − Es + plab − pz

s

(49)

is the light cone variable defined such that β/2 is the fraction
of the momentum of the two colliding protons carried by the
scattered proton in the IMF where the beam proton moves fast
forward, and

λ = E3 pz
4 − E4 pz

3

E3 + E4 + E3 pst cos φ

p3t

. (50)

The effects of ISI and FSI are well visible in the nuclear
transparency T . The definition of T , Eq. (1), uses the differ-
ential cross section in the IA that is expressed in the present
kinematics as follows:

αs
d4σIA

dαs dt dφ pst d pst
= |M (a)|2 p3t

16(2π )4 plabmdκtκ
′
t

(51)

with

|M (a)|2 = 4m(2π )3 |Mhard|2 |φλd (−ps)|2 (52)

being the modulus squared of the matrix element in the
IA summed over spin projections of outgoing particles and
averaged over spin projection of the incoming proton. The
averaging of Eq. (52) over the deuteron spin projection can
be easily done by using the relation

1

3

∑
λd =0,±1

|φλd (p)|2 = u2(p) + w2(p)

4π
. (53)

5Here and throughout, “scattered proton” can be understood as an
outgoing proton for which t is measured.
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FIG. 3. Transparency, Eq. (1), for pd → ppn at the beam mo-
mentum of 6 GeV/c as a function of αs, Eq. (44), for the transverse
momentum of the spectator neutron of 0.4 GeV/c. Chosen is the
kinematics with φ = 180◦ and �c.m. = 90◦. Black solid line denotes
the GEA calculation with �1, �3, and �4 from Ref. [21]. Blue
dashed line denotes the default GEA calculation of the present work.
Red dotted line denotes the same as blue dashed line but with single-
rescattering amplitudes calculated in the original (nonrotated) frame
with z axis along the beam momentum.

Tensor analyzing power, also known as spin asymmetry, is
given by the following expression (see Refs. [20,24,40,41]):

Azz = σ (+1) + σ (−1) − 2σ (0)

σ (+1) + σ (−1) + σ (0)
, (54)

where σ (λd ) is the differential cross section (45) for fixed λd .
If the cross section is calculated in the IA, then, for a spin-
independent hard amplitude, the tensor analyzing power (54)
is expressed as follows:

AIA
zz = |φ+1(−ps)|2 + |φ−1(−ps)|2 − 2|φ0(−ps)|2

|φ+1(−ps)|2 + |φ−1(−ps)|2 + |φ0(−ps)|2

=
[
3
(
pz

s/ps
)2 − 1

]
[
√

2u(ps)w(ps) − w2(ps)/2]

u2(ps) + w2(ps)
.

(55)

This formula shows that the tensor analyzing power probes
the D-state component of the DWF.

IV. NUMERICAL RESULTS

Before discussing predictions at higher energies, it is
instructive to reproduce some of the results of Ref. [21].
Figure 3 shows T as a function of αs. The black solid line is
calculated by using the longitudinal momentum transfers (i.e.,
�’s) from Ref. [21] and quite closely reproduces Fig. 12(c)
from that paper; some deviations are most probably due to

slightly different parameters of the pn scattering amplitude
in Ref. [21]. The difference with the present version of the
GEA at small αs is very large. This is explained by the fact
that the outgoing proton under the same azimuthal angle with
spectator has a small longitudinal and transverse momentum
(e.g., pz

4 = 1.98 GeV/c, p4t = 1.56 GeV/c for αs = 0.65). In
these conditions the term ∝ (ps − p′

s)2 in Eq. (12) should be
kept, while it was neglected in Ref. [21]. However, close to
αs = 1 all calculations agree with each other.

