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Uncertainty-quantified phenomenological optical potentials for single-nucleon scattering
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Optical-model potentials (OMPs) continue to play a key role in nuclear reaction calculations. However,
the uncertainty of phenomenological OMPs in widespread use—inherent to any parametric model trained
on data—has not been fully characterized, and its impact on downstream users of OMPs remains unclear.
Here we assign well-calibrated uncertainties for two representative global OMPs, those of Koning-Delaroche
and Chapel Hill ’89, using Markov-chain Monte Carlo for parameter inference. By comparing the canonical
versions of these OMPs against the experimental data originally used to constrain them, we show how a lack
of outlier rejection and a systematic underestimation of experimental uncertainties contributes to bias of, and
overconfidence in, best-fit parameter values. Our updated, uncertainty-quantified versions of these OMPs address
these issues and yield complete covariance information for potential parameters. Scattering predictions generated
from our ensembles show improved performance both against the original training corpora of experimental
data and against a new “test” corpus comprising many of the experimental single-nucleon scattering data
collected over the last twenty years. Finally, we apply our uncertainty-quantified OMPs to two case studies of
application-relevant cross sections. We conclude that, for many common applications of OMPs, including OMP
uncertainty should become standard practice. To facilitate their immediate use, digital versions of our updated
OMPs and related tools for forward uncertainty propagation are included as Supplemental Material.
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I. INTRODUCTION

For more than fifty years, optical-model potentials (OMPs)
have played an important role in nuclear scattering calcu-
lations by providing effective projectile-target interactions.
Early successes in fitting basic phenomenological OMPs to
elastic scattering data [1] motivated continuing theoretical
improvements on several fronts, including construction of
(semi)microscopic OMPs via the local density approximation
[2–5], extension to deformed and actinide systems [6,7], and
formal connection with the single-particle Green’s function
via application of relevant dispersion relations [8–15]. The
recent development of a global microscopic OMP [16] based
on several χEFT nucleon-nucleon (NN) potentials opens a
promising new avenue for making predictions of scattering
on unstable nuclides with a minimum of phenomenology. For
recent reviews of OMP topics, see [17,18].

Despite these advances, a number of basic questions re-
main about the uncertainty and generality of OMPs. First
are questions of interpolation and extrapolation: how far can
OMPs be trusted to generate reliable scattering predictions
where experimental data are not available, especially away
from β stability? As new rare isotope beam facilities come
online, reliable estimates of scattering on unstable targets will
be needed to make sense of the wealth of new data that are
anticipated. For meaningful comparison with these new data,
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OMP predictions should come equipped with well-calibrated
uncertainty estimates, estimates that are typically absent from
widely used phenomenological OMPs, such as the Chapel-
Hill 89’ OMP [19] (intended for 40 � A � 209 from 10 to
65 MeV) and the Koning-Delaroche OMP [20] (intended
for 24 � A � 209 from 0.001 to 200 MeV). In principle,
a global microscopic OMP based on a χEFT-derived NN
potential, such as [16], come “naturally” equipped with un-
certainties from truncation in the chiral expansion and should
be less prone to under- or overfitting problems that affect
phenomenological potentials. To date, however, microscopic
models do not achieve the accuracy of phenomenological
OMPs in regions where experimental data do exist, espe-
cially for inelastic scattering observables, which may diminish
their utility for nuclear data applications. Were it available,
knowledge of OMP uncertainties would help evaluators rank
the relative importance of OMPs among other sources of
uncertainty that enter reaction models, such as nuclear level
densities and γ -ray strength functions [21].

The second type of questions concern the functional
form of potentials and their capacity to realistically describe
the underlying physics. As a simple example, the Koning-
Delaroche OMP includes an imaginary spin-orbit term, but
the Chapel Hill ’89 OMP does not. Does inclusion of this
term result in meaningful differences in scattering predic-
tions, and, if so, which experimental data actually constrain
its parameters? The form of nonlocal terms [22–24], shape
of the hole potential and relation to dispersive correctness
[13], and the correct dependence of parameters on nu-
clear asymmetry [25] are important open topics that would
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benefit from a firmer understanding of uncertainty in extant
OMPs.

To clarify these issues, several recent studies have in-
vestigated uncertainty-quantification (UQ) techniques for
phenomenological OMPs, including direct comparisons of
frequentist and Bayesian methods for model calibration
[26,27], introduction of Gaussian process priors for energy-
dependent parameters [28], and introduction of an ad hoc
dedicated “model uncertainty” term in a dispersive OMP
analysis [29]. The ambitious study of [21] confronts the
mature reaction code TALYS [30] with virtually the entire
EXFOR experimental reaction database [31] with the specific
intent of generating uncertainties for evaluations. Such the-
oretical studies are being complemented by the creation of
templates for experimentalists for capturing the many (often
undercharacterized) sources of uncertainty in experimental
measurement [32–34], designed specifically so that newly
collected data will be maximally useful for theory and eval-
uation efforts going forward. Most recently, the work of
[28] proposes a statistically sound, reproducible pipeline for
nuclear data evaluations, including characterization of OMP
uncertainties, demonstrating the potential to accelerate and
standardize the challenging process of evaluation.

Despite these methodological improvements over the last
decade, many OMP users do not yet consider the OMP contri-
bution to the uncertainty budget of their applications, either
because it is assumed to be negligible or because tools to
do so are difficult to use. Those that do (e.g., [35,36]) typi-
cally estimate uncertainty qualitatively by manually varying a
handful of parameters thought to be important and by com-
paring predictions from a handful of non-UQ OMPs against
each other by eye. Even when OMP parameter uncertainty
estimates are available (e.g., [30]), they are more often based
on hard-earned evaluator intuition rather than on detailed
tests of empirical performance. In the ideal case, each OMP
would ship with complete covariance information for poten-
tial parameters, be tested against trusted, easily accessed data
libraries, be based on reproducible statistical practices and
stated assumptions, and make it easy for any downstream
user to forward propagate OMP uncertainty into their research
application. Robust OMP UQ of this type would be a building
block for larger UQ efforts such as the evaluation efforts
mentioned earlier [21,28] or improved experimental analysis
pipelines. Motivating and demonstrating such a framework for
phenomenological OMP UQ is the main goal of the present
work.

To demonstrate our approach, we apply it to both the
Koning-Delaroche global OMP (KD) [20] and the Chapel-Hill
’89 OMP (CH89) [19], yielding two new uncertainty-
quantified OMP ensembles we designate KDUQ and CHUQ,
respectively. To train these OMPs, we recompiled the same
training data corpora as used in the original treatments (we
refer to our recompilations as the CHUQ corpus and KDUQ
corpus). The resulting UQ OMPs can be directly inserted into
existing user codes to incorporate the parametric uncertainty
of these OMPs. By applying our approach to multiple OMPs
and comparing with microscopic and semimicroscopic alter-
natives, we can develop insight into how the next generation of
uncertainty-equipped potentials can be gainfully constructed.

In particular, we will emphasize the importance of two key
steps in fitting phenomenological OMPs—managing out-
liers and experimental uncertainty underestimation—that are
paramount for empirical UQ, both in OMPs and otherwise.

Our findings are organized in the following sections.
Section II introduces the generic parameter inference prob-
lem and its application to OMP fitting, including challenges
faced in the original CH89 and KD analyses. Section III pro-
poses a new likelihood function and inference strategy based
on Markov-chain Monte Carlo (MCMC) that we argue is
better suited for generating realistic OMP uncertainties. Sec-
tion IV applies this strategy to retrain the KD and CH89 OMP
forms against their original training data, yielding updated,
uncertainty-quantified OMPs: KDUQ and CHUQ. Section V
illustrates the impact of KDUQ and CHUQ both on Hauser-
Feshbach calculations for two radiative capture test cases and
on the reliability of OMP extrapolation along neutron-proton
asymmetry. Section VI summarizes our findings. Following
the main text, further technical details appear in the Ap-
pendix and three sections of Supplemental Material [37],
including explicit definitions of the OMPs and scattering for-
mulas, all experimental data used for training and testing, and
our recommended KDUQ and CHUQ parameter values for fu-
ture use. We hope that by providing thorough documentation,
readers will be able to reproduce or extend our results without
guesswork.

II. CHALLENGES IN OMP PARAMETER INFERENCE

In this section, we first present a generic parameter in-
ference problem, illustrating some common challenges with
a pedagogical example. We then turn to the original KD
and CH89 analyses, showing that certain assumptions, while
necessary for making these canonical analyses tractable, can
result in overconfidence in the fitted parameters.

A. Generic parameter inference

The goal of a parameter inference problem is to deter-
mine optimal parameters for a given functional form, where
“optimal” usually means best matching a corpus of training
data. In the specific case of OMP optimization, the OMP
constitutes a model M with unknown, possibly correlated
potential parameters θ, and the task is to determine an optimal
set of parameters θopt that minimizes the residuals between
experimental scattering data and scattering-code predictions
made using M. (In these and all following definitions, we use
bold typeface to denote a vector or matrix quantity.) A natural
starting point for the probability density function of θ is to use
a k-dimensional normal distribution:

p(θ) = 1√
(2π )k|�|

e− 1
2 rᵀ�−1r

r = θ − θopt. (1)

Here, � is the k×k covariance matrix associated with θ.
If θopt and � were known, the inference problem would be
solved (at least up to the assumption of multivariate nor-
mality), with � holding the variance information enabling
downstream uncertainty propagation. Because we do not have
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direct measurements of θ, only experimental scattering mea-
surements, we cannot use Eq. (1) directly to train the model.
Instead, we need to construct a likelihood function that con-
nects the probability of observing a given experimental value
given a candidate parameter vector. For OMP optimization,
this involves mapping a candidate θ to predicted scattering
observables via a scattering code, evaluated at the relevant
experimental indices (e.g„ scattering energy, angle, target).
This mapping is highly nonlinear in θ as it involves, among
other things, solving for the scattering matrix. Because the
covariance matrix between experimental measurements is
rarely known (discussed in detail in [21]), connecting OMP
parameters with experimental data via selection of a like-
lihood function requires making certain assumptions about
the scattering data. The overwhelming majority of past OMP
analyses (including CH89 and KD) use a maximum likelihood
approach based on some version of weighted least squares for
their likelihood function:

L(y|x, δy, θ) = e
− 1

2

∑
i

r2
i

δy i
2

ri = yi − M(θ, xi ). (2)

In this expression, for the ith training data point, xi are the
experimental conditions (such as energy, angle, etc.), yi is
the observed value, such as the cross section, and δyi is the
reported uncertainty of the observed value. Thus (x, y, δy)
denotes the entire training corpus. Experimental data also
often include estimates of uncertainty in the experimental
conditions, δx, but these are usually omitted from the OMP
analysis as they are more difficult to incorporate using stan-
dard optimization approaches. The predicted values, M(θ, x),
are an output of the scattering code evaluated at x and using
the OMP realization M(θ) for the projectile-target interaction.

If several conditions apply, including model linearity in
the parameters, experimental uncertainties characterized by a
known, positive-definite covariance matrix, and measurement
samples being drawn from the same underlying distribution,
the weighted least-squares estimator [Eq. (2)] guarantees an
analytic solution that minimizes bias in θopt [38]. Unfortu-
nately for OMP analysts, each of these conditions is violated
in traditional OMP optimization analyses that are concerned
primarily with θ, and these violations are especially problem-
atic for the present UQ task (� estimation). Most impactful
is the weighted-least-squares assumption that experimentally
reported uncertainties are independent and complete (that is,
that the vector of individual data point uncertainties δy fully
represents the true, unknown data covariance matrix). In ef-
fect, this assumption assigns more independent information
to residuals than they actually have, making the inference
problem erroneously overdetermined and causing bias in θopt

and underestimation of θopt uncertainty. Even if the full exper-
imental data covariance were known, the OMP, by definition,
is a projection of the true projectile-target interaction onto a
reduced space of simple potential forms. As such we should
expect it to suffer at least somewhat from “model defects”
that, if unaccounted for during inference, may lead to over-
confidence in an incorrect θopt, as demonstrated for a simple
physical model in [39]. Further, model nonlinearity in θ means

that the likelihood function surface is not guaranteed to be
convex, which can stymie simple optimization approaches
such as gradient descent but which may be tractable with other
optimization algorithms, such as simulated annealing.

