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Ab initio calculation of muon capture on 24Mg
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In this work we study ordinary muon capture (OMC) on 24Mg from a first-principles perspective. Starting from
a particular two- and three-nucleon interaction derived from chiral effective field theory, we use the valence-space
in-medium similarity renormalization group (VS-IMSRG) framework to construct effective Hamiltonians and
muon-capture operators, which nonperturbatively account for many-body physics outside the valence space.
The obtained nuclear matrix elements are compared against those from the phenomenological shell model. The
impact of including the correlations from the nuclear shell model (NSM) as well as including the induced two-
body part is studied in detail. Furthermore, the effects of realistic bound-muon wave function on the operators
is studied. Finally, predictions for capture rates to the lowest excited states in 24Na are given and compared with
available data. It is found that the spectroscopic properties of 24Mg and its OMC daughter 24Na are fairly well
described by both the NSM and VS-IMSRG, and that the effect of the hadronic two-body currents significantly
reduces the OMC rates. Both models have some difficulties in matching the measured OMC rates, especially for
the 2+ final states. This calls for further studies in other light nuclei with available OMC data.
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I. INTRODUCTION

Ordinary muon capture (OMC) on nuclei is a nuclear-
weak process, in which a negative muon μ− is captured by
a nucleus (A, Z ), resulting in atomic number reduction by
one, accompanied by emission of a muon neutrino. It can
significantly extend the kinematic region of ordinary β decay,
owing to the high energy release and large momentum transfer
involved in the process. The energy release in this process
is on the order of 100 MeV, where the dominant fraction is
carried by the neutrino. The large mass of the captured muon
facilitates highly forbidden transitions and high excitation en-
ergies of the final states. These features make muon capture a
particularly promising probe for the hypothetical neutrinoless
double-β (0νββ) decay [1,2].

Both the 0νββ decay and OMC processes involve the
axial-vector and pseudoscalar coupling constants gA and
gP. In particular, the half-life of 0νββ decay is inversely
proportional to g4

A. However, for decades many theoretical
predictions for β decays have concluded that one must quench
the gA coupling in order to reproduce the measured half-lives
[3]. While the gA quenching puzzle related to β decays was
recently solved from first principles in terms of neglected
many-body correlations and two-body currents [4], the

possible need for quenching at high-momentum exchange
q ≈ 100 MeV is much less known. Since OMC operates at
this same momentum-exchange regime, comparing theoreti-
cal predictions against measured OMC rates could shed light
on this open question. Furthermore, while the free proton’s
pseudoscalar coupling is known to 1% [5], the correlation
effects of gP and corrections to the impulse approximation are
under debate. In OMC calculations based on the nuclear shell
model [6–8], it has been seen that the Goldberger-Treiman
partially conserved axial-vector-current hypothesis gP/gA ≈
6.8 is not sufficient to reproduce experimental data. On the
other hand, while the predictions for gP based on chiral per-
turbation theory [9–11] agree with the value deduced from
OMC (within large errors), they disagree with the one required
by radiative muon-capture (RMC) experiments. Hence, OMC
serves as an important probe of both these couplings.

The relevance of OMC to 0νββ decay is of interest to both
experimentalists and theorists [12]. There are several theoret-
ical predictions for the OMC rates and the involved matrix
elements based on the nuclear shell model (NSM) [1,2,6–
8,13,14], and proton-neutron quasiparticle random-phase ap-
proximation (pnQRPA) [15–18] frameworks. More recently,
there are also ab initio calculations for the muon-capture rates
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TABLE I. Forbiddeness rules for ordinary muon capture.

n Spin change |Jf − Ji| Parity change π f πi

0 0,1 +1
1 0,1,2 −1
� 2 n, n + 1 (−1)n

in very light, A � 6, nuclei based on quantum Monte Carlo
methods [19,20]. A recent pnQRPA-based study on the OMC
strength function in 100Nb [21] showed good agreement with
the experimental counterpart measured at RCNP, Osaka [22].
Also partial OMC rates to the excited states of intermediate
nuclei of several ββ-decay triplets have already been mea-
sured [23], and these studies are planned to be extended to the
remaining ββ-decay cases.

In particular, OMC on 24Mg is interesting for many
reasons. First, the sd-shell nuclei 24Mg and 24Na are rela-
tively well studied both experimentally and theoretically and
accessible to ab initio methods [24,25]. In addition, the conve-
niently long lifetime (1067 ns) of the muonic 24Mg atom [26],
the well-isolated low-lying 1+ states in the final nucleus, 24Na,
and the naturally high abundance of 24Mg (79%) all make
it an appealing experimental candidate. Partial OMC rates
to low-lying states in 24Na have been measured at TRIUMF
[27], and more recently preliminary measurements aiming to
expand the study of OMC on 24Mg have been performed at
PSI, Switzerland [28]. In this work we study OMC on 24Mg
from an ab initio perspective, utilizing realistic bound-muon
wave functions, for the first time. In particular, we use the
valence-space in-medium similarity renormalization group
(VS-IMSRG) [29–31] to consistently transform Hamiltoni-
ans and muon-capture operators. We compare the obtained
nuclear matrix elements against the results computed in the
nuclear shell-model framework with the USDB interaction.
Finally, we compare the resulting capture rates with avail-
able experimental data [27] and study the effect of hadronic
two-body currents on the computed capture rates. The present
work serves as a first-step benchmark towards calculating
capture rates relevant for all future measurements.

II. MUON-CAPTURE FORMALISM

OMC is a semileptonic weak-interaction process similar to
electron capture (EC). Here we are interested in the process

μ− + A
ZX(0+

g.s.) → νμ + A
Z−1Y(Jπ ), (1)

where a negative muon (μ−) is captured by the 0+ ground
state of the even-even nucleus A

ZX with atomic number Z and
mass number A. The process leads to the Jπ multipole states
of A

Z−1Y, the odd-odd isobar of the mother nucleus, of atomic
number Z; here J is the angular momentum and π the parity
of the final state. At the same time a muon neutrino νμ is
emitted. The forbiddeness (n) of a muon-capture transition
can be defined in the same way as for β decay (see Table I).

In the present study, we compute the corresponding muon-
capture rates using the formalism derived by Morita and Fujii
in 1960 [32]. This formalism can be translated into another
widely used muon-capture theory derived by Foldy, Donnelly,

and Walecka [33,34] by introducing multipole operators.
However, here we choose to use the Morita-Fujii formalism
in which it is straightforward to include realistic bound-muon
wave functions, and we briefly review the formalism in the
following sections.