Thus, below I will consider the case of transverse kinemat-
ics, αs = 1, and moderate transverse momenta of the spectator
neutron, pst < 0.5 GeV/c that restricts its longitudinal mo-
mentum within the range from 0 to 0.13 GeV/c.6 Moreover,
under these conditions, the nonrelativistic description of the
deuteron and neglect of the nonnucleon components of the
DWF are reliable approximations [21,29]. Calculations were
done in the deuteron rest frame for the proton beam momenta
plab = 6, 15, 30, 50, 65, and 75 GeV/c which corresponds to
the invariant energies

√
sNN = 3.63, 5.47, 7.62, 9.78, 11.12,

and 11.94 GeV. Two values of the Mandelstam t in the hard
pp scattering amplitude were chosen: t = (4m2 − s)/2 and
(only for plab = 30 GeV/c) t = 0.4(4m2 − s)/2, which cor-
responds to �c.m. = 90◦ and �c.m. = 53◦. Unless specifically
mentioned, �c.m. = 90◦ is chosen in the results described
below.

A. Nonpolarized deuteron

The dependence of the differential cross section on the
transverse momentum of the spectator neutron is shown in
Fig. 4. For a small transverse momentum pst � 0.1 GeV/c,
the rescattering effects are negligibly small, and the cross
section is well described in the IA. As pst increases up to
approximately 0.2 GeV/c, ISI and FSI become more and more
absorptive due to the destructive interference of the IA am-
plitude and the amplitudes with single rescattering. At larger
transverse momenta, squared amplitudes with rescattering be-
gin to dominate, which leads to the excess of the GEA cross
sections over the IA cross sections. The overall effect of CT
is that the cross section gets closer and closer to the IA limit
as the beam energy increases due to the increase in coherence
length. However, the interference of the QC and Landshoff
amplitudes distorts this simple behavior at plab > 30 GeV/c
and even leads to an anomaly at plab = 75 GeV/c. I will return
to this point a little later.

The effects of ISI and FSI are best seen on the transparency
shown in Fig. 5. Double rescattering amplitudes become
important at pst � 0.3 GeV/c due to their destructive interfer-
ence with single rescattering amplitudes, which is consistent
with previous studies [21].7 Indeed, without CT, the hard
scattering amplitude Mhard (for definiteness, it is assumed to

6The longitudinal momentum pz
s grows quadratically with pst ac-

cording to the relation pz
s = [m2 + p2

st − (αsmd/2)2]/αsmd .
7In the calculations of Ref. [21], T experiences a slight kink at

pst � 0.4 GeV/c due to the double rescattering amplitudes. Most
likely, this is due to slightly different parameters of the soft elastic
pn scattering amplitude.
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FIG. 4. Differential cross section of pd → ppn as a function of
the transverse momentum of spectator neutron for αs = 1 and φ =
180◦. The magenta dash-dotted and blue dashed lines are calculated
using the IA and full GEA, respectively. The gray band with borders
given by the mass denominator of the coherence length, �M2 =
0.7 GeV2 (black dashed line) and 3 GeV2 (black dotted line), shows
the calculation with CT effects. Lines from the uppermost to the low-
ermost correspond to plab = 6, 15, and 30 GeV/c with �c.m. = 53◦,
30, 50, 65, and 75 GeV/c. Plotted is the cross-section times factor
shown in parentheses.

be positive) factorizes out of reaction amplitude. Neglecting
a small real part of soft elastic pn scattering amplitude (39),
expressions (7), (16), (22), and (32) allow us to conclude that
M (a), M (g), M (h) > 0 while M (b), M (c), M (d ) < 0. Therefore,
there is a destructive interference between the IA and single
rescattering amplitudes as well as between the double- and
single rescattering amplitudes.

FIG. 5. Transparency as a function of the spectator transverse
momentum. Red dotted line denotes the GEA calculation including
only the IA and single rescattering amplitudes. Blue dashed line
denotes the full GEA calculation. The gray band with borders given
by the mass denominator of the coherence length, �M2 = 0.7 GeV2

(black dashed line) and 3 GeV2 (black dotted line) denotes the calcu-
lation with CT effects. Different panels display results for different
beam momenta as indicated.