B. A toy model

To illustrate how outliers and uncertainty underestima-
tion impact parameter inference, we present a toy problem
using a simple linear model. Imagine we wish to describe
some generic phenomenon, T (x), that occurs on a domain
x ∈ [−1, 1]. The true T (x) is

T (x) = 2.5P0(x) + 2.0P1(x) + 1.5P2(x) + 1.0P3(x), (3)

where Pn is the nth Legendre polynomial. Suppose we know
the functional form of T (x) but not the values of the coeffi-
cients, which we would like to learn through inference against
data. So we collect i observations y at experimental conditions
x, using a device subject to measurement uncertainty. Aware
of this uncertainty, we estimate measurement imprecision for
each data point as δy. We then define a model, M, and compare
model predictions M(x, θ) to the measured data, where θ are
the n unknown coefficients that we want to learn. Because
our model is linear in θ and our data measurements are inde-
pendent and uncorrelated, Eq. (2) provides the best unbiased
estimator of the true coefficients, denoted θtrue. We can find an
optimum set of parameter values θopt analytically using maxi-
mum likelihood estimation or numerically using, e.g., gradient
descent until we reach some threshold for convergence. The
covariance matrix at θopt is the inverse of the Hessian matrix
H(θopt ), which can be easily assessed numerically.

So far, we have described a simple, generic inference prob-
lem and its solution. We now consider four possible scenarios
for solving this problem, each involving a different possible
distribution for y and δy. These differing distributions are
plotted in panels (a) to (d) of Fig. 1, and defined according
to

yi ∼ N (T (xi ), 0.322),

δyi = 0.32T (xi ), (4)

yi ∼ N (T (xi ), 0.322),

δyi = 0.10T (xi ), (5)

yi ∼ N (T (xi ), 0.322) + α,

δyi = 0.32T (xi ), (6)

yi ∼ N (T (xi ), 0.322) + α,

δyi = 0.10T (xi ), (7)

for each i, where

α

{∼ N (3, 0.62), 10% probability,

= 0, 90% probability.

In this notation, ∼N (μ, σ 2) refers to sampling from a normal
distribution of mean μ and variance σ 2.

We begin with the first scenario, shown in panel (a) of
Fig. 1. This is the best-case scenario, given the assumptions
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FIG. 1. The four data-fitting scenarios for the toy model discussed in the text are compared. Panel (a) shows a fit to data with accurate
uncertainty estimates and no outliers. Panel (b) shows a fit to data with underestimated uncertainties and no outliers. Panel (c) shows a fit to
data with accurate uncertainty estimates but with outliers. Panel (d) shows a fit using data with both underestimated uncertainties and outliers.
The simulated data used for fitting are shown as black bars, the “true” underlying function used to generate the data is shown as a blue line,
and the fit to the “experimental” data is shown in red. In panels (e) to (h), the normalized residuals for data in the corresponding plots are
histogrammed. A normal distribution with μ = 0 and σ 2 = 1 (gray dashed line) is shown for reference.

appropriate for weighted least squares: our measuring device
suffers from zero bias and the true mean measurement uncer-
tainties δy are known [Eq. (4)]. For example, our measuring
device exhibits independent statistical and systematic uncer-
tainties of 10% and 30%, yielding a total 32% total uncertainty
via addition in quadrature. Because both the measured data
and their uncertainties are faithful to the true underlying dis-
tribution, our estimated θopt match θtrue, up to the estimated
uncertainty of θopt. Panel (e) shows that the distribution of nor-
malized residuals r/δy between our model’s predictions and
the corresponding experimental data are distributed according
to a normal distribution with unit variance.

Panel (b) of Fig. 1 shows the outcome of the second
scenario: our measuring device performs identically as in
the first scenario, but now our estimates of δy are too small
[Eq. (5)]. This could arise if, for instance, both statistical and
systematic uncertainty contribute to the overall uncertainty
of our measuring device, but we have only recognized and

reported the statistical uncertainty. Because the minimum of
our weighted-least-squares likelihood function is not affected
by overall rescalings of δy, we recover the same θopt as in the
first scenario. However, our uncertainty estimates of θopt have
shrunk by a factor of 3—the same factor by which we under-
estimated the measurement uncertainty—because the Hessian
H(θopt ) scales proportionally with δy. Panel (f) shows that
while the standardized residuals remain normally distributed
with a mean of zero, they are more dispersed than the ref-
erence distribution. Thus, underestimation of experimental
uncertainties directly causes underestimation of parametric
uncertainties. This is a generic feature of parameter inference
and, as we will show in the following section, affects most
previous OMP analyses.

Panel (c) of Fig. 1 presents a third scenario: as in the
first scenario, we have accurately estimated the experimental
uncertainty, but now our experimental device occasionally
returns anomalous measurements (so-called “outliers”). The
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simulated data y have been drawn according to relations (6):
each measurement has a 10% chance of being shifted upward
by α, which is an artificial “outlier factor.” This is meant to
represent a more realistic situation in which some fraction
of experimental data are inconsistent with the model, either
because of model defects or because of problems during
experimental data collection. The outliers “pull” on the likeli-
hood function, causing our recovered θopt to differ from those
of the previous scenarios, but, because our δy are the same
as in the first scenario, our uncertainty estimates of θopt do not
change. The parameter bias appears in panel (g) as asymmetry
in the standardized residuals with respect to the reference
distribution, even as the variance of the residuals is the same as
in the first scenario. We note that even if our measuring device
returned no outliers, if our underlying model was incorrect
(i.e., model defect), certain data would appear to be outliers,
and we would obtain a similar result.

Finally, panel (d) of Fig. 1 combines the second and third
scenarios: y contains occasional outliers and δy are overcon-
fident [Eq. (7)]. Accordingly, our estimated θopt is biased
and our uncertainty estimates of θopt are overconfident about
the biased estimates. Both the bias and the dispersion of the
normalized residuals are visible in panel (h). This scenario
is the best analog to the OMP optimization task. For us to
obtain well-calibrated uncertainties that span the experimen-
tal data, our loss function and optimization strategy must
address both challenges: namely, underestimation of experi-
mental (co)variances, and fundamental discrepancies between
the model and data either due to model defects or problems
with experimental data collection (which we do not attempt to
disentangle).

C. Challenges for CH89 and KD

The difficulties of using weighted-least-squares estimators
are well known to OMP designers, including those of CH89
and KD. A common symptom is that initial fits to experimen-
tal data are often grossly unsatisfactory, clearly missing “the
physics” present in the scattering data, leading to manual pa-
rameter adjustment. The authors of CH89 comment that, early
in their analysis, there were often “significant contributions
from the data that the model is not able to describe” even when
training to a single scattering data set. They tested several
alternative loss functions but found that in “reduc[ing] the
emphasis of outlying points” they “lost sensitivity to even the
good data.” After testing various functions, their compromise
was to introduce a weight factor to their likelihood function
for each data set s, equal to the minimum loss for that data set
obtained in a fit to only that data set, i.e.,

L(y|x, δy, θ) =
∑

s

Ls(θ|xs, ys)

min
[
Lloc

s (θ|xs, ys)
] , (8)

where Ls is the contribution from data set s to the overall
weighted-least-squares fit as in Eq. (2). By deemphasizing
data sets that were poor matches to the form of their OMP,
they achieved a better visual fit to their training data. How-
ever, this solution also introduces problems: the introduced
weights are not easily interpreted, nor do they preserve the
normalization of the likelihood function, which is important
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FIG. 2. The distribution of normalized residuals (r/δy) between
the original KD and CH89 OMPs and their training data, as recon-
structed in this work. KD is shown in panel (a) and CH89 in panel
(b). Residuals are histogrammed by data type, with all available
proton and neutron data for that data type included (in contrast with
Table I which discriminates by projectile). In panel (b), CH89 UQ
refers to a version of the CH89 OMP that includes the parametric
uncertainties reported in the original work, which we have sampled
here as θ ∼ N (θCH89, �CH89), with θCH89 being the canonical CH89
“best fit” parameter vector, and �CH89 being the canonical CH89
covariance matrix published in the original treatment.

for estimating �. However, because finding θopt is insensitive
to overall rescalings of L, most past authors have been willing
to sacrifice the possibility of accurately estimating � in order
to improve their single “best-fit” parameter vector.

Koning and Delaroche identified this issue in their global
OMP characterization as well, and also provided extensive
quantitative evidence that traditional OMPs are incapable of
reproducing the bulk of experimental data within the range of
reported experimental uncertainties. In Table 12 of their OMP
analysis [20], they present sums of uncertainty-weighted
square residuals per degree of freedom (a reduced-χ2 metric)
for several prominent OMPs against a variety of experimental
data sets. In their analysis, a value near unity was taken as
an indication of good model-data agreement. For the widely
used global OMPs they considered, they found values of χ2/N
ranging from 6.3 to 11.2 for differential elastic scattering cross
sections and from 2.3 to 9.2 for neutron total cross sections.
Using their new potential (KD), they found values of χ2/N
ranging from 4.5 to 7.4 for differential elastic scattering cross
sections and from 1.2 to 6.7 for neutron total cross sections,
depending on the experimental data corpus tested against.
They echoed the comments of the CH89 authors, noting
that “the optimization procedure is very sensitive” to under-
estimations in reported experimental uncertainties such that
“even a slightly incorrect error estimation can easily vitiate an
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FIG. 3. Five experimental data sets for 40Ca(n, n)40Ca at 14 MeV
show significant variability, despite being collected under similar
kinematic conditions. In panel (a), each data set is shown as a
series of black points with the reported experimental uncertainties.
A weighted-least-squares fit of all points, using the sum of the
first ten Legendre polynomials as a model, is shown in gray. Panel
(b) shows the normalized residuals for the experimental data points
as a histogram (red line). A Gaussian distribution with unit variance
is shown for reference (gray dashed line).

automated fitting procedure.” In [21], Koning further analyzed
model-experiment discrepancies across the EXFOR database
and combined several proposed remedies into an “evaluated”
χ2 expression meant to overcome the issues of using naïve
weighted least squares.

To better understand these discrepancies between the
trained model and training data, we began by reproducing
the original CH89 and KD analyses. Figure 2 summarizes the
performance of the standard CH89 and KD potentials against
the experimental data used to train them, as reconstructed
in the present work. For each experimental datum, the nor-
malized residual for that datum (r/δy) was tabulated, then
all residuals were histogrammed according to data type. In
addition, in panel (b), two dotted curves show the performance
of CH89 when the CH89 parameters are resampled according
to the parameter covariance matrix presented in the original
publication. If the assumptions underpinning weighed-least-
squares were fulfilled, each line should follow the gray dashed
line (a normal distribution with unit variance), indicating that
the CH89 and KD predictions match the mean of the experi-
mental data used to train them, and that the training data are
dispersed about the predictions in keeping with their reported
uncertainties. In reality, all types of scattering data show a
variance several times larger than unity, an indication either
of underestimation of experimentally reported uncertainties or

TABLE I. Mean (μ1), standard deviation (μ2), and skewness
(μ3) for the distribution of standardized residuals between the origi-
nal KD and CH89 OMPs and their training data, as reconstructed in
this work. Results are tabulated separately for protons and neutrons.
The columns labeled CH89 UQ refer to a version of the CH89 OMP
that includes the parametric uncertainties reported in the original
work, which we have sampled here as θ ∼ N (θCH89, �CH89), with
θCH89 being the canonical CH89 “best fit” parameter vector, and
�CH89 being the canonical CH89 covariance matrix estimate pub-
lished in the original treatment.

Proton data

CH89 CH89 UQ KD

Ay
dσ

d	
Ay

dσ

d	
Ay

dσ

d	
σrxn

μ1 0.5 −3.2 1.1 0.7 0.7 −0.4 −2.4
μ2 29.8 30.7 9.6 7.0 18.6 18.4 3.7
μ3 −2.1 −3.2 −1.6 0.6 −1.0 −3.3 −1.0

Neutron data

CH89 CH89 UQ KD

Ay
dσ

d	
Ay

dσ

d	
Ay

dσ

d	
σtot

μ1 −1.9 1.4 −1.7 1.2 −2.1 0.8 −0.3
μ2 5.0 6.5 4.0 4.4 4.8 6.8 25.2
μ3 −0.7 0.5 −0.8 0.3 −0.7 −19.9 −17.5

of significant model deficiencies, or both. The means of the
distributions are offset to varying degree, indicating that the
canonical θopt for these OMPs retain some bias with respect to
the underlying experimental data. Table I lists the mean, stan-
dard deviation, and skewness of these observed distributions
for each data type used to train the CH89 and KD OMPs. This
confirms the issues identified by past authors: clearly, these
OMPs do not span the variance of their training data, and
for some data types, predictions show systematic bias with
respect to experiment.