A. Bound-muon wave functions

The wave function of a muon bound in an atomic orbit of
the mother nucleus can be expressed as an expansion in terms
of the normalized spherical spinors χκμ

ψμ(κ, μ; r) = ψ (μ)
κμ =

[−iFκχ−κμ

Gκχκμ

]
, (2)

where Gκ and Fκ are the radial wave functions of the bound
state [32]. Here κ denotes the atomic orbit in the following
manner:

l = κ and j = l − 1
2 , for κ > 0

l = −κ − 1 and j = l + 1
2 , for κ < 0. (3)

After being stopped in the outer shells of an atom, the
negative muon goes through a series of transitions to lower
atomic orbitals, leaving it finally on the lowest K atomic orbit.
Hence, the captured muon can be assumed to be initially
bound in the lowest state 1s1/2, corresponding to κ = −1 and
μ = ± 1

2 . Treating the mother nucleus as a pointlike particle,
we can approximate the wave function of the 1s1/2 atomic
orbit by the Bethe-Salpeter (BS) approximation formula [35].
Taking h̄ = c = 1 we then have

G−1 = (2Z/a0)
3
2

√
1 + γ

2	(2γ + 1)

(
2Zr

a0

)γ−1

e−Zr/a0 ,

F−1 = −
√

1 − γ

1 + γ
G−1. (4)

Here α is the fine structure constant, Z the atomic number of
the nucleus, γ =

√
1 − (αZ )2, and

a0 = 1

m′
μα

is the Bohr radius of the μ-mesonic atom. Here we have
defined the reduced muon mass as

m′
μ = mμ

1 + mμ

AM

, (5)

where M is the (average) nucleon mass, and AM is the mass of
the mother (and daughter) nucleus. For a light nucleus, as in
the present case, αZ is small and we can approximate γ ≈ 1,
leading to

G−1 = 2(αZm′
μ)

3
2 e−αZm′

μr,

F−1 = 0. (6)

The approximation is similar to the hydrogenlike Schrödinger
equation with a modified a0. This is the adopted form for the
bound-muon wave function in Ref. [32], and also our starting
point in the present study.

In order to take the finite size of the nucleus properly into
account, we construct a realistic bound-muon wave function
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FIG. 1. Large (G−1) and small (F−1) components of the bound-
muon wave functions in 24Mg. B-S refers to the BS approximation
and Dirac to the exact wave function from the Dirac equation. pl and
fs refer to pointlike nucleus and finite-size nucleus. The shaded area
corresponds to the interior of the nucleus.

by solving the Dirac wave equations [36] for the large, G−1,
and small,F−1, parts of the wave function (2) in the Coulomb
field created by the nucleus. Assuming the muon is bound in
the lowest state 1s1/2 (κ = −1), the components satisfy the
coupled differential equations

d

dr
G−1 + 1

r
G−1 = 1

h̄c
(mc2 − E + V (r))F−1,

d

dr
F−1 − 1

r
F−1 = 1

h̄c
(mc2 + E − V (r))G−1. (7)

Taking a uniform distribution of the nuclear charge within
the charge radius Rc = r0A1/3, the potential energy V (r) in
Eqs. (7) can be written:

V (r) =
⎧⎨⎩− Ze2

2Rc

[
3 − (

r
Rc

)2]
, if r � Rc

− Ze2

r , if r > Rc.
(8)

These equations (7) can then be solved by means of the
package RADIAL [37] using a piecewise-exact power-series
expansion of the radial functions, which are summed to the
prescribed accuracy. A similar method has previously been
used for bound-electron wave functions in the context of ββ

decay [38,39].
In Fig. 1 we plot the amplitudes G−1 and F−1 as solved

from the Dirac equations (solid and dashed blue lines, cor-
respondingly) and contrast them with those obtained from
the BS approximation (black line) of Eq. (6). The small part
vanishes in the BS approximation and thus does not appear
in the figure. For comparison, we have also plotted the exact
solution of the Dirac equation corresponding to pointlike nu-
cleus (solid and dashed red lines). The behavior of the Dirac
wave function corresponding to the pointlike nucleus is essen-
tially similar to the BS approximation. When the finite size of
the nucleus is taken into account, the Dirac wave function is
notably suppressed at r � 5 fm, i.e., inside the nucleus. As
illustrated in the figure, the small part of the exact solution

is negligible compared to the large part, hence we can safely
neglect it in the calculations. This is expected, since the small
part is suppressed by v/c = Zα.

B. Muon-capture matrix elements

We compute the OMC matrix elements using the formal-
ism originally developed by Morita and Fujii in Ref. [32]. The
formalism takes into account both the genuine and induced
vector and axial-vector weak nucleon currents. The formal-
ism is rather involved, and here we only present the main
ingredients needed in the calculations. Further details on the
derivations of the equations can be found in Refs. [32,40].
Here it is appropriate to note that in Ref. [41] it was found
that momentum-dependent two-body hadronic currents could
have an impact on the 0νββ-decay nuclear matrix elements
(NMEs). Owing to the similar momentum-exchange scales,
the effects of two-body currents could be expected to be
similar for OMC. The currents have already been included in
OMC calculations of light nuclei [19,20], but the effects in
heavier nuclei have yet to be explored. In the present work,
we study the effect of the two-body currents by including
approximate normal-ordered two-body corrections derived
in Ref. [42] for the axial-vector and pseudoscalar currents.
Furthermore, in Refs. [19,20] it was shown that the vector
two-body current also has an impact on the capture rates; we
will explore this in future work.

The matrix elements for a transition from an initial Ji state
to a final Jf state can be defined as∫

�Jf M f

A∑
s=1

Osτ
s
−�JiMi dr1 . . . drA

= M
[

k w u

(±
p

)]
(Ji Mi u M f − Mi|Jf M f ), (9)

where �JiMi and �Jf M f are the nuclear wave functions cor-
responding to the initial and final state. The operators Os in
(9) are defined in Table II. Here we assume that the muon
is bound on the κ = −1 orbit and that the small component
of the bound-muon wave function is negligible as clearly
demonstrated in Fig. 1. The small component is only about
0.1% of the large component at r < Rc. Neglecting the small
component simplifies the expressions of the matrix elements
considerably (see Table I of Ref. [32]).

In Table II, jw(qrs) is the spherical Bessel function of rank
w. The quantities YM

kwu are the (vector) spherical harmonics
defined as

YM
0wu(r̂) ≡ (4π )−1/2Yw,M (r̂),

YM
1wu(r̂, σ ) ≡

∑
m

(1 − m w m + M|u M )

× Yw,m+M (r̂)

√
3

4π
σ−m,

YM
1wu(r̂, p) ≡

∑
m

(1 − m w m + M|u M )

× Yw,m+M (r̂)

√
3

4π
p−m, (10)
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TABLE II. Definition of Os in Eq. (9) for different OMC nuclear matrix elements (NMEs).