The fact that CT modifies only parts of the rescattering
amplitudes proportional to the QC amplitude complicates the
plab dependence of the transparency. For the beam momenta
of 6, 15, and 30 GeV/c, CT influences T in a usual way,
i.e., bringing it closer to unity with increasing plab. How-
ever, between plab = 30 and 50 GeV/c, T seems to saturate
and even slightly moves away from unity closer to the GEA
result.

This is explained by nuclear filtering out the large-size
Landshoff component [15]. Note, however, that for the
deuteron target this cannot be reduced to the exponential
absorption factors like in the case of heavier nuclear targets
[15,18] which requires some additional consideration. Indeed,
let us suppose that the QC and Landshoff amplitudes are
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FIG. 6. Beam momentum dependence of the differential cross section of pd → ppn, Eq. (45), at αs = 1, φ = 180◦ for different values of
pst and �c.m. as indicated on the panels. Notations are the same as in Fig. 4.

out-of-phase and that the QC part of the single rescattering
amplitude is suppressed by CT. Since the IA amplitude is
dominated by the QC part, the dominating Landshoff part
of the single rescattering amplitude is in-phase with the IA
amplitude and, thus, at small transverse momenta, their in-
terference term compensates the diminished modulus squared
of the IA amplitude. Similar consideration for the in-phase
QC and Landshoff amplitudes leads to the negative interfer-
ence term of the Landshoff rescattering and IA amplitude
which again acts as a compensation of the increased modulus
squared of the IA amplitude. Thus, at small transverse mo-
menta, the oscillations of the cross section calculated in the
IA due to the variation of the relative phase of the QC and
Landshoff components are smoothened by the interference of
the single rescattering and the IA amplitude [see Figs. 6(a)

and 6(c)] which corresponds to filtering out the Landshoff
component.8

From Fig. 2 one sees now that at 30 (50) GeV/c the QC
and Landshoff amplitudes interfere destructively (construc-
tively) and, therefore, the denominator of the transparency,
Eq. (1), is relatively small (large). This explains larger T
for 30 GeV/c than for 50 GeV/c at small pst ’s in calcula-
tions with �M2 = 0.7 GeV2 when CT is most pronounced.
In calculations with �M2 = 3 GeV2 CT is not yet fully

8At large transverse momenta the same argument does not apply
since the cross section is dominated by the rescattering amplitude
modulus squared.
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FIG. 7. Beam momentum dependence of the transparency T at αs = 1, φ = 180◦ for different values of pst and �c.m. as indicated on the
panels. The hatched band with borders given by the mass denominator of the coherence length, �M2 = 0.7 GeV2 (black dashed line) and
3 GeV2 (black dotted line) shows the calculations without filtering out the Landshoff component, i.e., when CT influences both the QC and
Landshoff parts of rescattering amplitudes. Other notations are the same as in Fig. 5.

pronounced at 30 GeV/c which blures the nuclear filtering
mechanism somewhat.

At 75 GeV/c, the QC and Landshoff amplitudes interfere
destructively again. Since at this momentum the coherence
length is about 10–40 fm, CT practically removes QC con-
tribution to the rescattering amplitudes which now contain
almost only Landshoff components. Hence, the IA amplitude
interferes with single rescattering amplitudes constructively.
This explains the “antiabsorptive” behavior of T at small pst ’s.

The beam momentum dependence of the CT effects is
better represented in Fig. 6 for differential cross section and
in Fig. 7 for T . At pst = 0.2 GeV/c, the transparency os-
cillates as a function of plab which is a consequence of
a filtering effect. For comparison, the transparency is also
shown without the filtering effect, i.e., when the Landshoff

part of the amplitude is treated like the QC part so that CT
affects the entire QC+Landshoff amplitude (this corresponds
to the scenario when the Landshoff process results in the
PLC formation). In this case, the oscillations disappear and
T shows up a monotonic increase with beam momentum, as
expected.

