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Toward observation of three-nucleon short-range correlations in high-Q2 A(e, e′)X reactions
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We present a detailed study of the kinematical and dynamical conditions necessary for probing highly
elusive three-nucleon short-range correlations (3N-SRCs) in nuclei through inclusive electron scattering. The
kinematic requirements that should be satisfied in order to isolate 3N-SRCs in inclusive processes are derived.
We demonstrate that a sequence of two short-range NN interactions is the main mechanism for 3N-SRCs in such
processes. With this mechanism we predict a quadratic dependence of the cross section ratios of nuclei to 3He
in the 3N-SRC region to the same ratio measured in the 2N-SRC domain. An extended analysis of the available
data which satisfies the required 3N-SRC kinematical conditions is presented. This analysis reveals tantalizing
signatures of the scaling associated with the onset of 3N-SRC dominance. The same data are also consistent with
the prediction of the quadratic relation between the ratios measured in the 3N- and 2N-SRC regions for nuclei
ranging 4 � A � 197. This agreement made it possible to extract a3(A), the probability of 3N-SRCs relative to
the A = 3 nucleus. We find a3(A) to be significantly larger in magnitude than the analogous parameter, a2(A),
for 2N-SRCs.
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I. INTRODUCTION

For the last several decades there have been intensive
studies of two-nucleon short-range correlations (2N-SRCs) in
nuclei using both electron [1–7] and proton [8,9] probes in
high momentum transfer reactions. Inclusive electron scatter-
ing experiments [2,3,6], in which only the scattered electron is
detected, established the existence of the scaling properties as-
sociated with 2N-SRCs, confirming the observation [1] based
on the analysis of SLAC data [10–15]. From these experi-
ments a2(A, Z ), describing the probability of finding 2N-SRC
in a given nucleus relative to the deuteron, was extracted.
The analysis of A(p, 2p)X data yielded similar estimates for
a2(A, Z ) for proton induced reactions [16]. Moreover, the
strength of 2N-SRCs found in these analyses agreed with
the one obtained from fast backward nucleon production in
high energy inclusive p(γ )-A scattering [17]. The consistency
among these measurements of the 2N-SRC strength with dif-
ferent probes supports the conjecture that a genuine property
of the nuclear ground state wave function has been probed.

The extension of 2N-SRC studies to semi-inclusive pro-
cesses in which, in addition to the scattered probe, the struck
nucleons [4,5] or both struck and recoil nucleons from 2N-
SRCs [8,9] have been detected, discovered the strong (a factor
of 20) dominance [5,18] of pn SRCs as compared to pp
and nn SRCs in the probed internal momentum range of
300–650 MeV/c. The pn excess is understood [19,20] when
considering the dominance of the tensor interaction at in-
ternucleon distances of 0.8–1.2 fm and which supports the

commanding role of 2N-SRCs in the high momentum com-
ponent of the nuclear wave function. Based on the pn-SRC
dominance it was predicted that the minority component in
asymmetric nuclei should have larger kinetic energy [21],
which was confirmed experimentally [22–24].

The experimental focus on 2N-SRCs stimulated extensive
theoretical efforts (see, e.g., Refs. [17,25–29]) to calculate
the multitude of nuclear quantities entering into the cross
sections of inclusive and semi-inclusive electron nuclear scat-
tering. Such quantities are the nuclear spectral and decay
functions which are based on the 2N-SRC model of the high
momentum component of the nuclear ground state wave func-
tion.

A question which naturally arises is, what is the structure
of the nuclear wave function at even larger internal momenta
of the bound nucleons (>650 MeV/c)? One of the important
issues in this regard is the possible formation of 3N-SRCs.
Understanding the strength and dynamics of 3N-SRCs is
essential to advance our knowledge of superdense nuclear
matter. In most realistic models of the nuclear equation of
state 3N-SRCs play an increasingly important role above the
saturation densities (see, e.g., Ref. [30]). The 3N-SRCs can
be formed both by nuclear forces that can be reduced to a
sequence of two short-range elastic NN interactions and by
irreducible 3N forces that contain inelastic transitions in the
intermediate state.