NME Os

M[0 w u] jw (qrs)G−1(rs)YM f −Mi
0wu (r̂s )δwu

M[1 w u] jw (qrs )G−1(rs )YM f −Mi
1wu (r̂s, σs )

M[0 w u ±] [ jw (qrs )G−1(rs ) ∓ 1
q jw∓1(qrs ) d

drs
G−1(rs )]YM f −Mi

0wu (r̂s )δwu

M[1 w u ±] [ jw (qrs)G−1(rs) ∓ 1
q jw∓1(qrs) d

drs
G−1(rs)]YM f −Mi

1wu (r̂s, σs )

M[0 w u p] i jw (qrs )G−1(rs )YM f −Mi
0wu (r̂s )σs · psδwu

M[1 w u p] i jw (qrs )G−1(rs )YM f −Mi
1wu (r̂s, ps )

where σ is the Pauli spin vector, p is the nucleon momentum,
Yw,M (r̂) are the spherical harmonics, and r̂ is the unit coordi-
nate vector for angles in spherical coordinates.

The q in Table II is the Q value of the capture process:

q = (mμ − W0)

(
1 − mμ

2(mμ + AM )

)
, (11)

where W0 = M f − Mi + me + EX . Here M f (Mi) is the nu-
clear mass of the final (initial) nucleus, me the rest mass of an
electron, mμ the rest mass of a muon, M the average nucleon
mass, and EX the excitation energy of the final Jπ state. At
low excitation energies, W0/mμ � 1, so the operators do not
significantly depend on the excitation energy.

In NSM calculations, the matrix elements of Eq. (9) are
expressed in terms of reduced matrix elements:

Mμ = Ĵ−1
f

∑
pn

Oμ,npT u
Jf Ji,np, (12)

where indices p and n label proton and neutron orbitals,
respectively. Here T u

Jf Ji,np is the one-body transition density
(OBTD)

T u
Jf Ji,np = 1

û
〈Jf ||[c†

nc̃p]u||Ji〉,
c̃p = (−1) jp−mpcp (13)

and we adopt the shorthand notation μ = [kwu
(±

p

)
] for one-

body transition matrix elements Oμ,np, corresponding to the
operators given in Table II. We evaluate these matrix elements
in the harmonic oscillator (HO) basis.

C. Capture rates

The capture rate for a transition from a Jπ
i initial state to a

Jπ
f final state can be written as

W = 2P
2Jf + 1

2Ji + 1

(
1 − q

mμ + AM

)
q2, (14)

with

P = 1

2

∑
κu

|A + B + C + D + E + F + G|2, (15)

where the quantities A–G depend on κ and u and are defined
as

A = gVM[0 l u]S0u(κ )δlu, (16)

B = gAM[1 l u]S1u(κ ), (17)

C = −gV

M
M[1 l̄ u p]S′

1u(−κ ), (18)

D =
√

3
gVq

2M

(√
l̄ + 1

2l̄ + 3
M[0 l̄ + 1 u +]δl̄+1,u

+
√

l̄

2l̄ − 1
M[0 l̄ − 1 u −]δl̄−1,u

)
S′

1u(−κ ), (19)

E =
√

3

2

(gVq

M

)
(1 + μp − μn)S′

1u(−κ )

×(
√

l̄ + 1W (1 1 u l̄ ; 1 l̄ + 1)M[1 l̄ + 1 u +]

+
√

l̄W (1 1 u l̄ ; 1 l̄ − 1)M[1 l̄ − 1 u −]), (20)

F = −
(gA

M

)
M[0 l̄ u p]S′

0u(−κ )δl̄u, (21)

and

G =
√

1

3

q

2M
(gP − gA)S′

0u(−κ )δl̄u

×
(√

l̄ + 1

2l̄ + 1
M[1 l̄ + 1 u +]

+
√

l̄

2l̄ + 1
M[1 l̄ − 1 u −]

)
. (22)

The W (...) in Eqs. (16)–(22) are the usual Racah coefficients
and the S’s are geometric factors defined as

Sku(κ ) =
⎧⎨⎩

√
2(2 j + 1)W

(
1
2 1 j l ; 1

2 u
)
δlw , for k = 1√

2 j+1
2l+1 δlw , for k = 0

(23)

and

S′
ku(−κ ) = sgn(κ )Sku(−κ ), (24)

where sgn(κ ) is the sign of κ . The angular momenta l
and l̄ correspond to κ and −κ respectively. We use the
Goldberger-Treiman partially conserved axial-vector-current
(PCAC) value

gP/gA = 2Mq

q2 + m2
π

≈ 6.8 (25)

for the ratio of the pseudoscalar and axial-vector coupling
strengths. Note that in this formalism, the pseudoscalar
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interaction is written as (gP/2M )σ · p. For the axial-vector
coupling we use the free-nucleon value gA = 1.27. The ex-
plicit expressions for the P of Eq. (15) containing all the
next-to-leading-order terms can be found, e.g., in Ref. [40].
Note that in Ref. [32] the terms of the order 1/M2 were
omitted from the explicit expressions for P.

D. Two-body currents

We take the effect of two-body currents (2BCs) into ac-
count by replacing

gA → (1 + δa(q2))gA

and

gP →
(

1 − q2 + m2
π

q2
δP

a (q2)

)
gP,

where δa(q2) and δP
a (q2) are approximated by the normal-ordered one-body part of two-body currents with respect to a Fermi-gas

reference state with density ρ [42] as

δa(q2) = − ρ

F 2
π

[
1

3

(
c4 + 1

4M

)
[3Iσ

2 (ρ, q) − Iσ
1 (ρ, q)] − 1

3

(
c3 − 1

4M

)
Iσ
1 (ρ, q) − 1

12

(
c6 + 1

4M

)
Ic6(ρ, q) − cD

4gA�χ

]
,

(26)

δP
a (q2) = ρ

F 2
π

[
− 2(c3 − 2c1)

M2
πq2(

M2
π + q2

)2 + 1

3
(c3 + c4)IP(ρ, q) −

(
1

12

(
c6 + 1

4M

)
− 2

3

c1M2
π

M2
π + q2

)
Ic6(ρ, q)

− q2

M2
π + q2

(
c3

3

[
Iσ
1 (ρ, q) + IP(ρ, q)

] + 1

3

(
c4 + 1

4M

)[
Iσ
1 (ρ, q) + IP(ρ, q) − 3Iσ

2 (ρ, q)
]) − cD

4gA�χ

q2

M2
π + q2

]
.