At plab = 30–60 GeV/c, deviations from the IA (T =
1) at smaller transverse momentum, pst = 0.2 GeV/c, are
significant even with CT. However, at larger transverse mo-
mentum, pst = 0.4 GeV/c, the calculation with CT becomes
close to the one in the IA. This is mostly because the ab-
sorptive effect of the pure GEA calculation at small pst ’s
is stronger than the enhancement effect at large pst ’s, given
the double rescattering contribution is included [cf. Figs. 7(a)
and 7(b)].
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Reducing the center-of-mass scattering angle from 90◦ to
53◦ does not greatly change the effects of rescattering and CT,
however, increases the cross section by two to three orders of
magnitude. The differences in T for the two values of �c.m.

are significant at plab � 30 GeV/c but become quite small
at larger plab, in particular for �M2 = 0.7 GeV2. (At plab =
100 GeV/c and pst = 0.4 GeV/c the momentum of a slower
proton is p4 = 47 GeV/c at �c.m. = 90◦ and p4 = 18 GeV/c
at �c.m. = 53◦. For �M2 = 0.7 GeV2 this corresponds to full
CT, i.e., to practically full disappearance of the QC part of
the rescattering amplitude. But for �M2 = 3 GeV2 the slower
proton is still sensitive to the PLC expansion.) This is expected
since, at infinitely large beam momentum, the momenta of
outgoing particles become pure longitudinal and thus in this
limit the rescattering effects do not depend on the transverse
momenta of outgoing protons.

Rescattering significantly affects the dependence of the
transparency on the relative azimuthal angle φ between the
scattered proton and the spectator neutron, as shown in Figs. 8
and 9. Note that, in the IA, the four-differential cross sec-
tion can be considered as φ-independent with an accuracy of
about 10 − 20%. Hence, T reflects the azimuthal dependence
of the cross section (not shown). At plab = 6 and 15 GeV/c,
transparencies calculated in the GEA are rather close to those
shown in Fig. 7 of Ref. [21], although I obtained larger maxi-
mum values at pst = 0.4 GeV/c, in particular, at the lowest
beam momentum. Transparencies at 6 and 15 GeV/c with
CT effects are also quite close to those of Ref. [21], despite
the fact that the latter do not include separation to the PLC
and large-size configurations and are calculated in a narrower
range, �M2 = 0.7–1.1 GeV2.

The azimuthal dependence of T is mostly determined by
the rescattering amplitudes (b) and (c) in Fig. 1. It can be seen
from Eq. (15) that the phase of the integrand is minimized
when ps = kt where kt ⊥ p4. Since in the kinematics with
αs = 1 the spectator momentum is almost orthogonal to the
beam axis, the phase is minimized and, hence, the rescattering
amplitude is largest by absolute value for φ = 90◦ and 270◦.
(Note that the beam momentum and the momenta of the out-
going protons are almost coplanar.) In contrast, at φ = 0◦ and
180◦, the spectator momentum always has a component along
p4 which leads to the quickly oscillating phase as a function of
z̃ resulting in the suppressed rescattering amplitude. At small
pst ’s, where the main effect of the rescattering amplitude is
due to its interference with the IA amplitude, this leads to the
increased (reduced) absorption at φ = 90◦ and 270◦ (φ = 0◦

and 180◦). Similarly, at large pst ’s, when the IA amplitude
is small, the square of the rescattering amplitude leads to an
increased (decreased) yield at φ = 90◦ and 270◦ (φ = 0◦ and
180◦).

The influence of double rescattering amplitudes (g) and (h)
of Fig. 1 is quite modest at pst � 0.2 GeV/c, but becomes
stronger at larger transverse momentum of the spectator neu-
tron. These amplitudes have to be taken into account at pst �
0.3 GeV/c since in their absence T will be overestimated by
∼50%. These observations agree with Ref. [21].