The comparison of these canonical OMPs with their train-
ing data led us to investigate the self-consistency of the
training data themselves. We discovered that these training
data sets were often inconsistent, in the sense that no plausible
model could simultaneously fit them. This implies that, for
data routinely used in OMP training, the reported experimen-
tal uncertainties may be significantly underestimated. Figure 3
illustrates the problem: in panel (a), five independent, repre-
sentative elastic scattering data sets for neutrons on 40Ca at
14 ± 0.1 MeV from the EXFOR database [31] are shown.
Each is comparable to the elastic scattering data sets used
to train the KD and CH89 OMPs. To facilitate comparison
between these data sets, which were measured at different
angles, we describe their mean behavior as

f (θ ) =
10∑

n=0

cnPn(θ ) (9)

where Pn(x) are Legendre polynomials. A simple weighted-
least-squares fit was performed to optimize the polynomial
coefficients cn. When the fit and training data are compared,
the normalized residuals are inconsistent with one another
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at the several-σ level, as shown in panel (b) of the same
figure, due to underestimation of experimental uncertainties.
Considering that these data were all collected for the same
projectile-target system and at the same energy but are in-
consistent at the several-σ level, even larger discrepancies
may be expected when comparing many types of scattering
observables on different nuclei and energies during global
OMP parameter inference. (It is worth mentioning that, of
the data types considered for training OMPs, such experi-
mental uncertainty underestimation appears to be most acute
for differential elastic scattering data.) To be reliable, any
data-driven assessment of OMP uncertainty must address this
unaccounted-for dispersion of the experimental data. More-
over, if we can determine how large such unaccounted-for
uncertainty must be to bring the optimized OMP and exper-
imental data into agreement, we gain insight into the degree
of mutual consistency between the OMP and the data libraries
used to train the OMP.

III. IMPROVED INFERENCE FOR OMPS

In this section, we present our implementation for im-
proved OMP parameter inference. We propose a modified
likelihood function that addresses the problems of canonical
OMP analysis as identified in the previous section. We then
describe our implementation of the CH89 and KD OMPs, our
scattering code, and the MCMC tools we used for performing
parameter inference.

A. Likelihood function

For a training corpus consisting of N experimental data,
denoted (x, y, δy), and an OMP with k free parameters θ, we
define our likelihood function as follows:

L(y|x, δy, θ, δT ) = 1√
(2π )k|�̃|

e− 1
2 rᵀ�̃

−1
r,

r ≡ y − M(θ, x). (10)

In place of the true (unknown) data covariance matrix �, we
have introduced a diagonal covariance matrix Ansatz �̃:

�̃ ≡ k

N

⎡
⎢⎣�1

. . .

�N

⎤
⎥⎦, �1,...,N ∈ �. (11)

In this prescription, the augmented variances � combine
the experimentally reported uncertainties δy with a new
unaccounted-for uncertainty for each datum, δu,

� = {(
δ2

y + δ2
u

)
: δy ∈ δy, δu ∈ δu

}
, (12)

where each δu is calculated as follows:

δu =
{

y + M(θ, x)

2
× δt : x ∈ x, y ∈ y, δt ∈ δT =t̂ (y)

}
. (13)

To clarify these expressions, we start with the terms in
Eq. (13). As discussed in the previous section, the reported
uncertainties for experimental measurements are often too
small to be self-consistent, hindering robust OMP UQ assess-
ment. As such, we need a way of increasing our uncertainty

in the experimental data that is consistent with the expec-
tation that different types of experimental data (differential
elastic cross sections, neutron total cross sections) will have
different degrees of uncertainty underestimation. At the same
time, we want to respect the reported experimental uncer-
tainty, as it represents the measurer’s informed judgment
about uncertainty affecting the measurement, even if in ag-
gregate they are often underestimated. Our solution is to
create a random variable δT , representing unaccounted-for
uncertainty, for each type of experimental data appearing
in the training corpus. For example, in the CHUQ training
corpus, there are four types of experimental data: differential
elastic scattering cross sections and analyzing powers, each
for protons and neutrons. As such, we create four random
variables, each representing some degree of unaccounted-for
uncertainty for measured data of that type. At present, we
do not know the value of these random variables δT , so we
treat them as parameters to be learned alongside the OMP
parameters θ.

Returning to Eq. (13), for each experimental datum in the
training set, we calculate a datum-specific unaccounted-for
uncertainty term δu, which is the product of the average of the
model prediction M(θ, x) and the experimental datum value y
with the unaccounted-for uncertainty δT of that datum’s data
type. (The term δT =t̂ (y) should be read as “an N-long vector of
δT values, each corresponding to the data type of experimental
measurement y.”) Thus, for each datum of the same type, the
individual unaccounted-for uncertainty δu is calculated using
the same δT .

With δu defined, we proceed to Eq. (12). For each exper-
imental training datum, the reported uncertainty δy is added
in quadrature with that datum’s δu, yielding the overall un-
certainty � for that training datum. The vector of these
augmented uncertainties, �, enters Eq. (11), which defines
the covariance matrix Ansatz. The entries of �̃ are scaled
by k/N in recognition that, by replacing the k×k matrix �

with an N×N covariance matrix Ansatz �̃, a scaling factor
is required to approximately preserve the matrix determinant
that features in the overall normalization. This is equivalent
to saying that the N training data cannot all be independent
random variables, as the information they contain can span, at
most, the k dimensions of θ.

In sum, our likelihood function [Eq. (10)] replaces the
unknown covariance matrix � with a diagonal matrix of
variance terms �, each of which has been augmented based
on the unaccounted-for uncertainty δT for each data type. If
reasonable values can be learned for unaccounted-for uncer-
tainties δT in tandem with θ, this approach will yield both
a fitted OMP with good coverage of the training data and
also a sense of the missing uncertainty required to bring the
experimental data into agreement with the model. We remain
agnostic about about the source of the unaccounted-for un-
certainty, be it underestimation of experimental uncertainty,
model deficiencies, errors in the tabulation of experimental
results, insufficient numerical precision during model calcu-
lations, or an “unknown unknown.” The practical effect of
each � is the same as in traditional weighted least squares,
namely, to reduce the contribution of residuals to the overall
likelihood.
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If we place the likelihood function in the the log-likelihood
form relevant for optimization,

lnL(y|x, δy, θ, δT ) = −1

2

[
rT r

|�̃| + ln|�̃| + kln(2π )

]
. (14)

it becomes clear that minimizing the log-likelihood involves
a competition between the first and second terms inside the
brackets. Larger δT values make for larger � and a larger
covariance determinant |�̃|, which reduces the first term but
increases the second term. At the optimum, where θ mini-
mizes the contribution from residuals, both terms should be
equal,

rT r = |�̃|ln|�̃|. (15)

This implies that, at the start of training our OMP, our
unaccounted-for uncertainty random variables δT will grow
rapidly, to counterbalance the large residuals between model
and data, but, as the fit improves and the residuals shrink, δT

will grow smaller.
We note that the factor k/N in the covariance Ansatz is the

simplest but not the only choice to account for the unknown
degree of correlation between individual data. For example,
one might expect a priori that experimental data of each
type (such as proton reaction cross section, neutron analyzing
powers, etc.) will correlate strongly with each other, due to
common features of the experimental design or ease of certain
types of measurement, but correlate more weakly with data of
other data types. Accordingly, one might want to ensure that
each data type contributes equally to the overall likelihood,
independently of how many data points it contains, so that
data types with fewer data points are not outvoted by data
types with better experimental coverage. In that case, �̃ could
be modified to be

�̃ ≡ k

nt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N1

�1

...

1
N1

�N1

1
N2

�N1+1

...

1
N2

�N1+N2

1
N3

�N1+N2+N3

...

1
NT

�N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× IN , (16)

where nt is the number of unique data types, Nt is the num-
ber of data points of type t , and IN is the identity matrix
of dimension N . With this choice for �̃, all data points of
a given data type would be given equal influence for that
type, and each data type would be given equal influence
on the overall likelihood. Any additional information about
the covariance structure of the experimental data, such as
knowledge of the systematic error for one or more spe-
cific data sets, can be directly inserted to turn �̃ into a
more realistic block-diagonal matrix. We experimented with

a handful of alternatives, including Eq. (16), and found that
their impact on the final uncertainty-quantified OMPs was
small except in situations where one training data type had
far fewer data points than the other types (see Fig. 13 in
Sec. IV C). Unless noted otherwise, all results in the follow-
ing sections were generated using Eq. (10) as the likelihood
function.

Finally, as discussed in toy-model scenarios 2 and 4 of
Sec. II B, we still need a way of identifying outliers in the
training data corpora. By outlier, we mean a datum that should
not be used to train the model, either because the model is
missing physics that the data capture (e.g., effects of defor-
mation if the model assumes sphericity), or because the data
are erroneous. In either of these cases, training the model to
the datum would bias model parameters. To identify outliers,
we implemented a procedure similar to that by Pérez, Amaro,
and Arriola in their analysis of the NN interaction via partial
wave analysis of NN scattering data [40], and first suggested
by Gross and Stadler [41]. Briefly, in a standard NN scattering
database they examined, they found that certain data collected
in similar kinematic conditions were mutually inconsistent
up to the experimentally reported uncertainties. Rather than
reject all inconsistent data as outliers, they used an iterative
procedure to simultaneously train a model to these data while
updating the outlier status of each datum used for training.
In the initial step, their model was fit to the full corpus
of NN-scattering data. Any data lying >3σ away from the
model, where σ was taken to be the reported experimental
uncertainty, were flagged as outliers and not included in the
following round of fitting. In the second round, the model was
fitted to the smaller set of “inlier” data, then the outlier status
of each datum was assessed again, based on the second fit. The
process was repeated until the model fit and the outlier status
of each data point became stable, yielding a mutually consis-
tent database, up to the fitted model. Certain data that were
initially incompatible with the others were thus recovered as
the model fit improved over multiple iterations.

Our procedure was the same except in two respects. In our
case, for σ we included both the variance of the model predic-
tion from MCMC and the experimental uncertainty, summed
in quadrature:

σ2 = {
δ2

y + var[M(θ, x)] : δy ∈ δy, x ∈ x
}

(17)

Second, because MCMC involves sampling noise, many
walker steps are often required before walkers have time to
react to changes in the outlier status of the experimental data.
Thus, we updated the outlier status of the training data only at
100-step intervals during MCMC, rather than at every step.

B. CH89 and KD implementation

We turn now to the implementation of the OMPs we re-
trained according to our proposed approach. Both the CH89
and KD OMPs assume a spherical optical potential, smooth
in scattering energy Elab and target A, for modeling the
projectile-target interaction. CH89 [19] was restricted to pro-
ton and neutron elastic scattering cross sections and analyzing
powers on nuclei “in the valley of stability” with 40 �
A � 209 and for scattering energies of 10 � E � 65 MeV
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(assumed to be the laboratory frame). The potential consists of
five terms: a real central potential, an imaginary central poten-
tial, an imaginary surface potential, a real spin-orbit potential,
and for protons a Coulomb potential (see the Appendix for de-
tailed functional forms). In all, these components employ 22
free parameters. To perform comparisons with experimental
data, the authors of CH89 used a joint scattering-optimization
code called MINOPT, a hybrid of the scattering code OPTICS

[42] and the CERN optimization code MINUIT [43]. For the
wave equation, the original treatment used the nonrelativistic
Schrödinger equation. Because the lowest considered scatter-
ing data energy was 10 MeV, the original treatment took the
compound-nucleus contribution to be zero.

The KD global OMP [20] was fitted not only to proton
and neutron elastic scattering cross sections and analyzing
powers, but also to proton reaction (or “nonelastic”) and
neutron total cross sections. The authors define its domain
as “(near)-spherical” nuclei with 24 � A � 209 for incident
scattering energies of 0.001 � E � 200 MeV in the labora-
tory frame. In addition to the potential component types used
in CH89, KD adds an imaginary spin-orbit component. Each
component was made substantially more flexible in energy
and asymmetry dependence, bringing the total number of
free parameters to 46. To perform comparisons with experi-
mental data, the developers used the scattering code ECIS-97,
as accessed through a visual interface called ECISVIEW. For
the wave equation, the authors “[employed] the relativistic
Schrödinger equation throughout,” using “the true masses of
the projectile and target expressed in atomic mass units.” To
manage optimization in this higher-dimensional space, they
developed a new approach they called “computational steer-
ing”: a user manually adjusted parameters in real time to
achieve a good visual fit, which was followed by an automated
simulated annealing procedure using the program SIMANN to
achieve a quantitative optimum.