(27)

We take the integrals Iσ
1 (ρ, q), Iσ

2 (ρ, q), Ic6(ρ, q), and
IP(ρ, q) from Ref. [43] and use the density range ρ =
0.09 . . . 0.11 fm−3. We use the same constants as in
Ref. [42]: Mπ = 138.04 MeV/c2, Fπ = 92.28 MeV/c2, and
�χ = 700 MeV. We follow the approach of Ref. [44] and
take the low-energy constants (LECs) c1, c2, c4, and cD to
be the same as in the 1.8/2.0 (EM) interaction that is used
in the IMSRG calculations. Note that the relativistic 1/M
corrections are absorbed in the chosen parameters in the pre-
vious NSM calculations [42], while here they are explicitly
taken into account by replacing c4 → c4 + 1/(4M ) and c6 →
c6 + 1/(4M ). We list the chosen LECs in Table III. The corre-
sponding two-body corrections are depicted in Fig. 2, where
the relevant momentum-exchange region is denoted by verti-
cal gray lines. The values of δa(q2) and δP

a (q2) for OMC to the
different final states considered in the present study are listed
in Table VIII in the Appendix. At zero-momentum transfer,
relevant for β decays, the axial-vector two-body current cor-
responds to quenching of gA by a factor ≈0.73 − 0.70.

TABLE III. Low-energy constants corresponding to the
EM1.8/2.0 interaction [45,46]. The ci coefficients have units GeV−1

while cD is dimensionless.

LEC EM1.8/2.0

c1 −0.81
c3 −3.20
c4 5.40
c6 5.01
cD 1.264

III. MANY-BODY METHODS

A. Valence-space in-medium similarity renormalization group

In this work we use the ab initio VS-IMSRG [31,47–49],
to construct a continuous (s-dependent) unitary transforma-
tion U (s), to decouple an effective valence-space Hamiltonian

FIG. 2. Two-body currents used in the present work as functions
of momentum exchange. The dashed lines denote the currents ob-
tained by ρ = 0.09 fm−3 and the dotted those obtained with ρ =
0.11 fm−3. The typical momentum exchange region of the transitions
considered in the present work is denoted by vertical gray lines.
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U (s)HU †(s) from the full Hilbert space. In the VS-IMSRG,
based on the exponential ansatz U (s) = e�(s) with the anti-
Hermitian operator �(s), one finds �(s) by solving the flow
equation [50]:

d�

ds
=

∞∑
n=1

Bn

n!
adn

�(η), adn
� = [

�, adn−1
�

]
, (28)

with ad0
� = η and �(0) = 0. The object η is known as the

generator of the flow equation, and we use the arctangent gen-
erator in this work. With the same unitary transformation, any
valence-space effective operator can be derived consistently
[51].

The actual calculation procedure is as follows. We begin
from a nuclear Hamiltonian based on chiral effective field
theory [52,53] expressed in the 13 major-shell HO space at the
frequency 16 MeV. In the current study, the employed inter-
action is the two- (NN) and three-nucleon (3N) force 1.8/2.0
(EM) [45,46], where the NN force is given at order N3LO
and the 3N force at N2LO. This interaction has been shown to
reproduce ground-state energies globally to the 132Sn region
and beyond [54–56], while generally giving too small radii
[57]. For the 3N piece, due to memory limitations, we need to
introduce an additional truncation E3max = 24 [56] defined as
the sum of the three-body HO quanta. Before solving the flow
equation (28), we optimize the single-particle orbitals through
transformation to the Hartree-Fock (HF) basis. For OMC (or
β decays), two possible HF reference states can be considered,
either from the parent or daughter nucleus. In the absence of
any approximation, the result of the many-body calculation
should be independent of the choice of the reference state, so
the reference-state sensitivity can be used as one tool to gauge
the error of the many-body approximation. Since the evolution
of the full 3N Hamiltonian in a realistic model space is chal-
lenging [58], we employ the ensemble normal-ordering [30]
technique to capture 3N forces between valence nucleons.

During the VS-IMSRG evolution, all the operators are
truncated at the two-body level, referred to as the VS-
IMSRG(2) approximation. As a consequence, the originally
one-body OMC operators have both one- and induced two-
body terms:

Oμ = e�(s)Oμe−�(s) ≈ O
(1)
μ + O

(2)
μ .

Combining the consistently evolved operators and the one-
and two-body transition density matrices, we compute the
NMEs:

Ĵ f Mμ ≈
∑

pq

O
(1)
μ,pqT u

Jf Ji,pq

+ 1

4

∑
pqrs

∑
JpqJrs

O
(2)JpqJrs

μ,pqrs T
JpqJrsu

Jf Ji,pqrs (29)

with the evolved OMC operator matrix elements O
(1)
μ,pq and

O
(2)JpqJrs

μ,pqrs , and p, q, r, and s running through all possible pro-
ton and neutron states. In addition to the OBTD T u

Jf Ji,pq, the

two-body transition density T
JpqJrsu

Jf Ji,pqrs is introduced as

T
JpqJrsu

Jf Ji,pqrs = 1

û
〈Jf ||[A†

pq,Jpq
Ãrs,Jrs ]u||Ji〉,

A†
pq,JpqMpq

= 1√
1 + δpq

[c†
pc†

q]JpqMpq , (30)

Ãpq,JpqMpq = 1√
1 + δpq

[c̃pc̃q]Jpq−Mpq .

Note that δpq indicates δnpnqδlplqδ jp jqδtz,ptz,q with the nodal
quantum number, orbital angular momentum, total angular
momentum, and label distinguishing proton and neutron, re-
spectively. The flow equations are solved with IMSRG++ code
[59], and the valence-space diagonalization and computation
of the corresponding transition densities are performed with
the KSHELL code [60].

B. Nuclear shell model

We also compare the VS-IMSRG results with those of
phenomenological NSM calculations performed using the
NUSHELLX@MSU code [61] in the sd shell with the USDB
interaction [62]. This interaction is based on a renormalized
G matrix with two-body matrix elements adjusted to exper-
imental binding and excitation energies of sd shell. Hence,
the interaction generally well reproduces the spectroscopic
properties of sd-shell nuclei. As NSM is a phenomenological
method, the fitted Hamiltonian and bare OMC operators are
inconsistent. For the NSM calculations, we use a HO basis
with frequency obtained from the Blomqvist-Molinari for-
mula [63] h̄ω = (45A−1/3–25A−2/3) MeV for evaluating the
operator matrix elements. However, the single-particle basis
is based on the USDB interaction and thereby differs from the
HO basis. Furthermore, in the NSM we are restricted to the
sd shell, and contributions to OMC from outside the valence
space are not accounted for with the bare transition operator.

IV. RESULTS AND DISCUSSION

A. Spectroscopy of 24Mg and 24Na

In order to test the validity of the chosen many-body
methods, we compare calculated nuclear observables with
experimental data, where available. In Fig. 3, we plot the
computed excitation energies in the nuclei of interest against
the experimental spectra. We only show the positive parity
states, that is, the states that can be obtained within the sd
shell. While excitation energies have a negligible direct im-
pact on the capture rate through (11), the energies are often
used as an indirect probe of the quality of the shell-model
calculations. In Fig. 3, we see that the NSM better reproduces
the experimental excitation energies, particularly in the odd-
odd system. This is expected, since the USDB interaction is
tuned to reproduce spectroscopic properties of sd-shell nuclei,
whereas the 1.8/2.0 (EM) chiral Hamiltonian used in the VS-
IMSRG is only informed by few-body data. Consequently,
the possibility of overconstraining excitation energies (at the
expense of observables such as OMC, which are not included
in the fit) means this proxy should not be given undue weight.
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FIG. 3. Excitation energies in 24Mg and 24Na. Only the positive-parity states are shown. For the cases where the levels are very close to
each other, they have been slightly shifted for better visibility.