In calculations with CT, the azimuthal dependence of T
saturates between plab = 30 and 50 GeV/c, in accordance

with pst dependence, and begins to change between 50 and
75 GeV/c toward isotropy.

B. Polarized deuteron

Figure 10 shows the tensor analyzing power Azz vs the
spectator transverse momentum. In the IA, Azz can be cal-
culated from Eq. (55) that does not depend neither on plab

nor on φ and—since αs = 1 is set—is fully determined by the
transverse momentum of the spectator. This results in a peak at
pst = 0.3 GeV/c. The ISI/FSI introduced in the framework of
the GEA lead to the pronounced change of the pst dependence
by shifting the peak down to pst = 0.2 GeV/c and reducing its
width. However, the shape of the pst dependence varies with
beam momentum very weakly. In contrast, in the calculation
with CT, the function Azz(pst ) strongly varies with the beam
momentum. The strongest sensitivity to the ISI/FSI and CT is
visible in the interval of pst = 0.3–0.4 GeV/c where the GEA
predicts negative values of Azz � −0.1 while the IA gives a
large positive Azz.

In Ref. [20], the deuteron polarization effects in
2H(e, e′ p)n reaction with Q2 = 1 − 10 GeV2 have been
studied theoretically. This Q2 range with simultaneous re-
quirement of x = 1 selects the produced proton in the
momentum range between 1 and 6 GeV/c and the neutron
with momentum perpendicular to the momentum of a vir-
tual photon. The asymmetry calculated in Ref. [20]9 for the
neutron production at 90◦ in the Glauber approximation falls
substantially below the asymmetry calculated in the plane-
wave IA for neutron momenta between 0.3 and 0.4 GeV/c,
see Figs. 7(a) and 7(b) in Ref. [20] which is in a qualitative
agreement with Fig. 10 of the present work.

The azimuthal dependence of Azz is shown in Figs. 11 and
12. For small transverse momenta of the spectator, the GEA
calculation gives minima, and for large – maxima at φ = 90◦
and 270◦. The φ dependence of Azz does not change much
with the beam momentum in the GEA calculation, especially
at large beam momenta where the produced protons move
practically forward while the parameters of the soft pn scatter-
ing amplitude, Eq. (39), do not vary much. These properties
of Azz are quite similar to those of T .

CT changes the φ dependence of Azz at plab � 15 GeV/c
drastically. This can be explained by the D-state dominance in
the tensor analyzing power since the distance between neutron
and proton is in this case smaller than for the S state and,
hence, the expansion of the PLC is less pronounced which
favors CT effects. In contrast, the transparency is governed
by the S state of the DWF which is characterized by larger
distances in the deuteron and, hence, the expansion of the PLC
becomes substantial.

The most pronounced difference between the GEA- and
CT calculations is visible at pst = 0.3 GeV/c, where the
former gives practically constant Azz � 0 while the latter pro-
duces strong variations of Azz with φ. These variations are

9In the notation of Ref. [20], Azz ≡ Ad is the asymmetry and AIA
zz =

ρd
20(ps, ps )/ρd (ps, ps ) is the ratio of the polarized and unpolarized

density matrices.

014605-12



COLOR COHERENCE EFFECTS IN THE REACTION … PHYSICAL REVIEW C 107, 014605 (2023)

FIG. 8. The transparency T for pd → ppn at plab = 6 GeV/c (left column), plab = 15 GeV/c (middle column), and plab = 30 GeV/c
(right column) as a function of relative azimuthal angle between the scattered proton and spectator neutron for pst = 0.1, 0.2, 0.3, and
0.4 GeV/c (from top to bottom panels). Line notations are the same as in Fig. 5.

especially strong at plab = 15–30 GeV/c and gradually dis-
appear toward higher beam momenta.