For our recharacterization of these OMPs, we adhered
to the original potential forms and scattering assumptions
as described above but with a few minor differences. First,
scattering calculations for CH89 were performed according
to the same relativistic-equivalent Schrödinger equation used
for KD calculations rather than the nonrelativistic treatment
of the original. The effect was to slightly improve the fidelity
of calculated cross sections at the highest scattering energies
included in the CHUQ corpus (65 MeV). Second, for differ-
ential elastic scattering cross sections at scattering energies
below roughly 10–15 MeV the elastic contribution from the
compound nucleus becomes significant compared to the direct
contribution from the OMP and must be included for com-
parison to experimental data. The authors of CH89 restricted
their data corpus to scattering energies �10 MeV for this
reason. For the KDUQ corpus, however, roughly 10% of the
elastic scattering data were collected below 10 MeV. To en-
able comparison with these data, Koning and Delaroche used
the compound cross section values generated by ECIS-97, the
same code they used for direct scattering calculations. In our
case, we generated compound elastic cross sections using the
LLNL Hauser-Feshbach code YAHFC [44], using the canonical
parameters of KD to generate the transmission coefficients
needed for the calculation.

C. Scattering code and MCMC

For scattering calculations and parameter inference, we
combined the MCMC utility EMCEE [45] with a new,
lightweight C++ and Python library, TOMFOOL, that we de-
veloped to perform single-nucleon scattering calculations.
Cross sections were generated via a calculable-R-matrix
Lagrange-mesh method after [46,47] detailed in the Ap-
pendix. The use of a Lagrange-Legendre basis instead of
a radial basis accelerates calculations severalfold but at the
cost of a small loss of precision, depending on the num-
ber of basis elements and chosen R-matrix channel radius.
To ensure fair comparison with the original CH89 and KD
analyses, we applied several measures to validate our calcula-
tion pipeline. First, wherever possible, we drew mathematical
functions from the Gnu Scientific Library (GSL) [48]. Any
necessary functions unavailable in GSL (such as optical po-
tential functional forms and relativistic kinematics equations)
were subjected to a suite of unit and integration tests, includ-
ing comparison against results from the well-tested scattering
code FRESCOX [49,50] and LISE++ [51,52]. For relativistic
calculations, in addition to treating scattering energies and
angles relativistically, we use the wave-number and optical-
potential rescaling approximations given by Eqs. 17 and 20-21
of [53], the same formulas used for this purpose in FRES-
COX and TALYS. Using FRESCOX we prepared a set of cross
section benchmarks covering a range of scattering energies,
angles, and targets representative of the KDUQ corpus. Using
an N = 30 Lagrange-Legendre basis, an R-matrix channel
radius of 15 fm, a maximum partial wave angular momentum
lmax = 80, and a convergence threshold of 10−6 for the mag-
nitude of S-matrix elements, we achieved agreement with the
FRESCOX benchmarks to 1% or better, both for our relativistic
and nonrelativistic implementations for CH89 and KD. This
configuration was used for all scattering calculation results
in our analysis. Finally, we performed numerous spot checks
against the figures in the original CH89 and KD papers to
confirm that our implementation of their OMPs generates the
same cross sections to within the graphical resolution of the
original publications.

For each OMP parameter, we assigned a weakly infor-
mative truncated Gaussian prior centered on the canonical
parameter value (that is, centered on the parameter values
from the original KD and CH89 publications). For each prior
we set the variance based on our estimates about the sen-
sitivity of scattering observables to changes in that type of
parameter. For example, a change of 20% in a Woods-Saxon
radius or diffuseness would result in large changes to the
location of elastic scattering diffraction minima and would
thus be relatively unlikely, but not impossible, given the level
of consistency among the experimental data. In contrast, the
energy dependence of the depth of the imaginary spin-orbit
potential is likely only very weakly sensitive to available
experimental data, so a deviation by a factor of 2 or more
from the canonical value in KD would not be surprising.
Absolute upper and lower limits of the truncated Gaussian
priors were set to prevent any single parameter from becom-
ing nonphysical, resulting in, for example, a negative radius.
For the unaccounted-for uncertainty random variables δT , we
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assigned truncated Gaussian priors as

δt ∼ N (μ = 0.2, σ = 0.2; δt > 0) (18)

for differential elastic observables and

δt ∼ N (μ = 0.02, σ = 0.02; δt > 0) (19)

for integral observables σrxn and σtot. This corresponds to an
expectation of 20% unaccounted-for uncertainty in differen-
tial data types and 2% unaccounted-for uncertainty in integral
data types. We based these priors on the observed degree of
agreement of the canonical KD and CH89 potentials against
their training corpora and on the typical range of experimen-
tally reported uncertainties for these types of data. To begin
MCMC, 8×k walkers were initialized according to

θ, δt ∼ N (μ = μprior, σ = 0.1σprior ) (20)

for CHUQ and

θ, δt ∼ N (μ = μprior, σ = 0.01σprior ) (21)

for KDUQ, with k the number of parameters subject to in-
ference. For the MCMC proposal distribution, we used the
EMCEE [45] default proposal distribution, the affine-invariant
Goodman-Weare sampling prescription, but with a scaling
parameter a = 1.4, reduced from the default value of a = 2
to improve the acceptance fraction given the high dimension-
ality of the parameter space. Sampling continued for roughly
10 000 samples until ensemble means no longer exhibited
movement in any parameter dimension and the percentage of
each data type that were flagged as outliers ceased to change
(excepting ≈0.1% fluctuations due to the Monte Carlo nature
of sampling). Due to our expectation of very long autocorrela-
tion times among walkers, we used only the terminal sample
from each walker for all results shown below.

Our reassembly of the training data corpora used to train
the canonical OMPs is detailed in the Supplemental Material
[37]. While we were able to recompile and verify almost all
of the training data as originally used, there were a handful
of discrepancies between data as reported in the referenced
literature, the data as listed in the canonical CH89 and KD
treatments, and the data as listed in the EXFOR experimental
reaction database. Details of these differences and references
to the EXFOR accession number for the data set in question
(or, if the data were not available through EXFOR, to the
original literature) are provided in the Supplemental Mate-
rial [37]. Because our approach involves outlier-rejection and
unaccounted-for uncertainties that were as large or larger than
experimentally reported uncertainties, the few discrepancies
were unlikely to have any appreciable effect on our analysis.

IV. RESULTS

Our results are organized in three parts. First, we compare
the performance of CHUQ against that of CH89 with respect
to their training data. To assess predictive power, CHUQ and
CH89 are compared against a Test corpus of new scattering
data collected from 2003 to 2020 (after the publication of the
original treatment). Next, we present a similar comparison for
KDUQ and KD. Last, we discuss the comparative uncertainty
of the potentials, including comparison of volume integrals

TABLE II. Mean (μ1), standard deviation (μ2), and skewness
(μ3) for the distributions of standardized residuals between CHUQ
and experimental data, as shown in Fig. 7. Here the distributions are
tabulated separately for protons and neutrons (cf. Tables III and I).

Proton data

CHUQ corpus Test corpus

Ay
dσ

d	
Ay

dσ

d	
σrxn

μ1 0.0 1.0 −0.3 −1.8 0.3
μ2 2.1 2.1 3.1 1.3 0.2
μ3 −0.1 1.6 −0.9 −2.8 0.1

Neutron data

CHUQ corpus Test corpus

Ay
dσ

d	
Ay

dσ

d	
σtot

μ1 −1.0 0.9 −1.2 2.0 −0.3
μ2 1.7 1.9 1.8 2.3 2.2
μ3 −0.7 0.5 −0.2 0.1 −2.1

and how alternative likelihood functions could affect our re-
sults.

A. CH89 vs CHUQ performance

Figures 4 and 5 show the performance of CHUQ and
the canonical CH89 OMP with respect to several represen-
tative experimental data sets in the CHUQ training corpus.
Figures comparing CHUQ and CH89 over the entire CHUQ
corpus are provided in the Supplemental Material [37]. Over-
all, the median predictions of CHUQ are very similar to the
canonical CH89 predictions, with the largest differences be-
ing slightly lower predicted differential elastic cross sections
from CHUQ compared to those from CH89 around 10–11
MeV, the lowest scattering energies considered in the CHUQ
corpus. Compared to the canonical CH89 analysis, our use
of a fully relativistic-equivalent Schrödinger equation in the
present work and our relaxation of the fixed Coulomb radius
parameters rc and r (0)

c for CHUQ improves the angular de-
pendence of proton differential elastic scattering predictions
at higher energies on high-A targets, as shown in Fig. 6.

Figure 7 summarizes the overall performance of CHUQ
against the full CHUQ corpus and against the Test corpus. The
means, standard deviations, and skewnesses of the residual
distributions shown in Fig. 7 are listed in Table II. Using the
CHUQ corpus, we can directly compare the original treat-
ment’s uncertainty estimation (CH89 UQ in Fig. 2 and Table I)
and that of the present work (CHUQ in Fig. 7, panel (a),
and Table 7). Across the data types in the CHUQ corpus,
CHUQ yields similar mean residuals: between −1.0 and 1.0,
versus −1.7 to 1.1 for CH89 UQ. This suggests that both the
canonical CH89 parameters and CHUQ’s central parameter
values do well at reproducing average trends of training data.
In CHUQ, there is apparent tension between neutron ana-
lyzing powers, which are slightly overpredicted (μ1 = −1.0)
and proton and neutron differential elastic scattering cross
sections, which are slightly underpredicted (μ1 = 1.0 and
μ1 = 0.9).
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FIG. 4. Representative experimental and calculated neutron differential elastic cross sections are plotted for 54Fe, 60Ni, and 120Sn at
selected energies. Experimental data are shown as points with reported experimental uncertainties. The outlier status of each point (as defined
previously) is indicated by color: black points are inliers and white points are outliers. Calculations from the canonical CH89 parameters are
shown as a blue dashed line. The CHUQ 68% and 95% uncertainty intervals are shown as dark and light red bands, respectively. The data sets
are labeled by scattering energy (MeV, in the laboratory frame) and offset vertically for legibility.

The main difference is that, compared to CH89 UQ, CHUQ
yields much smaller residual standard deviations: between 1.7
to 2.1 across data types, versus 4.0 to 9.6 for CH89 UQ.
That the variance of the residuals is much closer to unity
indicates that the larger parametric uncertainty of CHUQ

more faithfully represents the spread of the experimental
data in the CHUQ corpus. Further, the fact that the variance
of CHUQ-corpus residuals remains larger than unity shows
that the priors we assigned to the unaccounted-for uncertain-
ties δT are preventing δT from becoming even larger, which
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FIG. 5. Representative experimental and calculated proton analyzing powers are plotted for 54Fe, 60Ni, and 120Sn at selected energies. See
the caption of Fig. 4 for the key.
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FIG. 6. CH89 and CHUQ predictions are compared against ex-
perimental proton elastic scattering observables on 208Pb and 209Bi at
65 MeV. See the caption of Fig. 4 for the key. The differential cross
sections shown are relative to the Rutherford cross section.

would further reduce the constraining power of the training
data.

Panel (b) of Fig. 7 illustrates performance of CHUQ
against the Test corpus. The Test corpus includes many scat-
tering data far beyond the prescribed range of validity given
by the authors of CH89, including data collected at scatter-
ing energies from 1 to 10 MeV and from 65 to 295 MeV,
proton σrxn and neutron σtot data, and data from targets with
A < 40. The performance of CHUQ is moderately degraded
on the Test corpus compared to the CHUQ corpus, with mean
residuals ranging from −1.8 to 2.0 across data types, and
residual standard deviations ranging from 1.3 to 3.1 for elastic
observables. Though the CHUQ corpus used for training did
not include either proton σrxn or neutron σtot data, CHUQ’s
average performance against the Test corpus in these data
sectors is surprisingly good, with mean residuals of 0.3 for
proton σrxn and −0.3 for neutron σtot. This indicates that,
despite substantial unaccounted-for uncertainty in the training
data, fits that employ only elastic scattering data can still
provide meaningful constraints on the imaginary terms in the
potential.