Experimental evidence for 3N-SRCs is very limited. One
of the main obstacles in isolating and probing 3N-SRCs
is that they have a much reduced probability compared to
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2N-SRCs. Analysis of Lippmann-Schwinger type equa-
tions for nuclear bound states [31,32], strongly suggests that
2N-SRCs dominate the momentum distribution for momenta
larger than those characteristic of 2N-SRCs. Thus the study
of 3N-SRCs requires the consideration of variables other than
just the momentum of the bound nucleon. One such parameter
is α [17], the light-cone (LC) momentum fraction of the nu-
cleus carried by the bound nucleon. In collider kinematics α

is equal to the ratio of the nucleon longitudinal momentum
to the nucleus momentum, scaled by A, such that, in the
case of equal partition of the nuclear momentum, α = 1. The
condition that α > 2 requires at least three nucleons to be in
close proximity in order for a single nucleon to carry more
than two nucleons’ momentum fraction. An early analysis
of few nucleon SRCs [17] in the backward production of
protons with momenta 0.3 < p < 1.5 GeV/c indicated that
the scattering off 3N-SRCs begins to dominate the 2N-SRC
contribution starting at α � 1.6, which we consider as a kine-
matic threshold for isolating 3N-SRCs.

In inclusive A(e, e′)X reactions it is expected that the dom-
inance of 3N-SRCs will be revealed by the onset of another
plateau in the ratios of per-nucleon cross sections of heavy to
light nuclei at x > 2. However, observation of such a plateau
has been elusive. One of the first attempts to isolate 3N-SRC
at Bjorken x > 2 observed a possible plateau [3], though
subsequent measurements of the ratio 3σ4He

4σ3He
did not make that

claim [6]. The most recent measurement [33] of the inclusive
cross section ratios of 4He to 3He at x > 2 and 1.5 < Q2 <

1.9 GeV2 are largely in agreement with Ref. [6] in that no
plateau was observed. This situation corroborated the sug-
gestion [34] that poor momentum resolution for the scattered
electrons in the experiment of Ref. [3] allowed events to
migrate from smaller to larger x bins and was responsible for
the appearance of the plateau at x > 2.

In the recent work [35] we reported the partial analysis of
inclusive A(e, e′)X data utilizing the above discussed kine-
matic variable α for (�1.6) region. We demonstrated that the
data in this domain show a tantalizing signature for another
layer of scaling for the ratio of per-nucleon inclusive cross
sections 3σ (4He)

4σ (3He) . The analysis of other nuclei indicated also
an agreement with the theoretical prediction of a quadratic
proportionality of a3(A) to the ratio of a2(A)

a2(A=3) measured in
the 2N SRC domain.

In the current paper we present a detailed theoretical anal-
ysis of inclusive scattering at α > 1 kinematics and provide
a theoretical foundation for the observation of a new layer
of nuclear scaling at α > α0

3N as well as the expectation of
a quadratic proportionality between the probabilities of 2N-
and 3N-SRCs. We also present a more complete analysis of
the experimental data of Ref. [6,36] using varied approaches
to treat the poor quality of the cross section at large x, expected
to be dominated by 3N-SRCs.

In Sec. II we elaborate on the kinematics of 3N-SRCs
using the variable α that characterizes the light-cone momen-
tum fraction of the nucleus carried by the bound nucleon.
By analyzing the decay function of the 3He nucleus we
identify the dominant mechanism forming 3N-SRCs in inclu-
sive eA scattering and, within this picture, calculate the LC

momentum fraction, α3N , corresponding to scattering from
a nucleon in 3N-SRC. This variable allows us to identify
the optimal kinematics for probing 3N-SRCs in inclusive
scattering. Section III discusses the dynamical origin of 3N-
SRCs. Based on the model in which 3N-SRCs are generated
through the two successive pn short-range interactions it is
predicted that the light-cone nuclear density matrix which
enters in the A(e, e′)X cross section is proportional to the
convolution of two pn-SRC density functions. In Sec. IV final
state interactions in inclusive processes are considered as a
potential source masquerading or destroying 3N-SRCs. Here
we employ the important property of high energy small angle
scattering where the quantity α is approximately conserved
in rescattering processes. An experimental observable of 3N-
SRCs in A(e, e′)X reactions is presented in Sec. V, where we
also derive the quadratic relation between the ratios of inclu-
sive cross sections measured in the 3N- and 2N-SRC regions.
Section VI presents the analysis of the existing inclusive data
in light of the theoretical considerations presented in the pre-
vious sections. In Sec. VII we summarize our results and give
an outlook on the perspective of unambiguous verification of
3N SRCs.