C. Event rate at NICA SPD

CT effects manifest themselves at finite transverse mo-
menta of the spectator neutron, where the cross section is

quite small. Thus, it is necessary to evaluate the possibil-
ity of their experimental study. As an example, let us take
plab = 30 GeV/c or

√
sNN = 7.6 GeV, which is quite high

but still in the accessible energy range at the first stage of
NICA SPD. From Fig. 4 one can estimate the differential
cross section of about 10−6 μb/GeV4 at �c.m. = 90◦ and
pst = 0.2 GeV/c. In the ranges �αs = 0.2, �t = 3 GeV2,
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FIG. 9. The transparency T for pd → ppn at plab = 50 GeV/c (left column), plab = 65 GeV/c (middle column), and plab = 75 GeV/c
(right column) as a function of relative azimuthal angle between the scattered proton and spectator neutron for pst = 0.1, 0.2, 0.3 and
0.4 GeV/c (from top to bottom panels). Line notations are the same as in Fig. 5.

�φ = π/3, �pst = 0.04 GeV/c, the cross section is about 5
fb. The reason for such a small cross section is the QC rule,
according to which the elastic cross section dσpp/dt for a
fixed t/s drops ∝ s−10 for s → ∞, see Eq. (34). Hence, for
the luminosity of 2 × 1031 cm−2 s−1 (see Ref. [23]), the event
rate of about three events per year will be reached which is
certainly too low. The event rate can, however, be increased

for �c.m. < 90◦. As shown in Fig. 4, for �c.m. = 53◦ the cross
section is more than two orders of magnitude larger than for
90◦. On the other hand, the effects of CT experience only little
change as can be seen by comparing the beam momentum
dependence of the transparency for �c.m. = 90◦ and 53◦ in
Fig. 7. I checked that the same is true also for the pst and φ

dependence of T and of the tensor analyzing power. Thus,
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FIG. 10. Tensor analyzing power, Eq. (54), for pd → ppn as a
function of transverse momentum of spectator neutron. The kine-
matics with αs = 1, φ = 180◦, and �c.m. = 90◦ is chosen. Different
panels correspond to different values of beam momentum as indi-
cated. Line notations are the same as in Fig. 4.

at �c.m. � 50◦ the event rate in the above kinematic range
will reach values of several events per day which seems to
be sufficient for the studies of CT.

V. SUMMARY AND CONCLUSIONS

The effects of color transparency in the process pd → ppn
with production of fast forward protons and a slow spectator
neutron in the transverse direction have been considered. This
process is caused by hard elastic pp scattering. CT reduces
the ISI of the incoming proton and the FSI of the outgo-
ing protons with the neutron. Thus, the gross effect of CT
is to bring the results closer to the impulse approximation
limit.

Beyond the IA, the present calculations include the am-
plitudes with single rescattering of the incoming proton and
either of the outgoing protons, as well as the amplitudes with
rescattering of both outgoing protons. The partial amplitudes

with rescattering were obtained using the method of gener-
alized eikonal approximation developed in Refs. [21,22]. CT
effects were taken into account within the quantum diffusion
model [47] by performing the calculations in the coordinate
space and including the position dependence of the elemen-
tary rescattering amplitudes. The amplitude of hard elastic pp
scattering was described by the sum of the quark counting
and Landshoff components. Accordingly, in calculations with
QDM, the interference of quark configurations of small and
large sizes was taken into account. The interference appears
because the ISI/FSI of small-size configurations are reduced
by CT while the ISI/FSI of large-size ones remain unchanged
and effectively lead to their absorption by a nucleus (nuclear
filtering effect predicted in Ref. [15]).