B. KD vs KDUQ performance

Figures 8–10 show the performance of KDUQ and the
canonical KD Global OMP with respect to several repre-
sentative experimental data sets in the KDUQ corpus used
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FIG. 7. Normalized residuals (ri/δi) between CHUQ’s predic-
tions and the CHUQ corpus and Test corpus are histogrammed by
data type. Panel (a) shows performance against the CHUQ corpus.
Panel (b) shows performance against the Test corpus.

for training. Figures comparing KDUQ and KD over the
entire KDUQ corpus are provided in the Supplemental Ma-
terial [37]. For elastic scattering observables, the median
predictions of KDUQ are very similar to the canonical
KD predictions at low angles, with moderate deviations ap-
pearing at higher angles and scattering energies. Predicted
neutron σtot of KDUQ and KD are nearly identical, and both
achieve excellent agreement with the training data above the
resolved-resonance region. (At lower energies where reso-
nance structure is resolved, the OMP assumption of smooth,
resonance-averaged behavior is no longer expected to hold).
The most significant difference between KDUQ and KD is
the improved reproduction of proton σrxn cross sections in
KDUQ, where predictions are roughly 10% smaller for low-A
targets such as 27Al and 40Ca compared to the predictions
of KD. In addition, at scattering energies >100 MeV across
all masses, the slope of predicted proton σrxn cross sections
differs between KDUQ and KD, with KD predictions exhibit-
ing a steeper decrease with respect to energy, whereas KDUQ
predictions remain roughly flat with respect to energy. Past
analyses with dispersive optical potentials have connected the
energy dependence of σrxn cross sections in this region with
the behavior of deeply bound, highly correlated nucleons, as
probed in (e, e′ p) reactions [14], and potentially correlated
with neutron skins in neutron-rich nuclei [54,55]. Such a
relationship could be quantitatively assessed with a global
dispersive OMP (à la [56]), but treated fully nonlocally to
maintain good particle number and equipped with UQ as
shown here.

Figure 11 summarizes the performance of KDUQ against
both the KDUQ corpus training data and the Test corpus.
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FIG. 8. Representative experimental and calculated neutron differential elastic cross sections are plotted for 56Fe, 90Zr, and 209Bi at selected
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indicated by color: black points are inliers and white points are outliers. Cross sections calculated using the original KD formulation are shown
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The mean, standard deviation, and skewness of the distri-
bution of residuals shown in Fig. 11 are listed in Table III
for both protons and neutrons. Overall, KDUQ performance
differs little between the KDUQ corpus and Test corpus, an
indication that our MCMC-based approach has avoided over-
fitting the training data. Compared to KD, KDUQ has a lower
bias with respect to proton reaction cross section data (mean
normalized residual of −0.9; cf. −2.4 for KD in Table I).
Both KD and KDUQ exhibit minimal bias for neutron total
cross sections (mean normalized residuals of −0.3 and −0.1,
respectively). Apparently, our inclusion of unaccounted-for
uncertainty terms in KDUQ is sufficient to account for almost
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FIG. 9. Representative experimental proton reaction cross sec-
tion data and KD and KDUQ calculations are plotted for selected
nuclei in the KDUQ corpus. See caption of Fig. 8 for additional
information on the legend.

all of the excess data variance seen for KD in Fig. 2 (neutron
σtot normalized residual standard deviations of 1.2 for KDUQ,
compared to 25.2 for KD). For differential elastic observ-
ables, the mean predictions from KDUQ perform similarly
to those of KD against both the KDUQ corpus and the Test
corpus, with the parametric uncertainty of KDUQ reducing
the normalized residual standard deviations to approximately
2 for both protons and neutrons. That the normalized residual
variances for differential elastic quantities are still larger than
1 indicates additional variance among the experimental data
that the assumptions of our analysis are unable to account for.
One likely source is assumption of sphericity leading to poorer
agreement with differential data on more deformed targets in
the KDUQ corpus. It is well known that, especially at low
energies, only a deformation-cognizant, dispersive OMP such
as those introduced by Soukhovitskii et al. [7] and Capote
et al. [57] will be capable of reproducing scattering behav-
ior. Equipping these deformed OMPs with UQ is a natural,
if labor-intensive, extension. In the meantime, by examining
which data are flagged as outliers in our approach, one could
garner a quantitative idea of how where, and how badly, a
spherical OMP fails to capture the effects of deformation on
scattering.

C. Parameter comparison and discussion

In this section, we interpret the mean parameter values
and uncertainties of our new UQ OMPs. Besides providing
a natural way to forward-propagate OMP uncertainty via re-
sampling, the parameter (co)variances provide information
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FIG. 10. Representative experimental neutron total cross sec-
tion data and KD and KDUQ calculations are plotted for selected
nuclei in the KDUQ corpus. See caption of Fig. 8 for additional
information on the legend.

about the extrapolability of CH89- and KD-like OMPs away
from their training data (e.g., away from β stability). The
optimized parameter estimates and associated uncertainties
are compared in Table IV for CH89 and CHUQ and in Table V
for KD and KDUQ. In addition, for a metric for the overall
degree of parametric uncertainty in CH89 and CHUQ, we
list the determinants of the covariance matrices for CH89 UQ
and CHUQ (excluding the Coulomb radius parameters, which
were fixed in the original CH89 treatment) at the bottom of
Table IV.

Overall, the estimated central parameter values CHUQ are
similar to the original values of CH89, but in most cases,
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FIG. 11. Normalized residuals (ri/δi) between KDUQ’s predic-
tions and the KDUQ corpus and Test corpus are histogrammed by
data type. Panel (a) shows performance against the KDUQ corpus.
Panel (b) shows performance against the Test corpus.

TABLE III. Mean (μ1), standard deviation (μ2), and skewness
(μ3) for the distributions of standardized residuals shown in Fig. 11,
shown separately for protons and neutrons (cf. Tables II and I).

Proton data

KDUQ corpus Test corpus

Ay
dσ

d	
σrxn Ay

dσ

d	
σrxn

μ1 −0.1 0.5 −0.9 0.1 −0.8 −0.2
μ2 2.2 2.1 1.5 0.9 1.8 0.7
μ3 −0.6 1.5 −2.5 0.6 9.3 0.6

Neutron data

KDUQ corpus Test corpus

Ay
dσ

d	
σtot Ay

dσ

d	
σtot

μ1 −1.1 0.5 −0.1 −1.5 1.2 −0.8
μ2 2.1 2.3 1.2 2.0 3.3 1.5
μ3 −0.6 0.3 −5.3 −0.8 1.1 −0.7

the median value from CHUQ lies well outside the estimated
uncertainty of CH89 UQ. In addition, CHUQ’s parametric
uncertainty estimates are between two and twenty times larger
than the estimates from CH89 UQ. Most notable are changes
in terms affecting the potential magnitudes, including the
asymmetry-dependent parameters Vt and Wst and the imagi-
nary central and surface terms’ A-dependent parameters Wve0,
Wvew, Wse0, and Wsew, all of which indicate far greater un-
certainty with respect to target asymmetry and A than in the
canonical treatment. These increased uncertainties manifest as
uncertainty in the imaginary-part volume integrals as shown in
Fig. 12.

The much-larger uncertainty recovered in CHUQ vs CH89
UQ is indicative of a better match of CHUQ to the breadth
of the CHUQ corpus compared to the canonical CH89. How-
ever, some important details of the CHUQ corpus and Test
corpus are still not captured by CHUQ, due to the rela-
tive simplicity of the CH89 potential form. The choice of
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FIG. 12. Volume integrals −J/A are plotted for CH89, KD,
CHUQ, and KDUQ evaluated for neutron scattering on 90Zr (all
spin-orbit terms are excluded). The CHUQ and KDUQ bands show
the 68% uncertainty interval. The ranges of CH89 and CHUQ are
restricted to the nominal validity range of CH89 of 10–65 MeV.
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TABLE IV. The CH89 and CHUQ central parameter values and
uncertainty intervals are listed. For CH89, the central values are the
mean values reported in the original treatment, and the uncertainties
are the estimated parameter standard deviations as calculated from a
bootstrap analysis in the original treatment. For CHUQ, the central
values are the posterior 50th percentile value and the uncertainties
are the difference between the central value and the posterior 16th
and 84th percentile values. The final row lists the determinant of the
parameter covariance.

CH89 CHUQ

V0 52.9+0.2
−0.2 56.19+1.43

−1.82

Vt 13.1+0.8
−0.8 13.82+7.03

−5.25
Ve −0.299+0.004

−0.004 −0.36+0.03
−0.02

r0 1.25+0.002
−0.002 1.20+0.03

−0.03

r (0)
0 −0.225+0.009

−0.009 −0.20+0.12
−0.13

a0 0.69+0.006
−0.006 0.73+0.03

−0.02

rc 1.24+0
−0 1.25+0.12

−0.12

r (0)
c 0.12+0

−0 0.13+0.09
−0.12

Vso 5.9+0.1
−0.1 5.58+0.52

−0.58
rso 1.34+0.03

−0.03 1.29+0.11
−0.11

r (0)
so −1.2+0.1

−0.1 −1.12+0.45
−0.51

a(0)
so 0.63+0.02

−0.02 0.61+0.04
−0.04

Wv0 7.8+0.3
−0.3 9.92+4.63

−2.92

Wve0 35.0+1
−1 33.15+25.03

−19.82

Wvew 16.0+1
−1 24.00+11.32

−9.52
Ws0 10.0+0.2

−0.2 10.59+3.99
−3.39

Wst 18.0+1
−1 27.09+12.28

−8.72

Wse0 36.0+2
−2 20.00+21.69

−20.82

Wsew 37.0+2
−2 36.38+23.75

−13.66

rw 1.33+0.01
−0.01 1.32+0.08

−0.08

r (0)
w −0.42+0.03

−0.03 −0.41+0.36
−0.32

aw 0.69+0.01
−0.01 0.69+0.05

−0.05
|�| 5.76×10−49 1.08×10−12

likelihood in the canonical analysis [Eq. (8)] resulted in good
performance of the canonical CH89 parameters with respect
to the experimental data, but the lack of normalization in their
likelihood function resulted in an underestimation of paramet-
ric uncertainty. CHUQ performs moderately well against the
Test corpus, considering that the majority of Test corpus data
lie outside the nominal validity range of the CH89 potential
form, but it is clear that other OMPs should be preferred at
energies below 10 MeV.

We now turn to KD and KDUQ. For 42 out of 46
parameters, the the canonical value of KD lies within
one estimated standard deviation of the KDUQ mean
value; of the remaining four, three (v1,α, vn

2,0, and vn
3,0) are

within two estimated standard deviations, and the most
discrepant, wn

1,0, lies just over two estimated standard devi-
ations away. Notably, many subterm parameters which are
coefficients in E - and A-dependent polynomial expansions
are strongly anticorrelated (see the KDUQ parameter correlo-
gram in the Supplemental Material [37]), and their estimated
uncertainties are many times larger than their median val-
ues. Both these observations indicate overparametrization of
E and A dependence in those subterms, so some of these
higher-order expansion terms could likely be eliminated with-

TABLE V. The KD and KDUQ parameter values are compared
and the KDUQ uncertainties listed. For KDUQ, the listed values are
the posterior 50th percentile (median) value and the uncertainties are
the difference between the median value and the posterior 16th and
84th percentile values.