II. DEFINITION OF 2N- AND 3N-SRCs

In a nonrelativistic formulation we define a nucleon to
be in a 2N-SRC pair if its momentum exceeds the charac-
teristic nuclear Fermi momentum (kF ≈ 250 MeV/c) and is
almost completely balanced by the momentum of the corre-
lated nucleon in the pair. In the light-cone representation the
requirement is that LC momentum fractions of the correlated
nucleons α1 and α2 satisfy the conditions αi � 1.3 or αi � 0.7
for i = 1, 2 and α1 + α2 ≈ 2. There are also 2N-SRCs with
αi ≈ 1 and p⊥ > 0.3 GeV/c; however, they are not important
for inclusive scattering at x > 1.

For the nucleon in a 3N-SRC we assume again that its
momentum significantly exceeds kF , but in this case this mo-
mentum is balanced by two correlated nucleons each with
momenta exceeding kF . As in the case of 2N-SRCs the center-
of-mass momentum of the 3N-SRC is small, pcm � kF . The
description of 3N-SRCs in the LF representation corresponds
to the situation in which αi � 1.3 or αi � 0.7 for i = 1, 2, 3
and α1 + α2 + α3 ≈ 3. Similarly to 2N-SRC case, some 3N
correlations may correspond to the kinematics in which αi ≈
1 with nucleons having very large transverse momenta. We do
not discuss here such correlations since they contribute very
little to A(e, e′)X reactions at x > 1.

The complete nuclear wave function should incorporate
components related to 2N- and 3N-SRCs. However, the first-
principles calculation of a wave function containing these
components is currently impossible due to a poor under-
standing of strong interaction dynamics at short internucleon
distances. Relativistic effects that become increasingly im-
portant at large momenta of nucleons involved in short-range
correlations are also an impediment.

In this respect the progress can be achieved by experi-
mental studies of 3N-SRCs, which are currently becoming
more accessible with the 12 GeV energy upgrade of Jefferson
Lab. One way of addressing the problem of experimentally
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isolating 3N-SRCs, is a proper identification of the ex-
perimentally determined variables that can unambiguously
discriminate 3N- from 2N-SRCs. As was mentioned in the
Introduction, the relevant variable is the light-cone momen-
tum fraction of the nucleus carried by the interacting bound
nucleon, α, first suggested in Refs. [17,37]. The α variable, in
the reference frame in which the nucleus has a large momen-
tum in the −z direction, is defined as1

α = A
EN − kN,z

EA − kA,z
, (1)

where (EA, kA,z) and (EN , kN,z) are the energy and longitudinal
momentum of the nucleus and bound nucleon respectively in
the noncovariant LF nuclear wave function.

It was first suggested in Ref. [17] that, due to the short-
range nature of nuclear forces, when

j − 1 < α < j, (2)

where j > 2, the scattering from j-nucleon SRC from the
nucleus will be ensured. However, the fact that the probability
of a j-nucleon SRC in finite nuclei is ≈ ( rNN

rAV
)
3( j−1)

with a
correlation length rNN � rAV , where rAV is the average inter-
nucleon distance, suggests that the transition from j to the
j + 1 SRC should occur at somewhat smaller α � j [17]. The
latter inequality means that 3N-SRCs begin to dominate at
α � 2.