In Table IV, we compare calculated magnetic dipole and
electric quadrupole moments with existing experimental data.
For NSM, we use the effective charges ep

eff = 1.5 and en
eff =

0.5 and the g factors gp
l = 1.0, gn

l = 0.0, geff
s (p) = 3.910, and

geff
s (n) = −2.678, while for VS-IMSRG, we use bare values.

We notice that for the magnetic dipole moments (μ), VS-
IMSRG generally does well in 24Mg, whereas for 24Na NSM
is clearly in better agreement with experiment. In particular,
for the 1+

g.s. VS-IMSRG agrees poorly with the experimental
counterpart. For electric quadrupole moments (Q), there is
little experimental data to compare, but we note both methods
underestimate the absolute value of Q(2+

1 ) in 24Mg, VS-
IMSRG more notably. We also compare the computed B(E2)
and B(M1) values with experiment in Table V. As can be
seen in the table, VS-IMSRG describes the M1 transitions
slightly better than NSM, but underestimates the E2 tran-
sition strengths. This is a well-known consequence of the
VS-IMSRG(2) approximation [64,65], and we would expect
improvement with IMSRG(3).

Lastly, in Table VI we compare calculated log f t values
for β decays of 24Na leading to excited states in 24Mg.
For NSM, we scale the involved Gamow-Teller NMEs by
the typical zero-momentum-exchange quenching 0.77 ± 0.02

[66], while for the VS-IMSRG we include the two-body cur-
rents by correcting gA(q2) by δa(0) introduced in Sec. II D.
For VS-IMSRG, the ranges shown in the table also contain
the uncertainty coming from the choice of reference state
in the calculations. The reference-state dependence is much
smaller than the uncertainty of the two-body currents. Gener-
ally, VS-IMSRG describes the measured log f t values better
than NSM. However, VS-IMSRG notably underestimates the
log f t of the transition 24Na(1+

1 ) → 24Mg(0+
1 ), likely due to

mixing of 1+ states.

B. Nuclear matrix elements for muon capture

In Fig. 4, we show the computed OMC NMEs for the
transitions to the lowest states in 24Na. We compare the NMEs
computed in the VS-IMSRG framework with those obtained
in the NSM with the USDB interaction and OMC operators
expressed in the HO basis. The q values in the operators
correspond to the experimental excitation energies. The “HF”
in the figures refers to the matrix elements calculated with
the decoupled VS-IMSRG Hamiltonian and the operators
evaluated in the Hartree-Fock basis (i.e., without consistent
IMSRG evolution). Hence, the HF results do not contain the

TABLE IV. Energies, magnetic dipole, and electric quadrupole moments of excited states in 24Mg and 24Na. Experimental values are taken
from Ref. [67].

E (MeV) μ(μN ) Q(e2fm2)

Nucleus Jπ
i expt. NSM IMSRG expt. NSM IMSRG expt. NSM IMSRG

24Mg 2+ 1.369 1.502 1.981 1.08(3) 1.008 1.033 −29(3) −19.346 −12.9
24Mg 4+ 4.123 4.372 5.327 1.7(12) 2.021 2.096 –
24Mg 2+ 4.238 4.116 4.327 1.3(4) 1.011 1.085 –
24Mg 4+ 6.010 5.882 6.347 2.1(16) 2.015 2.089 –
24Na 4+ 0.0 0.0 0.0 1.6903(8) 1.533 1.485 –
24Na 1+ 0.472 0.540 0.397 −1.931(3) −1.385 −0.344 –
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TABLE V. Experimental and calculated E2 and M1 decays of 24Mg and 24Na. Experimental values are derived from Ref. [68]. The dashes
indicate missing experimental data.

B(E2)(e2fm4) B(M1)(μ2
N )

Nucleus Ji → Jf expt. NSM IMSRG expt. NSM IMSRG

24Mg 2+
1 → 0+

gs 88 ± 4 95 48 –
24Mg 4+

1 → 2+
1 160 ± 20 125 63 –

24Mg 2+
2 → 2+

1 15 ± 2 19 14 –
24Mg 2+

2 → 0+
gs 8.0 ± 0.8 8.9 2.8 –

24Mg 3+
1 → 2+

2 240 ± 30 170 84 –
24Mg 3+

1 → 2+
1 10 ± 2 14 4 –

24Mg 0+
2 → 2+

2 37 ± 6 18 5 –
24Mg 0+

2 → 2+
1 2.6 ± 0.4 0.2 0.5 –

24Mg 2+
3 → 0+

gs 2.8 ± 0.9 0.6 0.2 –
24Na 3+

1 → 4+
gs – 0.34±0.09 0.18 0.44

24Na 2+
3 → 1+

1 5 ± 4 2 3 0.20 ± 0.03 0.005 0.27
24Na 3+

2 → 2+
1 (1+3

−1) 3 2 0.41 ± 0.09 0.52 0.07
24Na 3+

2 → 4+
gs 1.7 ± 1.0 1.6 0.4 0.09 ± 0.02 0.08 0.03

FIG. 4. Nuclear matrix elements for the transitions μ− + 24Mg(0+
g.s.) → νμ + 24Na(Jπ

i ) to a few lowest Jπ states in 24Na. The dark bars
are computed with the Dirac wave functions and the light bars with the BS approximation. Thus, the difference shows the finite-size effect.
The matrix elements of the type M[kwup], separated by the vertical dashed line, are given in fm−3/2, while the rest are in units fm−1/2. The
NMEs in (f) are multiplied by 10.
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TABLE VI. Experimental and calculated log f t values for β

decays of 24Na leading to excited states in 24Mg, respectively. Experi-
mental values are taken from Ref. [68]. The results include the typical
quenching of 0.77 ± 0.02 for the NSM and the effect of axial-vector
two-body current at |q| = 0 for the IMSRG. In the case of IMSRG,
an additional variation comes from the reference-state dependence.

log f t

Nucleus Ji → Jf expt. NSM IMSRG

24Na 1+
1 → 0+

1 5.80 5.188–5.223 4.448–4.545
24Na 4+

gs → 4+
1 6.11 5.416–5.461 5.795–5.866

24Na 4+
gs → 3+

1 6.60 5.727–5.773 6.342–6.422a

aReference-state dependence dominates the range.

two-body terms induced in the VS-IMSRG procedure. The
dark bars for each framework are computed with the bound-
muon wave function solved from the Dirac equation taking

into account the finite size of the nucleus, whereas the light
bars are computed with the BS pointlike-nucleus approxi-
mation introduced in Sec. II A. Hence, the difference shows
the effect coming from finite-size nucleus. Note that the
momentum-dependent matrix elements of the type M[kwup]
are given in units fm−3/2 here, while the rest are given in units
fm−1/2.