KD KDUQ

v1,0 5.93×101 5.86+0.21
−0.18×101

v1,α 2.10×101 1.34+0.54
−0.47×101

v1,A 2.40×10−2 2.61+1.06
−0.99×10−2

vn
2,0 7.23×10−3 6.35+0.71

−1.05×10−3

vn
2,A 1.48×10−6 1.82+5.44

−4.74×10−6

vn
3,0 1.99×10−5 1.08+0.88

−0.93×10−5

vn
3,A 2.00×10−8 1.45+3.30

−2.77×10−8

v
p
2,0 7.07×10−3 6.76+1.12

−1.32×10−3

v
p
2,A 4.23×10−6 2.91+6.99

−8.20×10−6

v
p
3,0 1.73×10−5 1.40+1.00

−0.94×10−5

v
p
3,A 1.14×10−8 1.43+4.53

−4.47×10−8

v4,0 7.00×10−9 −4.30+25.60
−20.30×10−9

rV,0 1.30 × 100 1.27+0.03
−0.04×100

rV,A 4.05 × 10−1 3.61+1.55
−1.34×10−1

aV,0 6.78×10−1 6.89+0.24
−0.27×10−1

aV,A 1.49×10−4 −0.42+2.56
−2.69×10−4

rC,0 1.20×100 1.19+0.11
−0.12×100

rC,A 6.97×10−1 6.72+7.36
−6.60×10−1

rC,A2 1.30×101 1.30+1.40
−1.26×101

vSO1,0 5.92×100 5.99+0.96
−0.90×100

vSO1,A 3.00×10−3 1.95+9.63
−8.55×10−3

vSO2,0 4.00×10−3 4.75+4.07
−2.17×10−3

rSO,0 1.19×100 1.21+0.06
−0.06×100

rSO,A 6.47×10−1 7.35+2.58
−2.58×10−1

aSO,0 5.90×10−1 6.00+0.39
−0.39×10−1

wSO1,0 −3.10×100 −3.79+2.08
−2.10×100

wSO2,0 1.60×102 2.19+0.84
−0.89×102

wn
1,0 1.22×101 2.09+0.39

−0.42×101

wn
1,A 1.67×10−2 0.61+3.35

−2.94×10−2

w
p
1,0 1.47×101 1.86+0.56

−0.49×101

w
p
1,A 9.63×10−3 32.50+45.92

−36.72×10−3

w2,0 7.35×101 10.29+3.45
−2.58×101

w2,A 7.95×10−2 2.43+19.45
−16.23×10−2

d1,0 1.60×101 1.67+0.72
−0.39×101

d1,α 1.60×101 1.11+1.01
−0.79×101

d2,0 1.80×10−2 2.34+2.56
−3.29×10−2

d2,A 3.80×10−3 3.73+30.69
−26.67×10−3

d2,A2 8.00×100 8.57+7.31
−7.36×100

d2,A3 1.56×102 2.51+1.21
−2.48×102

d3,0 1.15×101 1.38+0.39
−0.31×101

rD,0 1.34×100 1.35+0.07
−0.08×100

rD,A 1.58×10−2 1.75+1.72
−1.63×10−2

an
D,0 5.45×10−1 5.43+0.41

−0.38×10−1

an
D,A 1.66×10−4 −2.14+4.06

−4.51×10−4

ap
D,0 5.19×10−1 5.08+0.42

−0.42×10−1

ap
D,A 5.21×10−4 14.10+6.55

−6.57×10−4

out impacting observables. Taken as a whole, the parameter
estimates we recover are highly consistent with the canonical
ones, which we take as evidence that our replication attempt,
though not identical to the canonical treatment, was success-
ful. Further, it confirms that even without the benefit of the
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computational advances of the last twenty years, the canonical
KD analysis was remarkably close to the global optimum we
recover here.

In the KD/KDUQ functional form, Lane-like asymmetry-
dependence appears only in two terms: the first-order energy
dependence of the depth of the real volume potential as a
function of asymmetry, v1,α , and the first-order energy de-
pendence of the depth of the imaginary surface potential as
a function of asymmetry, d1,α . For each of these parame-
ters, KDUQ recovers significantly smaller median asymmetry
dependences than those from the canonical treatment. This
implies that KD’s real and imaginary surface asymmetry
dependences are weaker than previously assumed, and that
the real and imaginary-surface parts of the OMP may be
more reliable than previously thought when extrapolated to
exotic (near-spherical) targets. At the same time, for d1,α ,
the uncertainties we estimate are almost as large as the me-
dian value we recover, indicating that the training data we
used (coupled with our analysis assumptions) provides only
a weak constraint on the behavior of the imaginary sur-
face term away from the valley of β-stability. Considering
that many downstream applications—such as r-process nu-
cleosythesis calculations, fission neutron spectra modeling,
and planned transfer and knockout studies at FRIB—rely
on OMP-informed evaluations of low-energy inelastic cross
sections on neutron-rich targets, the fact that d1,α is poorly
constrained is a pressing problem. A global, UQ-equipped
phenomenological OMP analysis that incorporates isovector-
sensitive observables, such as quasielastic charge exchange
cross sections that have already yielded insight into OMP
isovector dependence (e.g., [60]), is a natural next step.

Besides these terms with explicit asymmetry-dependence,
the imaginary volume term, which is separately parametrized
for protons and neutrons, contains information about isovec-
tor dependence of imaginary strength. For both neutrons and
protons, our median-value estimates for first-order imaginary
volume strength (wn

1,0 and w
p
1,0 terms) are moderately larger

than the canonical KD value, suggesting enhanced imaginary
volume strength overall. Coupled with the smaller overall
imaginary surface depth d1,0, these result in a reduction in
predicted neutron/proton reaction cross sections at low ener-
gies (associated with the surface) and an increase at higher
energies associated with the volume, in improved agreement
with experimental trends for protons shown in Fig. 9. This
trend is also visible for neutrons in Fig. 12, where above 100
MeV the imaginary volume integral grows more rapidly for
KDUQ than for KD. If verified, this additional imaginary vol-
ume strength would further quench bound-state spectroscopic
factors available from dispersive optical models, as discussed
in [14,55].

Lastly, to assess the effect of our data covariance matrix
Ansatz on these interpretations, we compared two different
versions of KDUQ: one trained using the “democratic” covari-
ance Ansatz of Eq. (11) and one trained using the “federal”
covariance ansatz of Eq. (16). Figure 13 shows results from
both treatments on predictions of proton σrxn above 50 MeV
where the effects of changing the covariance Ansatz is largest.
Overall, these different Ansatzes have little effect on the
median parameter values. However, in the case where one
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FIG. 13. A comparison of KDUQ versions trained using
Eqs. (11) and (16) is shown for proton σrxn on 40Ca. The 68% and
95% uncertainty intervals of appear as the dark and light bands,
respectively. The experimental data of [58] and [59] appear as black
points with associated errors.

training data type has far fewer data than others, the federal
Ansatz leads to a moderate reduction of unaccounted-for un-
certainty required to reproduce data of that type, which leads
to more precise predictions for data of that type. This agrees
with our expectation that the more realistic the experimental
data covariance matrix Ansatz is, the less unaccounted-for
uncertainty is required to achieve good reproduction of the
data.

V. IMPACT

In this section, we apply our UQ-equipped OMPs to two
case studies: predicting neutron σtot evolution with respect
to asymmetry, and propagation of OMP UQ into Hauser-
Feshbach calculations of of (n, γ ) on 95Mo and (p, γ ) on 87Sr.

A. Case study 1: Evolution of neutron total
cross sections in isotopic pairs

Cross sections for neutron-induced reactions on β-unstable
targets are a key input for several nuclear data applica-
tions, e.g., r-process nucleosynthesis network calculations
[61]. Because of the experimental difficulty in performing
cross section measurements in this regime, cross sections es-
timations rely on either (semi)microscopic OMPs [2,5] or
phenomenological potentials fitted solely to stable-target data,
such as the KD global OMP, that are then extrapolated
according to their assumed asymmetry dependence. For inci-
dent neutrons at lower energies (<10 MeV), the asymmetry
dependence of the imaginary surface term strongly affects
capture cross sections [25], but the magnitude of this asym-
metry dependence remains poorly known. More broadly, such
isovector components of optical potentials are connected to
other poorly constrained but important nuclear quantities,
such as neutron skins in finite nuclei [14,55,62] and the
density dependence of the symmetry energy, L, in nuclear
matter, which influences both the theoretical limit to neutron
star radii and the dynamics of neutron star mergers, among
other properties [63]. As such, improving our knowledge of
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FIG. 14. Relative differences of neutron total cross sections from 5 to 250 MeV for several isotopic pairs are plotted. Calculations using
the standard KD global potential are shown via the blue dashed line. The 68% and 95% uncertainty intervals of KDUQ appear as the dark and
light red bands, respectively. The experimental data of [64], [29], and [62] appear as black points with associated errors.

the appropriate asymmetry-dependence of OMPs remains an
important task.

To constrain asymmetry-dependent terms of phenomeno-
logical OMPs, past analyses have focused mainly on two
types of experimental data: quasielastic charge exchange cross
sections to the isobaric analog state (as analyzed in [60] using
a KD-like potential) and ratios of neutron cross sections mea-
sured on different isotopes along an isotopic or isotonic chain
(as studied by [29,62,64–66]). Quasielastic charge exchange
is an ideal probe in that measured cross sections are sensi-
tive specifically to isovector strength, but analysis of these
data may require more sophisticated theoretical machinery
(as compared to straightforward elastic and total cross sec-
tion calculations) to correct for contamination from �Jπ �=
0+ channels, as demonstrated in [67]. The second type, ra-
tios of neutron cross sections, has the advantage that, by
taking a cross section ratio, many systematic uncertainties
(such as detector efficiency) are divided out. Further, if more
than two isotopic targets are available, multiple ratios can
be constructed and additional quantities, such as degree of
deformation, can be extracted [65,66]. In addition, because
neutron total cross sections can be simultaneously collected
from a few to a few hundred MeV [68,69] at precisions of
≈1%, ratios of neutron total cross sections can provide infor-
mation about OMP isovector features across broad regime of
energies relevant for OMP construction and application. The
main drawback of this type of measurement is the often pro-
hibitive expense of obtaining large, isotopically pure targets
with precisely known areal densities. Even when isotopically
pure targets are available along an isobar or isotopic chain,
because they must be stable or at least long-lived to be suitable

for target fabrication, they can span only a small range of
asymmetries, which diminishes the isovector signal in the
cross section ratio.

The importance of constraining isovector terms warrants
a future, global OMP analysis including both of these data
types as well as neutron strength functions (as used by [5])
to characterize isovector dependence. As a precursor to such
an analysis, in Fig. 14 we consider canonical KD OMP and
KDUQ predictions against neutron total cross section isotopic
ratios on 40,48Ca [64], 58,64Ni, 112,124Sn [29], and 182,186W
[62]. In all instances, the median predicted value from KDUQ
closely follows the canonical KD predictions. Due to the
small reported uncertainties of the experimental data shown
in Fig. 14, the canonical KD predictions are discrepant with
the experimental data at the several-σ level in many places,
e.g., the 64Ni-58Ni relative difference below 20 MeV in panel
(b). As such, if one considers just the canonical KD curve, one
might conclude that the KD potential form is missing some
important asymmetry-dependent physics that are present in
the data. However, when OMP parametric uncertainties are
considered (as shown in the KDUQ curve), it is clear that most
of the discrepancies between the canonical KD predictions
and experimental data are not statistically meaningful. That
is, once parameter uncertainties are included, the KD potential
form is quite effective at predicting these cross section ratios
to which it was never trained. Moreover, any discrepancies
that remain after parametric uncertainty is considered [for
example, the overprediction of the Sn isotopic ratios, shown in
panel (c), between 30 and 50 MeV] become even more inter-
esting: they do indicate residual physics that has been captured
by the measurement, but not by the assumptions of our OMP.
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In the specific case of Sn and W isotopic ratios, the likely
cause for the significant discrepancy between predictions and
measurements is that the KD form, by definition, neglects the
differing density profiles for neutron and protons in the Sn and
W isotopes. Indeed, Dietrich et al. [62] who collected the W
data found that accurately reproducing the W isotopic ratio
data between 20 and 40 MeV required a Jeukenne-Lejeune-
Mahaux-inspired coupled-channel OMP analysis that featured
an increasing neutron skin from 182W to 186W. If more isotopi-
cally resolved neutron total cross section ratios were available,
a similar analysis across many isotopic chains could provide
neutron skin thicknesses and additional information on L,
though the potential would need to be deformation aware and
not spherical, as assumed here. The apparent (but, in light of
the parametric uncertainty, insignificant) discrepancy between
the canonical KD calculation and the Ni isotopic ratio data is
an example of how well-calibrated UQ helps avoid mistaking
noise in the experimental data for signal. At the very least,
the KDUQ predictions make clear that, in order for neutron
total cross section ratios to constrain asymmetry-dependent
OMP terms for a KD-like potential, the relative difference
measurement must achieve 1% precision or better.

B. Case study 2: 95Mo(n, γ)96Mo
and 87Sr(p, γ)88Y cross sections

One of the most common applications for OMPs is as
an input for radiative capture calculations. While direct and
preequilibrium capture mechanisms play an important role
for light and near-dripline nuclei [70], the Hauser-Feshbach
model, which assumes equilibration of the excited composite
nucleus before deexcitation, is appropriate for most nucleon
capture reactions. In this picture, both the probability of cre-
ating a compound nucleus in the entrance channel and the
evaporation of nucleons from an excited nucleus depend on
energy- and angular-momentum-dependent transmission co-
efficients Tl j (E ) that are determined by an OMP. To illustrate
the relative impact of OMP uncertainty on nucleon capture
within the Hauser-Feshbach model, we propagated CHUQ
and KDUQ uncertainties through two representative reac-
tions: 95Mo(n, γ )96Mo and 87Sr(p, γ )88Y at incident nucleon
energies up to 5 MeV. Calculations were carried out using
the LLNL Hauser-Feshbach code YAHFC [44], modified to
accept KD-like and CH89-like potentials with arbitrary pa-
rameters, and using YAHFC default configuration information,
discrete level data, nuclear level densities (LDs), and γ -ray
strength functions (γ SFs). For each reaction, we ran YAHFC

once using the canonical KD and once using the canonical
CH89 potential and then performed 100 YAHFC runs each for
CHUQ and KDUQ, with each run using a unique sample of
the OMP parameter posterior. Results of these calculations
are shown in Fig. 15. Panels (a) and (b) show transmis-
sion coefficients Tl j (E ) generated by YAHFC’s invocation of
FRESCOX [50] for protons incident on 87Sr and for neutrons
incident on 95Mo. Panels (c) and (d) display the correspond-
ing capture cross sections, where the uncertainty shown is
due to the transmission coefficients of panels (a) and (b). As
YAHFC uses a Monte Carlo approach for deexciting compound
nuclei, we drew 106 samples at each scattering energy to

ensure that YAHFC’s statistical uncertainty due to Monte Carlo
sampling was less than 1% for the calculated capture cross
sections.