The dependence of the four-differential cross section and
of the transparency T on the transverse momentum pst of the
spectator neutron and on the relative azimuthal angle between
the scattered proton and the neutron was systematically stud-
ied in the beam momentum range from 6 to 75 GeV/c. The
GEA results (i.e., without CT) for T at plab = 6 and 15 GeV/c
agree with those of Ref. [21] reasonably well. It is shown
that the main trend of CT to enhance T at pst � 0.2 GeV/c
and to reduce it at pst � 0.3 GeV/c predicted in Ref. [21]
remains valid also at higher beam momenta. In light of the
recent JLab results [9] the uncertainty range of the proton
coherence length became very large [49] which hinders defi-
nite predictions on the beam energy when CT effects become
sizable. Nevertheless, it is possible to conclude that at plab �
30 GeV/c the CT effects on T should be already measurable
on the level of at least 30%.

Due to the nuclear filtering effect the transparency at small
transverse momentum of the spectator and the scaled pp cross
section at �c.m. = 90◦ oscillate out-of-phase as functions of
plab, in agreement with predictions of Ref. [15] for the process
A(p, pp) with heavy nuclear targets. As a result, T at pst =
0.2 GeV/c has maxima at plab � 9, 25, and 75 GeV/c. The
maximum at 9 GeV/c is in-line with BNL data [12]. Thus,
the nuclear filtering effect should be observable at the NICA
energy range.

At plab � 65 GeV/c, T grows above unity even for small
pst values in the calculation with CT. Such an “antiabsorptive”
behavior is due to out-of-phase QC and Landshoff compo-
nents of the hard amplitude, so that the Landshoff components
of the single-rescattering amplitudes become of the same sign
with the IA amplitude.

The calculation of the tensor analyzing power Azz for the
longitudinal deuteron polarization was performed. Significant
effects of CT on Azz at pst � 0.3-0.4 GeV/c become measur-
able already at plab = 15 GeV/c.

Finally, the event rate at NICA SPD was estimated. It is
shown that the reduction of the center-of-mass scattering an-
gle (in the pp hard elastic scattering) from 90◦ to 53◦ increases
the differential cross section by about two orders of magnitude
and makes the observation of CT feasible.
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FIG. 11. The tensor analyzing power Azz for pd → ppn at plab = 6 GeV/c (left column), plab = 15 GeV/c (middle column), and plab =
30 GeV/c (right column) as a function of relative azimuthal angle between the scattered proton and spectator neutron for pst = 0.1, 0.2, 0.3
and 0.4 GeV/c (from top to bottom panels). Line notations are the same as in Fig. 4.

APPENDIX: THE FOUR-DIFFERENTIAL CROSS SECTION
OF pd → ppn

Let us now outline the derivation of Eq. (45) for the four-
differential cross section. The fully differential cross section is

defined by the standard expression (see Ref. [28]):

dσ = (2π )4|M|2
4plabmd

d�3, (A1)
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FIG. 12. Same as in Fig. 11 but at plab = 50 GeV/c (left column) plab = 65 GeV/c (middle column) and plab = 75 GeV/c (right column).

where

d�3 = δ(4)(p1 + pd − p3 − p4 − ps)

× d3 p3

(2π )32E3

d3 p4

(2π )32E4

d3 ps

(2π )32Es
(A2)

is the invariant three-body phase-space volume element. It is
convenient to perform calculation in the IMF where the four-
momentum of the p + d system is P = p1 + pd = (P0, 0, P)

with P → +∞. The total energy can be rewritten as follows:

P0 = P + P2

2P
+ O(P−3). (A3)

Introducing the momentum fractions

βi = 2pz
i

P
, i = 3, 4, s, (A4)
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one can rewrite the energies of outgoing particles in a similar
form:

Ei = βiP

2
+ m2

it

βiP
+ O(P−3), (A5)

where mit =
√

m2
i + p2

it . Using the relation

d3 pi

Ei
= dβid2 pit

βi
, (A6)

it is now easy to obtain the following expression for the
invariant phase-space volume element:

d�3 = 4δ

(∑
i

βi − 2

)
δ

(∑
i

2m2
it

βi
− P2

)
δ(2)

(∑
i

pit

)