The finite-size effect is rather consistent for all NMEs: tak-
ing this into account decreases the absolute value by 5–10 %.
The finite-size effect is slightly larger in the NMEs of the
type [kwu+], whereas the effect is somewhat less visible for
[kwu−]. These small differences can be explained by the
derivative terms in [kwu±] (see Table II) that are not present
in the other matrix elements. Note that the finite-size effect on
the matrix elements is similar to that on the wave function at
r = 0 in Fig. 1.

The HF bars can be considered an intermediate step be-
tween the USDB and VS-IMSRG results. In most cases the
HF NMEs are closer to VS-IMSRG than USDB. This means

FIG. 5. One-body (gray bars) and two-body (black bars) components of the total VS-IMSRG NMEs (red bars) for μ− + 24Mg(0+
g.s.) →

νμ + 24Na(Jπ
i ) compared with USDB NMEs (blue bars). NMEs are computed with the exact bound-muon wave function with finite-size

nucleus. The NMEs in (f) are multiplied by 10.
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TABLE VII. Comparison between the computed capture rates with (1B C + 2BC) or without (1BC) the effect of two-body currents and the
experimental partial muon capture rates obtained from Ref. [27] (see text) to the low-lying 1+ and 2+ states in 24Na. The rates computed with
pointlike-nucleus approximation are shown in parenthesis. The uncertainties of the summed rates are obtained by summing up uncertainties of
individual capture rates.

Rate (103 1/s)

Expt. NSM IMSRG

Jπ
i Eexp (MeV) [27] 1BC 1BC + 2BC 1BC 1BC + 2BC

1+
1 0.472 21.0 ± 6.6a 4.0 (4.5) 2.9–3.1 (3.2–3.5) 22.3 (25.2) 14.3–16.0 (16.1–18.0)

1+
2 1.347 17.5 ± 2.3 32.7 (36.3) 20.2–22.8 (22.5–25.3) 7.7 (8.5) 4.5–5.2 (5.0–5.7)

Sum(1+) 38.5 ± 8.9 36.7 (40.8) 23.1–25.9 (25.7–28.8) 30.0 (33.7) 18.8–21.2 (21.1–23.7)
2+

1 0.563 17.5 ± 2.1 1.0 (1.0) 0.7–0.7 (0.7–0.8) 0.5 (0.5) 0.3–0.3 (0.3–0.4)
2+

2 1.341 3.4 ± 0.5 3.1 (3.4) 2.4–2.6 (2.7–2.8) 1.0 (1.1) 0.9–0.9 (1.0–1.0)
Sum(2+) 20.9 ± 2.6 4.1 (4.4) 3.1–3.3 (3.4–3.6) 1.5 (1.6) 1.2–1.2 (1.3–1.4)
4+

gs 0.0 – 0.003 (0.003) 0.002–0.002 (0.002–0.003) 0.002 (0.002) 0.001–0.002 (0.002–0.002)
3+

1 1.345 – 0.11 (0.13) 0.07–0.08 (0.08–0.09) 0.005 (0.006) 0.004–0.004 (0.005–0.005)

aUnidentified cascade feeding of the state is suspected.

that in most cases, transforming the OMC operators and
including the two-body terms have a relatively small effect on
the NMEs. However, particularly for transitions to 2+

1,2 states,
including the two-body term has a strong effect on the [112p]
NME: including the two-body term in VS-IMSRG changes
the sign [see Figs. 4(c), 4(d)]. In order to further study the ef-
fects coming from the IMSRG transformation and the induced
two-body part, we compare the USDB NMEs against the one-
and two-body parts and the total IMSRG matrix elements
in Fig. 5. These figures confirm the perceptions mentioned
above: the IMSRG two-body term indeed is sizable but of the
opposite sign especially in the case of the [112p] NME, as can
be seen in Figs. 5(c) and 5(d). In addition, for the transition
to 4+

g.s., shown in Fig. 5(f), we see that the two-body term
increases the value of the [134p] NME by ≈50%.

On the other hand, we note that using the VS-IMSRG
wave functions instead of those of the NSM has a strong
effect on the NMEs. This can be seen if we compare the
USDB bars with the HF or VS-IMSRG. This stems from
the fact that in the VS-IMSRG calculations, the operators
and excitations are derived consistently with the same unitary
transformation, while in the NSM calculations, the excitations
outside the valence space are implicitly accounted for by the
effective interaction but the operator is not adjusted corre-
spondingly. In order to distinguish effects coming from the
different wave functions versus transforming the operator, we
show the one-body parts of the NMEs obtained with different
OBTD/operator combinations: we use either the USDB or
the IMSRG OBTDs together with either the HO operator or
the IMSRG-transformed operator. The results are given in
Tables IX–XIV in the Appendix. In most cases, the trans-
formed operator does not significantly change the NME, while
the OBTD has a more pronounced effect: in many cases the
NMEs obtained with different OBTDs are opposite in sign.
Interestingly, the effect of the VS-IMSRG on the matrix ele-
ment [101] (and [101−], which differs from [101] only by the
small derivative term) is the opposite for the states 1+

1 and 1+
2 :

where the VS-IMSRG result is larger than the USDB one for
the first 1+ state, the situation is the opposite for the second
1+ state, likely due to mixing of the two states.

The reference-state dependence in the case of muon-
capture NMEs is � 2%. The results presented in the tables
and figures are obtained with the 24Na reference state. Here we
only show the results for the interaction EM1.8/2.0. In order
to study the interaction dependence of the VS-IMSRG com-
puted muon-capture rates, we compare the rates obtained with
different chiral interactions: �N2LOGO(394) [69], N2LOsat

[70], NN(N3LO) [71] + 3N(N2LO, lnl) [72], and NN(N4LO)
[73] + 3N(N2LO, lnl) [4], against the experimental rates in
Fig. 6. It can be seen that none of the employed interactions
is sufficient to reproduce the measured capture rates to all
the studied excited states in 24Na: where EM1.8/2.0 does a
better job for the first 1+ state, it underestimates the rate to
the second 1+ state while the other interactions give better
estimates for it. On the other hand, none of the interactions
is capable of describing the capture rates to the 2+ excited
states. We find that the interaction dependence (≈5%) is larger
than many-body calculation uncertainty, and therefore the
interaction sensitivity needs to be assessed for an improved
understanding.

C. Capture rates

In Table VII, we give the capture rates to the lowest states
in 24Na obtained from the calculated NMEs. For each state we
give the capture rates obtained from the NSM and VS-IMSRG
calculations with and without two-body currents, compared
against experimental data. The capture rates obtained with the
BS pointlike-nucleus approximation are shown in parenthe-
ses, while the rest of the rates are obtained with the realistic
bound-muon wave functions.