A. 2N SRCs

In 1993, guided by Eq. (2), we studied the possibility of
exposing 2N-SRCs in high Q2 inclusive A(e, e′)X reactions
[1] by identifying the relevant light-cone momentum fraction
α2N for inclusive processes as

α2N = 2 − q− + 2mN

2mN

⎛
⎜⎝1 +

√
W 2

2N − 4m2
N

W2N

⎞
⎟⎠, (3)

where q− = q0 − |q| and W 2
2N = (q + 2mN )2 = −Q2 +

4q0mN + 4m2
N , with mN the nucleon mass, q0 and

q representing energy and momentum transfer, and
Q2 = q2 − q2

0. Eq. (3) explicitly takes into account the
recoil energy and momentum carried by the spectator nucleon
in the 2N-SRC and ensures that solutions for α2N exist
only for x � 2, where x = Q2

2mN q0
is the Bjorken variable.

Additionally, in the limit of large Q2, α2N ≈ x, and the
variable x can replace α2N for identification of 2N-SRCs in
the large Q2 limit.

One of the important advantages of the LF treatment is that
the inclusive scattering cross section can be factorized into the
electron-bound nucleon scattering cross section, σeN , and light
cone density matrix, ρA(α2N ), in the following form [17,38]:

σeA ≈
∑

N

σeNρA(α2N ). (4)

1This variable has a equivalence with Bjorken xB j that describes the
light-cone momentum fraction of the nucleon carried by a parton.

p
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FIG. 1. Types of three nucleon SRCs. (a) In type 3N-I SRC the
fast probed nucleon is balanced by two recoil nucleons with momenta
≈ pm/2. (b) In type 3N-II SRC all tree nucleons have equal momenta
with relative angles ≈120◦.

Note that within a nonrelativistic framework no such simple
factorization exists and the inclusive cross section is expressed
through an integral over p⊥

m and Em of the convolution of σeN

and the nuclear spectral function, SA(pm, Em), where pm and
Em are the missing momentum and energy in the reaction
(see, e.g., Refs. [38,39]). The theoretical justification for the
factorization in Eq. (4) in the high Q2 limit, is based on the
validity of the closure approximation over the “plus” compo-
nent, p+, of the four-momentum of the bound nucleon in LF
the formalism (see, e.g., Ref. [38]). The p+ component in the
LF formalism is analogous to the missing energy Em and in
the calculation of σeN it is estimated at the average point, cor-
responding to the 2N-SRC at rest, p+ ≈ 2mN − mN

2−α2N
. Based

on Eqs. (4) and (2) we predicted [1] that, due to the dominance
of 2N-SRC dynamics, the per-nucleon ratios of inclusive cross
sections of nuclei and the deuteron,

a2(A, Z ) = 2σeA(α2N , Q2)

Aσed (α2N , Q2)
, (5)

should scale with α2N for 1.3 < α2N < 2 and Q2 > 1.5 GeV2,
with the parameter a2(A, Z ) representing the probability of
finding a 2N-SRC in nucleus A relative to the deuteron. Here,
the lower limit of α2N corresponds to the scattering off a bound
nucleon with average momentum of p � 0.3 GeV/c.

The analysis of the available data [1] at that time from large
Q2 inclusive experiments at SLAC was in agreement with
the prediction of the scaling in Eq. (5). Subsequent dedicated
experiments [2,3,6] at JLab confirmed this prediction and
obtained similar estimates for the scaling parameter a2(A, Z )
for the wide range of atomic nuclei A (see, e.g., Fig. 10 and
the related discussion in Sec. VI.).

B. 3N-SRCs

For 2N-SRCs we considered the only possible config-
uration in which two fast nucleons are correlated back to
back with a small center-of-mass momentum. For 3N-SRCs,
however, there are more configurations in which three fast
nucleons have small center-of-mass momentum. Two extreme
cases of possible 3N-SRC configurations are presented in
Fig. 1. The first, Fig. 1(a), referred as type 3N-I SRC, cor-
responds to the situation in which the probed fast nucleon is
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FIG. 2. Decay function for the 3He nucleus calculated with the
condition pm � 700 MeV/c, and pr2, pr3 � kF . The θ23 is the rel-
ative angle between two recoil nucleons and Em is the missing
energy. The two panels show different points of view of the same
figure. The figure is adapted from Ref. [19].

balanced by two fast spectator nucleons pr2, pr3 ∼ pm/2 with
a small relative angle between them, thus a small invariant
mass mS ∼ 2mN . The second case, Fig. 1(b), corresponds
to the symmetric situation in which all three nucleons have
comparable momenta with relative angles θ23 ≈ 120◦.