For p+87Sr, the CH89, CHUQ, and KDUQ transmission
coefficients show overall consistency across all depicted en-
ergies, whereas the KD transmission coefficients are slightly
lower than the other OMPs between 3 and 10 MeV. The
principle difference for KD was reduced s-wave strength and
a more rapid rise in p-wave strength. Below 3 MeV the
Coulomb barrier manifests as a steep reduction across the
board. Above 10 MeV (the minimum energy included in the
CHUQ corpus), the Tl j (E ) generated from all four OMPs are
consistent within approximately 10%, an indication that the
OMP uncertainty is likely a minor source of uncertainty in
cross section predictions above this energy.

This reaction was one of those considered by Vagena et al.
in their recent study [72] of systematic effects of the pro-
ton OMP on p-process nucleosynthesis. In their approach,
using TALYS they sought to improve the Bruyére-le-Châtel
version of the Jeukenne-Lejeune-Mahaux semimicroscopic
proton OMP [5] by tuning its parameters to better reproduce
experimental cross sections for specific reactions. In the case
of 87Sr(p, γ )88Y, experimental data were available from 1.6 to
3 MeV as collected by Gyürky et al., shown here in panel (c)
of Fig. 15. Following Vagena et al., we have scaled the data
up by a factor of 2.5 from the original publication to comport
with 88Sr(p, γ )89Y data subsequently published by [71]. In
their analysis, they argued that below roughly 3 MeV this re-
action can be considered independent of the 88Sr LD and γ SF,
so any remaining discrepancy between predictions and mea-
sured data serves as a basis for adjusting OMP parameters.
In our case, while we did not perform calculations using any
microscopic OMPs, all four global phenomenological OMPs
we did consider—CH89, CHUQ, KD, and KDUQ—generate
predictions within a few tens of percent of the experimental
cross sections. This suggests that unless both the LD and
γ SF are known within a few tens of percent precision for
a given reaction, constraining OMP parameters by working
backwards from measured capture cross sections may not be
feasible. A consistent joint treatment combining all of these
sources of uncertainty is a next step in which the yet unknown
correlations between OMPs, LDs, and γ SFs will be critically
important. We hope to engage in a systematic study following
the logic of [72] that compares microscopic OMPs with UQ-
equipped phenomenological ones for astrophysically relevant
reactions. At the very least, we argue that the intuition pro-
vided here on standard phenomenological OMPs can guide
analysts interested in manually tuning microscopic OMP pa-
rameters to reproduce experimental scattering observables.
Given our finding that the CH89 and KD uncertainty effect
on capture cross sections between 1 and 5 MeV that we
examined is on the order of tens of percent, a practitioner
who encounters a larger discrepancy between their prediction
and experimental data should consider other sources of uncer-
tainty beyond the OMP parameters, such as deformation or
level density uncertainty.

Finally, we consider n+95Mo in panels (b) and (d).
Throughout the depicted energy range, CHUQ calculations
are highly consistent with CH89 and KDUQ calculations with
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FIG. 15. Transmission coefficients and cross sections for 87Sr(p, γ )88Y and 95Mo(n, γ )96Mo are plotted. All calculations were performed
using the statistical reaction code YAHFC [44] with default structure inputs. Calculations using the canonical KD OMP are shown via blue lines;
calculations using CH89 are shown as red lines. Calculations using 100 samples each from the KDUQ and CHUQ posterior distributions are
shown as diffuse blue and red bands, respectively. In panels (a) and (b), both S-wave (L = 0, J = 1

2 ) and P-wave (L = 1, J = 3
2 ) transmission

coefficient curves are shown. Panel (c) includes experimental data from Gyürky et al. [36] (scaled upward by a factor of 2.5 to agree with the
88Sr(p, γ )89Y data of [71], as indicated by Vagena et al. [72]).

KD, but both KD-type OMPs have a much slower rise in
s-wave strength with respect to energy than do the CH89-type
OMPs. At energies above 100 keV the slower s-wave rise
is offset by a correspondingly faster rise in p-wave strength
such that resulting neutron cross section predictions, which
include contributions over all incident partial waves, differ
by only 20–30%, highly consistent with the degree of un-
certainty seen for p+87Sr. Importantly, for any reactions at
energies below 100 keV involving primarily the s-wave trans-
mission coefficients, CH89 and CHUQ are expected to yield
a cross section two to three times higher than KD and KDUQ.
In such case, the OMP uncertainty should indeed dominate
the cross section, as uncertainty in the LDs and γ SFs have
minimum impact at lower energies (again shown in Fig. 1
and 2 of Vagena et al. [72]). Such OMP-driven uncertainty
could impact both weak and strong r-process network calcula-
tions. Comparison of the canonical KD OMP’s s- and p-wave
strength functions against experimental data, as shown in
Fig. 47 of Koning and Delaroche’s original analysis, suggest
that at energies below 100 keV KD-type OMPs may have a
more realistic energy dependence than the CH89-type OMPs.
A detailed study of OMPs, uncertainty at nucleosynthetic
“bottlenecks” seems a worthy followup.

VI. CONCLUSIONS

Phenomenological OMPs continue to play an important
role in nuclear reaction calculations but lack well-calibrated
UQ. Without reliable uncertainty estimates, it is difficult to
assess the relative importance of OMPs on the overall un-
certainty budget of applications dependent on reaction data.
To address this issue, we identified two main obstacles—
systematic underestimation of experimental (co)variance and
a lack of outlier rejection—and developed a generic pipeline
for performing UQ on phenomenological OMPs. We then
applied it to the widely used CH89 and KD global OMPs,
yielding two new potential ensembles, CHUQ and KDUQ,
with full covariance information between potential param-
eters. CHUQ and KDUQ perform favorably against their
training corpora, with KDUQ showing superior performance
on the Test corpus, especially for proton σrxn and neutron σtot.
Accordingly, we recommend using KDUQ over CHUQ for
nonelastic calculations and for calculations below 10 MeV
(the stated threshold of validity for CH89). In the case of pro-
ton σrxn data, KDUQ shows improved performance compared
to the canonical KD global OMP. Further, by training two
versions of KDUQ with different assumed forms of data co-
variance, we demonstrated how small changes in underlying
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covariance assumptions can impact the uncertainty of predic-
tions in data-sparse regions, as shown for high-energy proton
σrxn in Fig. 13. These results caution against naïve use of a
weighted-least-squares likelihood function when experimen-
tal data used for training are known to have underestimated
uncertainties and nontrivial covariance structure. In the case
we presented, an MCMC-based inference strategy made sense
so that we could include our unaccounted-for uncertainty
estimates as priors, but the need for a defensible likelihood
function is just as important in any approach, Bayesian or not,
involving training a model to data.

As a demonstration of their utility, we forward-propagated
CHUQ and KDUQ’s parameter covariances in two case stud-
ies. In the first, we showed that KDUQ accurately predicts
neutron σtot evolution with respect to asymmetry, auguring
well for neutron-scattering predictions beyond the valley of
β stability, at least along closed shells in Z . Because our
uncertainty-quantified model was designed to incorporate the
observed variance of its training data, a discrepancy between
our model and experimental data is not easily explained away
as arbitrariness in the model parameters. For example, in
our examination of isotopic relative differences of neutron
σtot, we saw KDUQ underpredicted the oscillations present
in the experimental relative differences for Sn and W isotopes
between 20 and 50 MeV [panels (c) and (d) of Fig. 14]. These
oscillations can be reproduced by an OMP analysis only if
the different proton and neutron density distributions of the
target are taken into account, as shown in [62]. Although
this physics is absent from the KD or CH89 pictures, it im-
plies that, provided one uses an uncertainty-quantified OMP
and fits to relative σtot differences rather than absolute cross
sections, neutron σtot data are useful for extracting neutron
skin thickness information. As new reactions are pursued at
modern radioactive beam facilities, this kind of comparison
between uncertainty-equipped data and uncertainty-equipped
models is important for calibrating our “degree of surprise” to
avoid chasing down spurious signals. Systematic comparison
against isovector data, including (p, n) cross sections and σtot

relative differences along isotopic and isotonic chains, is a
promising meeting ground for phenomenological and micro-
scopic OMPs.

Finally, we explored the impact of KDUQ and CHUQ
on representative radiative capture calculations for 87Sr and
95Mo. The capture cross sections between 1 and 5 MeV
computed using KDUQ are somewhat lower (≈20–30%) than
those using CHUQ, though with substantial uncertainty over-
lap. Given the systematic assessment of proton capture rate
uncertainty of [72], we argue that, in the few-MeV range,
the fraction of overall cross section uncertainty due to the
OMP is comparable to that in the γ -ray strength function
and level density, and at energies below 1 MeV the OMP
uncertainty may dominate. Moreover, while the partition of
strengths between s and p waves below 10 MeV are differ-
ent, particularly for neutrons, the contributions from each to
the overall cross sections were countervailing for 95Mo. If
angular momentum transfer is restricted to a single partial
wave, the differences between (and uncertainty in) OMPs can
be much larger, as shown for n+95Mo below 100 keV and
the effect on cross sections correspondingly larger. This is

another region where comparison between (semi)microscopic
and phenomenological OMPs is likely to be fruitful, both for
improving existing OMPs and for providing more stringent
reaction rates to astrophysical nucleosynthesis calculations.
To support such efforts, we enclose copies of CHUQ and
KDUQ in the Supplemental Material [37].
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APPENDIX: DEFINITION OF OPTICAL POTENTIALS
AND SCATTERING FORMULAS

Reproduced here are the definition of the Chapel Hill ’89
[19] and Koning-Delaroche [20] optical potentials, starting
from the overall potential form and ending with the definitions
for form subterms. Free parameters (those subject to Bayesian
inference via MCMC) are denoted in this section using a bold
typeface. For brevity we set h̄ = c = 1.

1. CH89 definition

The CH89 global optical potential for single-nucleon scat-
tering consists of five terms:

U (r, E ) = Vr (r, E ) − iWv (r, E ) − iWs(r, E )

− Vso(r, E )(� · σ ) + VC (r), (A1)

where

(i) Vr is the real central potential,
(ii) Wv is the imaginary central (or “volume”) potential,

(iii) Ws is the imaginary surface potential,
(iv) Vso is the real spin-orbit potential, and
(v) VC is the Coulomb potential (for protons only).

As with the Koning-Delaroche potential defined below,
each component (except Coulomb) consists of an energy-
dependent depth coupled with a radius-dependent spatial
form:

Vr (r, E ) = Vr (E ) × f (r, R0, a0),

Wv (r, E ) = Wv (E ) × f (r, Rw, aw ),

Ws(r, E ) = Ws(E ) × −4aw

d

dr
f (r, Rw, aw ),

Vso(r, E ) = 2Vso × −1

r

d

dr
f (r, Rso, aso),

VC (r) =
{

Zze2

2RC

(
3 − r2

R2
C

)
if r < RC,

Zze2

r if r � RC .
(A2)
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The spatial form f (r, R, a) is the standard Woods-Saxon po-
tential

f (r, R, a) = 1

1 + e(r−R)/a
,

d

dr
f (r, R, a) = 1

a

[ −e(r−R)/a

(1 + e(r−R)/a)2

]
. (A3)

Here R and a are radius and diffuseness parameters, respec-
tively. See Eq. (A6) below for equations defining r0 for each
component. We note that, for a natural-abundance target, the
value that should be taken for A is not explicitly discussed
in the original formulation of CH89 or KD. A simple choice
would be to use the A of the most abundant isotope, which
works well for many elements but is unsatisfying in cases
where the lightest or heaviest isotope is most abundant. For
example, in natNi the most abundant isotope is 58Ni, but the
abundance-weighted nucleon number is 58.76 (a difference
of 1.3% from 58). In this work, for natural targets we took
for A the target’s atomic weight, which for the targets we
used agrees with the abundance-weighted nucleon number to
within ≈0.1%.