×
∏

i

dβid2 pit

(2π )32βi
. (A7)

Integration over dβ4d2 p4t d p3t removes all δ functions giving

d�3 = dβ3 p3t dφdβsd2 pst

2(2π )9|∂F/∂ p3t |β4β3βs
, (A8)

where

F ≡
∑

i

2m2
it

βi
− P2, (A9)

∂F/∂ p3t = 4

β4
[(β4/β3 + 1)p3t + pst cos φ]. (A10)

Note that variables βi are defined in the IMF but can be
calculated in any frame related with the IMF by a longitudinal
boost. In particular, in the deuteron rest frame they are given
by the following expression:

βi = 2(Ei + pz
i )

E1 + md + plab
. (A11)

The azimuthal angle of the spectator can be integrated out,
since the cross section does not depend on it. Thus, in vari-
ables βs, β3, φ, pst , the four-differential cross section can be
expressed as follows:

βsβ3
d4σ

dβsdβ3dφpst d pst
= |M|2 p3t

8(2π )4 plabmd |∂F/∂ p3t |β4
.

(A12)

Instead of variables βs, β3 one can equivalently use variables
αs and β defined by Eqs. (44) and (49), since∣∣∣∣dαs

αs

∣∣∣∣ =
∣∣∣∣dβs

βs

∣∣∣∣ =
∣∣∣∣d pz

s

Es

∣∣∣∣, (A13)

∣∣∣∣dβ

β

∣∣∣∣ =
∣∣∣∣dβ3

β3

∣∣∣∣ =
∣∣∣∣d pz

3

E3

∣∣∣∣. (A14)

This gives

αsβ
d4σ

dαsdβdφpst d pst
= |M|2 p3t

16(2π )4 plabmdκt
, (A15)

where κt ≡ |∂F/∂ p3t |β4/2 is expressed by Eq. (47).

At large s = (p3 + p4)2, variable β is simply related to the
center-of-mass scattering angle, β � 1 + cos �c.m.. However,
in the energy region studied in this work the accuracy of this
relation is not enough to keep �c.m. and thus also t fixed, in
particular, at large transverse momenta of the spectator. There-
fore, one needs to perform one more variable transformation
β → t . To this end, keeping αs, φ and pst to be constant one
can write the following differential relations:

dt = −2E1dE3 + 2plabd pz
3, (A16)

dβ = 2d
(
E3 + pz

3

)
P̃+ , (A17)

where P̃+ = E1 + md − Es + plab − pz
s is the “+” momen-

tum of the system of colliding protons. Using (A16) and (A17)
one can write:

dt = −E1P̃+dβ + 2(plab + E1)d pz
3. (A18)

The relation between dβ and d pz
3 can be obtained from the

requirement that the total energy of the two outgoing protons
is constant, i.e.,

dE3 + dE4 = 0, (A19)

where

dE3 = p3t d p3t + pz
3d pz

3

E3
, (A20)

dE4 = p4t d p4t + pz
4d pz

4

E4
. (A21)

Substituting Eqs. (A20) and (A21) into Eq. (A19) and using
the relation

p4t d p4t = p3t d p3t + pst cos φ d p3t , (A22)

that is obtained by differentiating the equation p2
4t = p2

st +
p2

3t + 2pst p3t cos φ, together with the condition d pz
3 + d pz

4 =
0, leads to the relation

p3t d p3t = λd pz
3, (A23)

where λ is defined by Eq. (50). Substituting Eq. (A20) in
Eq. (A17) and using Eq. (A23) leads to the following formula:

dβ = 2

P̃+

(
λ + pz

3

E3
+ 1

)
d pz

3. (A24)

From Eqs. (A18) and (A24) one finally obtains the expression

dt = κ ′
t dβ/β, (A25)

with κ ′
t defined by Eq. (48). Equation (A25) is used to rewrite

the four-differential cross section, Eq. (A15), in the form of
Eq. (45).
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