To determine which of these 3N-SRC configurations will
dominate in inclusive A(e, e′)X scattering it is instructive to
consider the decay function for a three-body nucleus at large
values of missing and recoil momenta, noticing that it is the
integrated decay function which enters in the cross section of
inclusive scattering. The decay function has been calculated in
Refs. [19,40] for 3He using a realistic wave function based on
the solution of Faddeev equations [41] and one of the results
relevant for 3N-SRCs is presented in Fig. 2. In the figure a
correlation between the relative angle of two recoil nucleons,
θ23, and missing energy Em is presented for pm � 700 MeV/c
and pr2, pr3 > kF . As the figure shows, the type 3N-I SRC
provides the dominant contribution to the decay function at
small missing energies, Em ∼ p2

4mN
, with the relative angle

between spectator nucleons θ23 � 50◦ [see Fig. 2(a)]. A tran-
sition to the type 3N-II SRC is observed with an increase of
missing energy Em � 200 MeV, in which case θ23 ≈ 120◦.
The analysis of type 3N-II SRCs [19] demonstrates that the
irreducible three-nucleon forces have substantial contribution
in this region due to large missing energies, which increases
the possibility of an inelastic N → � transition at the NN
vertices of the correlation.

Since the integrated decay function, which enters in the
inclusive cross section, is dominated by smaller values of Em,
one expects, based on the above discussion, that the type 3N-I
SRC represents the main configuration contributing to the
inclusive cross section. Based on this, it is possible to identify

the kinematics at which 3N-SRCs can be isolated in inclu-
sive scattering. Introducing mass mS and momentum pS for
the two-nucleon recoil system of type 3N-I SRC [Fig. 1(a)],
we consider energy-momentum conservation in quasielastic
scattering from a 3N-SRC, which takes the form

q + 3mN = p f + pS. (6)

Here q is the four-momentum transfer and p f is the final
four-momentum of the struck nucleon in the 3N SRC. The
boost invariance of the light-cone momentum fractions, for the
spectator system in the γ − 3N center of mass frame, allows
us to define the ratio

p−
s

p−
γ 3N

= Ecm
S + pcm

S,z

Ecm
S + Ecm

f

≈ Ecm
S + pcm

S

W3N
, (7)

where W3N is the invariant mass produced from the interaction
with the 3N system:

W 2
3N = (q + 3mN )2 = Q2 3 − x

x
+ 9m2

N . (8)

In the right-hand side of Eq. (7) we neglected the transverse
momentum of the spectator NN system as it is integrated over
in inclusive reactions. This is justified since the inclusive cross
section is dominated by kinematics in which pS,⊥ � pS,z.
Furthermore Ecm

S and pcm
S can be calculated through W3N using

the relations

Ecm
S = W 2

3N − m2
N + m2

S

2W3N
and pcm

S =
√

Ecm,2
S − m2

S, (9)

where mS is defined as

m2
S = 4

m2
N + k2

⊥
β(2 − β )

, (10)

with k⊥ being the transverse component of the relative mo-
mentum of the spectator nucleons with respect to 
pS . β is
the light-cone momentum fraction of pS carried by one of the
spectator nucleons and is scaled to be 0 � β � 2.