Comparing the obtained capture rates in columns 4–7 of
Table VII we see that the OMC rates for the VS-IMSRG
and the NSM show an overall consistent pattern for all states
except the 1+ states, which seem to be interchanged between
the two calculations. The only notable difference in the mag-
nitudes of the OMC rates, excluding the 1+ states, concerns
the OMC to the 3+

1 state, with a factor of 20 difference.
Concerning the 1+ states, the behavior of the matrix elements
[101] and [101−] is reflected in the capture rates: VS-IMSRG
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FIG. 6. Capture rates to the different Jπ
f states in 24Na obtained with different interactions compared with the experimental value. The

lighter bands include the effect of 2BCs.

predicts a notably larger rate to 1+
1 and a smaller rate to 1+

2
compared to the NSM. This is reasonable since the [101] and
[101−] NMEs are dominant for these transitions.

The finite-size effect of the NMEs is shown to be rather
constant, reducing the capture rates by 10–20 %, in keeping
with the finite-size effect of the NMEs. The effect is smaller
than the scaling factor (Zeff/Z )4 = (10.69/12)4 ≈ 0.63 (for
24Mg) [26] used in the previous studies to account for the
finite-size effect. Note that the bound-muon wave function of
the present study corresponds to Zeff = 10.96, which would
give a larger scaling factor of 0.70. The difference in the ef-
fective atomic numbers is partly explained by different charge
radii: Zeff of Ref. [26] assumes Rc = 1.69A1/3 fm instead
of Rc = 1.2A1/3 fm. The hadronic two-body currents, on the
other hand, reduce the capture rates by 20–30 %. The reduc-

tion is mainly due to the axial-vector two-body current, but
partially balanced by the nonzero effect of the pseudoscalar
two-body current at finite-momentum transfer.

Finally, we compare the computed capture rates to the 1+
and 2+ states with the partial muon capture rates reported
in Ref. [27]. They measured the direct (produced by muon
capture on the ground state of 24Mg) and indirect (produced
by muon capture on an excited state of 24Mg) γ -ray yields
to a few low-lying states in 24Na. The partial muon-capture
rates can be obtained by multiplying the direct-state yields by
the appropriate total muon-capture rates [26]. The obtained
values, together with the capture rates obtained in the present
work, are tabulated in Table VII. It should be noted, however,
that obtaining the direct-state yields requires knowledge of
cascade feeding, and only a small fraction of the γ rays
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could be identified in Ref. [27]. Therefore all values could be
slightly reduced following the discovery of more transitions.
As for the 1+

1 state, the authors suspected that the cascade
feeding was unidentified.

We note that while the capture rates to the lowest two 1+
states in Table VII seem to be interchanged in the NSM and
VS-IMSRG, the summed rates to these two states agree within
20%. Clearly both of the estimates are notably smaller than the
experimental counterpart, which could be explained by poten-
tially unidentified γ rays. For the 2+ states the differences
are more prominent: the NSM- and VS-IMSRG-calculated
summed rates disagree almost by a factor of three, while
the experimental value is an order of magnitude larger than
the computed values. Most of the difference appears to be
coming from the capture rates to the 2+

1 state, where the theory
predictions are ≈20–40 times smaller than the measured rate.
The reason for these discrepancies is largely explained by the
strong interaction dependence of the rates and will likely be
illuminated by upcoming experiments.

V. SUMMARY AND OUTLOOK

In this work, we study OMC on 24Mg generating tran-
sitions to the lowest excited states in 24Na using the NSM
and VS-IMSRG. The study of the spectroscopic properties
of both nuclei reveals that most of the available spectro-
scopic data are reasonably well described by both nuclear
models. Encouraged by this, we proceed to compute the
OMC rates by calculating the OMC NMEs based on Morita-
Fujii muon-capture formalism and apply the VS-IMSRG
ab initio framework to obtain consistent valence-space Hamil-
tonians and OMC operators. In addition, we use realistic
bound-muon wave functions obtained from solving the Dirac
equations where the finite size of the nucleus is taken into
account. Finally, we calculate the capture rates to the lowest
states in 24Na with the obtained matrix elements and compare
them against existing experimental data.

Comparing the VS-IMSRG results with those of the NSM,
we see that explicitly including excitations outside the valence
space in the form of the OBTDs generally has strong impact
on the NMEs, while the effect coming from consistent trans-
formation of the OMC operators is less significant, with a few
exceptions. While we anticipate including IMSRG(3) level
corrections to the operators would have a minor influence
on the NMEs, such corrections to the effective valence-space
Hamiltonian could be important. The VS-IMSRG-computed
capture rates are generally smaller than the rates computed
in NSM, but the rates to the first and second 1+ states seem
to be interchanged, which is partly explained by the mixing
of these two states. Comparing with experimental data, we
notice that the obtained capture rates are generally smaller
than the experimental rates; while the agreement is reasonable
for the total transition rate to the 1+ states, both the NSM
and VS-IMSRG underestimate the total rate to the 2+ states.
The discrepancy could be partly explained by uncertainties in
the experimental data, but future measurements will help shed
light on this.

The present work serves as the first step towards a sys-
tematic ab initio treatment of OMC on nuclei. The present

results, compared with the available OMC data leave room for
improvement and it remains as a future task to study further
theoretical refinements such as including the small component
of the bound-muon wave function and some higher-order
corrections to IMSRG, which would hopefully improve the
description of muon capture on nuclei. We are currently
extending these studies to all nuclei relevant for upcoming
experiments in order to investigate whether similar difficul-
ties in predicting the OMC rates in both nuclear models
appear and in order to test further refinements of the OMC
calculations. The ultimate goal is to compare the obtained
partial capture rates with experimental data to shed light on
effective values of the couplings gA and gP at momentum
exchange q ≈ 100 MeV. This momentum regime is highly
relevant for 0νββ decay and thus OMC calculations may help
constrain uncertainties related to emerging ab initio predic-
tions of 0νββ decay [74–76].
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APPENDIX

In Table VIII, we list the values of the two-body corrections
obtained using the LECs corresponding to the EM1.8/2.0
interaction for each of the transitions considered in the present
work.

To evaluate the relative importance of the different
(NSM/VS-IMSRG) nuclear wave functions and operators
(HO/VS-IMSRG evolved), we show the NMEs obtained

TABLE VIII. The values of δa(q2) and δP
a (q2) obtained with the

LECs listed in Table III for the NSM and IMSRG calculations.