The CH89 energy-dependent depths are given by

Vr (E ) = V0 + Ve�E ± αVt ,

Wv (E ) = Wv0
[
1 + e

Wve0−�E
Wvew

]−1
,

Ws(E ) = (Ws0 + αWst )
[
1 + e

�E−Wse0
Wsew

]−1
. (A4)

The nuclear asymmetry α is defined (N − Z )/A and ± should
be taken as − for neutrons and + for protons. As with the
definition of A, for natural targets a definition for α is not
given in the original potential formulation. For these targets,
we took α = (A − 2Z )/Z , consistent with our definition of
A. The energy argument �E is the difference between the
scattering energy and the volume-averaged Coulomb energy:

�E = Elab − Ec,

Ec =
{

6Ze2

5Rc
for protons,

0 for neutrons.
(A5)

Lastly, the radial form parameters Ri are defined as follows:

R0 = r0A1/3 + r(0)
0 ,

Rw = rwA1/3 + r(0)
w ,

Rso = rsoA1/3 + r(0)
so ,

RC = rcA1/3 + r(0)
c . (A6)

In total there are 22 free potential parameters: 11 associated
with the potential depths and 16 associated with the radius-
dependent spatial forms. We comment that, in the original
CH89 treatment, only 20 parameters were free, as the authors
fixed the Coulomb parameters rc and r (0)

c based on a separate
assessment.

2. Koning-Delaroche definition

Similarly to CH89, the Koning-Delaroche optical potential
for single-nucleon scattering is defined as a function of radius

r and energy E :

U (r, E ) = −VV (r, E ) − iWV (r, E ) − iWD(r, E )

+ VSO(r, E )(� · σ ) + iWSO(r, E )(� · σ ) + VC (r),
(A7)

where

(i) VV is the real central potential,
(ii) WV is the imaginary central potential,

(iii) WD is the imaginary surface potential,
(iv) VSO is the real spin-orbit potential,
(v) WSO is the imaginary spin-orbit potential, and

(vi) VC is the Coulomb potential (for protons only).

In the spin-orbit components, � is the orbital angular mo-
mentum quantum number for each partial wave associated
with the incident projectile and σ is the spin of the incident
projectile. Except Coulomb, each component consists of an
energy-dependent depth coupled with a radius-dependent spa-
tial form:

VV (r, E ) = VV (E ) × f (r, RV , aV ),

WV (r, E ) = WV (E ) × f (r, RV , aV ),

WD(r, E ) = WD(E ) × −4aD
d

dr
f (r, RD, aD),

VSO(r, E ) = VSO(E )

(
h̄

mπc

)2

× 1

r

d

dr
f (r, RSO, aSO),

WSO(r, E ) = WSO(E )

(
h̄

mπc

)2

× 1

r

d

dr
f (r, RSO, aSO),

VC (r) =
{

Zze2

2RC

(
3 − r2

R2
C

)
if r < RC,

Zze2

r if r � RC .
(A8)

The spatial form f (r, R, a) is the same Woods-Saxon defined
earlier in the CH89 case [Eq. (A3)], with R = r0A1/3. In the
spin-orbit subcomponent definitions, mπ is the charged pion
mass. In the Coulomb component definition, z is the projectile
charge, Z is the target charge, and e2 is the elementary charge
squared (≈ 1.44 MeV fm).

Depending on whether the user is modeling neutron or
proton scattering, the energy-dependent depths appearing in
Eq. (A8) are given by

VV (E ) = v
n,p
1

[
1 − v

n,p
2 �En,p

+ v
n,p
3 (�En,p)2 − v

n,p
4 (�En,p)3

]
+ V c × v

p
1

[
v

p
2 − 2v

p
3�E p + 3v

p
4 (�E )2

]
,

WV (E ) = w
n,p
1

(�E )2

(�E )2 + (
w

n,p
2

)2 ,

WD(E ) = dn,p
1

(�E )2

(�E )2 + (
dn,p

3

)2 e−dn,p
2 �E ,

VSO(E ) = v
n,p
SO1e−v

n,p
SO2�E ,

WSO(E ) = w
n,p
SO1

(�E )2

(�E )2 + (
w

n,p
SO2

)2 , (A9)
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where the superscripts n, p denote different parameters used
for neutrons and protons, respectively. The energy variable
�En,p is the difference between the incident scattering energy
in MeV in the laboratory frame and the Fermi energy for
neutrons or protons:

�En,p = E − En,p
f ,

En
f = −11.2814 + 0.02646A, (A10)

E p
f = −8.4075 + 0.01378A.

The potential depth parameters from Eq. (A9) are defined
as

v
n,p
1 = v1,0 − v1,AA ± v1,αα,

v
n,p
2 = vn,p

2,0 ± vn,p
2,A,

v
n,p
3 = vn,p

3,0 ± vn,p
3,A,

v
n,p
4 = v4,0,

w
n,p
1 = wn,p

1,0 ± wn,p
1,A,

w
n,p
2 = w2,0 + w2,AA,

dn,p
1 = d1,0 ± d1,αα,

dn,p
2 = d2,0 + d2,A

1 + e(A−d2,A3 )/d2,A2
,

dn,p
3 = d3,0,

v
n,p
SO1 = vSO1,0 + vSO1,AA,

v
n,p
SO2 = vSO2,0,

w
n,p
SO1 = wSO1,0,

w
n,p
SO2 = wSO2,0,

V C = VCZ

rCA1/3
= 6Ze2

5rCA1/3
. (A11)

In these expressions, ± should be taken as − for neutrons
and + for protons. Our definitions for A and for the nuclear
asymmetry α for natural targets are the same as used above
for CH89.

Finally, the radial form parameters entering Eqs. (A3) and
(A8) are defined

rV = rV,0 − rV,AA−1/3,

aV = aV,0 − aV,AA,

rD = rD,0 − rD,AA1/3,

aD = aD,0
n,p ± aD,A

n,p,

rSO = rSO,0 − rSO,AA−1/3,

aSO = aSO,0,

rC = rC,0 + rC,AA−2/3 + rC,A2A−5/3. (A12)

As in Eq. (A11), ± should be taken as − for neutrons and +
for protons. In total there are 46 free potential parameters: 30
associated with the energy-dependent depths and 16 associ-
ated with the radius-dependent spatial forms.

3. Scattering formulas

In this section we list the expressions we used to calcu-
late proton and neutron scattering observables. Our procedure
follows the calculable R-matrix method outlined by Descou-
vement and Baye (DB) [46], but modified (as discussed
below) to be suitable for relativistic-equivalent calculations.
The scattering observables we considered can all be calculated
from the scattering matrix for incident partial waves. The S
matrix for the incident projectile partial wave with angular
momentum l is (DB Eq. 3.24)

Sl = e2iδl = e2iφl
1 − (L∗

l − B)Rl (E , B)

1 − (Ll − B)Rl (E , B)
. (A13)

The S-matrix terms are equivalent to the partial wave phase
shifts δl . Here Ll is the logarithmic derivative of the outgoing
partial wave, evaluated at channel radius a. It can be expressed
in terms of Coulomb functions (DB Eqs. 3.28– 3.30):

Ll = ka

Fl (ka)2 + Gl (ka)2

× [Fl (ka)F ′
l (ka) + Gl (ka)G′

l (ka) + i]. (A14)

The hard-sphere phase shift, φl , is (DB Eq. 3.26)

φl = − tan−1[Fl (ka)/Gl (ka)]. (A15)

In these expressions, Fl and Gl are the regular and irreg-
ular Coulomb functions, with F ′

l and G′
l their derivatives.

(In the Coulomb function notation, we have omitted the im-
plied Sommerfeld parameter η.) Rl (E , B) are the R-matrix
elements, discussed below, and B is a dimensionless boundary
parameter associated with the Bloch operator. As shown in
Eq. 3.27 and Appendix B of DB, the scattering matrix is
unaffected by the choice of boundary parameter B, so B can
be set to 0 to simplify the S- and R-matrix calculation algebra.

To calculate the R matrix, we used the finite-basis approx-
imation (Eq. 3.15 in DB):

Rl (E , B) = 1

2μa

N∑
i, j=1

φi(a)(C−1)i jφ j (a). (A16)

Here E is the center-of-mass energy, μ is the reduced mass,
a is the channel radius, N is the number of basis states φ,
and C is the symmetric matrix containing solutions to the
inhomogenous Bloch-Schrödinger equation (Eq. 3.7 in DB),

Ci, j (E , B) = 〈φi| Tl + L(B) + V − E |φ j〉 . (A17)

To solve this equation, we employed the Lagrange-mesh
method of Baye [47] on an N = 30 Legendre-polynomial
mesh. The kinetic energy Tl and Bloch L(B) operators on this
Lagrange-Legendre mesh (which we do not reproduce here)
are given by Eqs. 3.127 and 3.129 of [47]. In our case, V is
the optical potential, with E the center-of-mass energy. Note,
however, that the energy argument of the optical potential,
e.g., E in U (r, E ) of Eq. (A7), is the projectile energy in the
laboratory frame, per the definition of CH89 and KD.

The above formulation is appropriate for the nonrelativistic
limit, but above a few tens of MeV an approximate relativistic-
equivalent version should be used, requiring modification of
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several elements in the calculation. First, the center-of-mass
energies, angles, and the relative velocity appearing in the
Sommerfeld parameter should be calculated according to rel-
ativistic kinematics. Second, in the relativistic picture the
reduced mass and center-of-mass wave number are no longer
suitable to describe the relative motion between projectile
and target, so approximations are required. We used the rel-
ativistic approximations of Eqs. 17 and 20 in Ingemarsson’s
topical study [53] that base the wave number on the relativistic
momentum in the center-of-momentum frame and treat the
center-of-momentum motion of the target as nonrelativistic.
These approximations modify the wave number and reduced
mass appearing throughout this section as

k → m1[E (E + 2m2)]1/2

[(m1 + m2)2 + 2m1E )]1/2
,

μ → k2 E ′

E ′2 − m2
2
. (A18)

Here, m1 is the target rest mass, m2 is the projectile rest
mass, E is the incident projectile energy in the laboratory
frame, and E ′ is the sum of center-of-mass energies of the
target and projectile, plus the rest mass of the projectile. These
approximations for k and μ can be inserted in the preceding
equations to yield the relativistic-approximate forms that we
actually used to perform calculations.

To generate scattering observables for spin-1/2 particles,
two S-matrix terms, corresponding to j = l ± 1/2, must be
calculated for each partial wave l > 0. From these terms the
non-spin-flip amplitude A(θ ) and spin-flip amplitude B(θ ) can
be calculated for scattering angle θ :

A(θ ) = i

2k

∞∑
l=0

e2iσl [2l + 1 − (l + 1)S+
l − lS−

l ]Pl (cos θ )

− η

2k sin2 1
2θ

e2i(σ0−ηln sin 1
2 θ ), (A19)

B(θ ) = i

2k

∞∑
l=0

e2iσl (S−
l − S+

l )P1
l (cos θ ). (A20)

Here, S+
l is the S-matrix element for j = l + 1

2 and S−
l is

the S-matrix element for j = l − 1
2 (setting S−

0 ≡ 0). Pl is
the Legendre polynomial of degree l , P1

l is the associated
Legendre polynomial of degree l and order m, and σl is the
Coulomb phase shift:

σl = arg �(l + 1 + iη), (A21)

� being the gamma function. Equations (A19) and (A20)
combine Eqs. (8) and (9) of Ingemarsson, which are for
spin-1/2 neutral particles, with the spinless, charged particle
scattering amplitudes of DB Eq. 2.23. Specifically, the final
term of Eq. (A19) that involves η is the Coulomb scattering
amplitude (DB Eq. 2.13).

Finally, from the scattering amplitudes, the differential
elastic cross section is simply

dσ (θ )

d	
= |A(θ )|2 + |B(θ )|2, (A22)

and the analyzing power is

Ay = A∗(θ )B(θ ) + A(θ )B∗(θ )
dσ (θ )

d	

, (A23)

per Eqs. (10) and (11) of Ingemarsson. The reaction (non-
elastic) and total cross sections can be computed directly from
the S matrix:

σrxn = π

k2

∞∑
l=0

(l + 1)(1 − |S+
l |2) + l (1 − |S−

l |2) (A24)

σtot = 2π

k2

∞∑
l=0

(l + 1)(1 − Re[S+
l ]) + l (1 − Re[S−

l ]). (A25)
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