Equation (7) can be used to estimate the light-cone mo-
mentum fraction of the nucleon in a 3N-SRC by observing

that α3N = 3 − αS , where αS = 3 p−
S

p−
3N

:

α3N = 3 − 3
p−

S

p−
3N

= 3 − 3
p−

S

p−
γ 3N

p−
γ 3N

p−
3N

, (11)

where we again exploit the boost invariance of the ratio of
p−

γ 3N

p−
3N

= q−+3mN

3mN
along q. This results in the following expres-

sion for the light-cone momentum fraction of the nucleon with
the largest momentum belonging to 3N-SRCs:

α3N = 3 − q− + 3mN

2mN

[
1 + m2

S − m2
N

W 2
3N

+
√(

1 − (mS + mn)2

W 2
3N

)(
1 − (mS − mn)2

W 2
3N

)⎤
⎦. (12)

Using this equation we can identify the kinematical conditions
for x and Q2 for which the inclusive cross section is dominated
by scattering from a nucleon in a 3N-SRC. For this, we first
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FIG. 3. Kinematics of 3N-SRCs. Upper panel: Relation between
α3N and x for mS calculated according to Eq. (10) with k = 0 (dotted
line) and k = 250 MeV/c (dashed line). The curves are labeled by
their respective Q2 values. Lower panel: The dependence of |pz|
on α3N . Arrows indicate the maximum possible α3N ’s that can be
reached at given values of Q2.

need to determine the threshold value, α0
3N , above which one

expects the onset of 3N-SRC dynamics. We also need an
estimate of mS through Eq. (10). We note that for inclusive
A(e, e′)X scattering the cross section is defined by the nuclear
light-cone density matrix where one integrates over the range
of the two-nucleon spectator system masses mS � 2mN . This
integral, however, is dominated by β ≈ 1 with the recoil nu-
cleon’s momentum, k relative to pS not exceeding the nuclear
Fermi momentum, kF ≈ 250 MeV/c (see, e.g., Ref. [19]). For
numerical estimates we consider two values for k: k = 0 and
k = 250 MeV/c.

With these considerations and Eq. (12) we are able to
identify the most favorable domain in x and Q2 to search for
3N-SRCs in inclusive A(e, e′)X reactions. In Fig. 3 (upper
panel) we present the α3N -x relation for different values of
Q2. The solid and dashed curves correspond to the spectator
mass, mS calculated according to Eq. (10) with k = 0 and
k = 250 MeV/c. Figure 3 shows that at Q2 ≈ 3 GeV2 there
exists a finite kinematic domain with α3N � 1.6, where one
expects the onset of the 3N-SRC dominance. In addition,
starting with Q2 � 5 GeV2 the onset of 3N-SRCs is practi-
cally insensitive to the recoil mass of the spectator system,
mS . As follows from the figure, for Q2 � 3 and 5 GeV2 the
magnitudes of x � 2.2 and x � 2 respectively are necessary
to probe α3N > 1.6. Furthermore, using the relation

αS = 3 − α3N ≈
√

m2
S + p2

z + pz

mN
, (13)

FIG. 4. The light-front diagram corresponding to the density
matrix of 3N-SRCs. The 3N-SRCs here are due to successive pn
short-range interactions. ki and pi are shorthand notations for the
light-cone momenta (βi, ki,⊥) and (αi, pi,⊥). The figure is adapted
from Ref. [28].

we can calculate the longitudinal component of the initial
momentum of the struck nucleon, pz, which is the minimal
possible momentum of the nucleon in 3N-SRC. According
to the 3N-SRC scenario this momentum, pz, is equal and
opposite to the center-of-mass momentum of the recoil two-
nucleon system. It is worth mentioning that this momentum
does not appear directly in the argument of the light-cone
nuclear wave function but enters through the nonlinear re-
lation of Eq. (13). Nonetheless it gives an estimate of the
bound nucleon momenta to be reached in a fixed target ex-
periment aimed at probing 3N-SRCs. Figure 3(b) shows the
dependence of |pz| on α3N , with the arrows indicating the
maximum possible α3N ’s that can be probed at given values
of Q2. One observes from the plot that the characteristic mo-
menta of the struck nucleon in the 3N-SRCs for α3N � 1.6 is
pz � 700 MeV/c.