Final state q(MeV) δa(q2) δP
a (q2)

24Na(4+
gs ) 99.357 −0.271 · · · − 0.211 0.144 . . . 0.178

24Na(1+
1 ) 98.886 −0.270 · · · − 0.211 0.143 . . . 0.177

24Na(2+
1 ) 98.759 −0.270 · · · − 0.211 0.143 . . . 0.177

24Na(2+
2 ) 98.019 −0.270 · · · − 0.211 0.142 . . . 0.175

24Na(3+
1 ) 98.015 −0.270 · · · − 0.211 0.142 . . . 0.175

24Na(1+
2 ) 98.013 −0.270 · · · − 0.211 0.142 . . . 0.175
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TABLE IX. The NMEs for the transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(1+

1 ) obtained with different (OBTD, operator) combinations.

OBTD operator [101] [121] [101-] [121+] [111p] [011p]

USDB HO 3.11 × 10−4 6.32 × 10−5 3.01 × 10−4 7.58 × 10−5 3.79 × 10−4 −1.98 × 10−4

USDB IMSRG 3.32 × 10−4 6.34 × 10−5 3.21 × 10−4 7.54 × 10−5 3.18 × 10−4 −1.82 × 10−4

IMSRG HO 7.68 × 10−4 4.51 × 10−6 7.41 × 10−4 5.75 × 10−6 2.88 × 10−4 −3.82 × 10−4

IMSRG IMSRG 6.54 × 10−4 −8.92 × 10−6 6.25 × 10−4 −8.96 × 10−6 2.46 × 10−4 −3.22 × 10−4

TABLE X. The same as in Table IX but for transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(1+

2 ).

OBTD operator [101] [121] [101-] [121+] [111p] [011p]

USDB HO 8.69 × 10−4 −5.18 × 10−5 8.38 × 10−4 −6.16 × 10−5 1.22 × 10−4 −2.61 × 10−4

USDB IMSRG 7.08 × 10−4 −7.96 × 10−5 6.76 × 10−4 −9.18 × 10−5 1.12 × 10−4 −1.94 × 10−4

IMSRG HO 4.98 × 10−4 −8.63 × 10−5 4.79 × 10−4 −1.03 × 10−4 −1.22 × 10−4 −1.40 × 10−4

IMSRG IMSRG 3.61 × 10−4 −1.11 × 10−4 3.42 × 10−4 −1.29 × 10−4 −9.63 × 10−5 −8.72 × 10−5

TABLE XI. The same as in Table IX but for transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(2+

1 ).

OBTD operator [022] [122] [022+] [022-] [122+] [122-] [112p] [132p]

USDB HO −3.41 × 10−5 6.65 × 10−5 −4.11 × 10−5 −3.36 × 10−5 7.95 × 10−5 6.53 × 10−5 −6.46 × 10−6 −1.45 × 10−5

USDB IMSRG −3.11 × 10−5 7.42 × 10−5 −3.69 × 10−5 −3.04 × 10−5 8.62 × 10−5 7.23 × 10−5 −2.12 × 10−5 −1.27 × 10−5

IMSRG HO −5.35 × 10−6 7.95 × 10−5 −6.83 × 10−6 −5.36 × 10−6 9.48 × 10−5 7.80 × 10−5 1.84 × 10−6 −4.27 × 10−6

IMSRG IMSRG −4.69 × 10−6 9.17 × 10−5 −5.81 × 10−6 −4.65 × 10−6 1.06 × 10−4 8.92 × 10−5 −1.46 × 10−5 −3.16 × 10−6

TABLE XII. The same as in Table IX but for transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(2+

2 ).

OBTD operator [022] [122] [022+] [022-] [122+] [122-] [112p] [132p]

USDB HO 8.35 × 10−5 9.82 × 10−5 1.00 × 10−4 8.20 × 10−5 1.17 × 10−4 9.64 × 10−5 2.58 × 10−5 2.83 × 10−5

USDB IMSRG 7.55 × 10−5 1.08 × 10−4 8.93 × 10−5 7.38 × 10−5 1.26 × 10−4 1.05 × 10−4 1.32 × 10−5 2.70 × 10−5

IMSRG HO 8.31 × 10−5 6.82 × 10−5 9.97 × 10−5 8.16 × 10−5 8.16 × 10−5 6.70 × 10−5 2.26 × 10−5 3.03 × 10−5

IMSRG IMSRG 8.01 × 10−5 7.16 × 10−5 9.43 × 10−5 7.82 × 10−5 8.37 × 10−5 6.98 × 10−5 2.07 × 10−5 3.04 × 10−5

TABLE XIII. The same as in Table IX but for transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(3+

1 ).

OBTD operator [123] [143] [123-] [143+] [133p] [033p]

USDB HO −2.32 × 10−5 −5.99 × 10−7 −2.32 × 10−5 −8.17 × 10−7 −1.32 × 10−5 1.47 × 10−6

USDB IMSRG −4.93 × 10−6 −5.24 × 10−7 −4.65 × 10−6 −7.46 × 10−7 −1.24 × 10−5 −1.60 × 10−7

IMSRG HO −7.61 × 10−6 −7.59 × 10−7 −7.69 × 10−6 −1.03 × 10−6 −1.30 × 10−5 4.80 × 10−6

IMSRG IMSRG 4.27 × 10−6 −6.28 × 10−7 3.48 × 10−6 −8.70 × 10−7 −1.24 × 10−5 4.80 × 10−6

TABLE XIV. The same as in Table IX but for transition μ− + 24Mg(0+
g.s.) → νμ + 24Na(4+

g.s.).

OBTD operator [044] [144] [044+] [044-] [144+] [144-] [134p] [154p]

USDB HO −1.24 × 10−6 −1.90 × 10−6 −1.68 × 10−6 −1.23 × 10−6 −2.57 × 10−6 −1.88 × 10−6 −4.89 × 10−7 −3.99 × 10−7

USDB IMSRG −8.93 × 10−7 −3.14 × 10−6 −1.22 × 10−6 −8.83 × 10−7 −4.07 × 10−6 −3.08 × 10−6 6.48 × 10−7 −3.54 × 10−7

IMSRG HO −1.38 × 10−6 −1.96 × 10−6 −1.87 × 10−6 −1.37 × 10−6 −2.65 × 10−6 −1.93 × 10−6 −5.44 × 10−7 −4.44 × 10−7

IMSRG IMSRG −1.14 × 10−6 −3.23 × 10−6 −1.54 × 10−6 −1.12 × 10−6 −4.19 × 10−6 −3.18 × 10−6 5.70 × 10−7 −4.32 × 10−7
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with different (OBTD, operator) combinations in Tables IX–
XIV. The HO operators are obtained with h̄ω = 16 MeV,
the same value that was used in the VS-IMSRG evolution.
Hence, the (USDB, HO) combinations do not exactly cor-

respond to the USDB NMEs shown in Fig. 4 and 5, where
the Blomqwist-Molinari formula was used. The (IMSRG,
IMSRG) combinations in the tables correspond to the VS-
IMSRG(1b) NMEs shown in Fig. 5.
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