III. DYNAMICS OF THE 3N-SRCs

In light of the recent observation of strong dominance of
the pn component in 2N-SRCs [5,18,22] within the momen-
tum range of 250–650 MeV/c and the assertion (discussed
above) that type 3N-I SRCs dominate in inclusive scattering
at α > 1.6 and | pz |� 0.7 GeV/c, one expects that the main
mechanism for generation of 3N-SRCs is due to successive pn
short-range interactions [17,28,42] with the mass of the spec-
tator 2N system tending to be small, mS ∼ 2mN . Due to pn
dominance 3N-SRCs should have predominantly ppn or nnp
composition, with ppp and nnn configurations being strongly
disfavored. The diagram representing the light-cone density
matrix of 3N-SRCs is given in Fig. 4, where three-nucleon
lines are ppn or nnp configurations. Calculation of the 3N-
SRC contribution to the nuclear density matrix according to
diagrams similar to Fig. 4 yields [28]

ρ3N (α1) =
∫

1

4

[
3 − α3

(2 − α3)3
ρpn(α3, p3⊥)

× ρpn

(
2α2

3 − α3
, p2⊥ + α1

3 − α3
p3⊥

)

+ 3 − α2

(2 − α2)3
ρpn(α2, p2⊥)

× ρpn

(
2α3

3 − α2
, p3⊥ + α1

3 − α2
p2⊥

)]
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FIG. 5. The momentum distribution of the proton and neutron
in 3He. The triangle symbols are from the VMC calculation of
Ref. [43]. The dashed lines are contributions from 2N SRCs only,
solid lines correspond to the combined contributions from 2N and
3N SRCs [28]. In the case of the neutron distribution no 3N SRCs
are included.

× δ

(
3∑

i=1

αi − 3

)

×dα2d2 p2⊥dα3d2 p3⊥, (14)

where (αi, pi⊥) (i = 1, 2, 3) are light-cone momentum frac-
tions and transverse momenta of nucleons and ρpn(α, p⊥)
is the density matrix of pn-SRC. The prevalence of ρ3N

in a nuclear density function, ρA, in the 3N-SRC region
suggests several characteristics that can be experimentally
verified. One follows from Eq. (5), according to which ρpn ∼
a2(A, z)ρd , and therefore the per nucleon probability of find-
ing a nucleon in a 3N-SRC, a3N , should be proportional to the
square of the probabilities of 2N SRCs, a2N (actual relation
will be given in Sec.V):

a3N (A, Z ) ∼ a2N (A, Z )2. (15)

Another feature follows from the expectation that the mass
of the recoil 2N system, mS , in 3N-SRC is small, which
results in a small relative momentum in the recoiling NN

system, k =
√

m2
S−4m2

N

2 . The condition k � mN and the fact
that isotriplet two-nucleon states with low relative momentum
are strongly suppressed compared to the isosinglet states [19]
produce a strong sensitivity of the 3N-SRCs on the isospin
structure of NN recoil system. Namely, the dominant 3N-SRC
configurations are those which have a recoil 2N system in the
isosinglet state. This situation is illustrated in Fig. 5, where
the high momentum distribution of protons and neutrons in
3He, calculated in a variational Monte Carlo (VMC) approach
[43], is compared with the calculation based on the 2N- and
3N-SRC model of Ref. [28], the latter being based on Eq. (14).

Figure 5 shows the 2N-SRC model completely describes the
neutron momentum distribution up to 1 GeV/c, while one
needs 3N-SRC contributions to describe the proton momen-
tum distribution above 700 MeV/c. This result is in agreement
with the dominance of isosinglet recoil NN systems in the
generation of 3N-SRCs. For the case of the neutron, the recoil
system is a pp pair, which is strongly suppressed as compared
with that of the proton, in which case the recoil system is in
the isosinglet pn state, where no suppression exists. Notice
that even if the 3N-SRCs contribute to the proton momentum
distribution in 3He it is still a correction to the main 2N-SRC
part of the momentum distribution as discussed in Sec. I.

It is worth mentioning that type 3N-II SRCs can be de-
scribed through diagrams similar to Fig. 4, in which case the
intermediate state between two successive NN interactions
has a large invariant mass. Here another source of 3N-SRCs
could be the configuration containing a � resonance in the
intermediate state, which will represent the contribution from
“genuine” three-nucleon forces irreducible to NN interac-
tions. As discussed in Sec. II one expects that type 3N-I
SRCs should be the dominant source of 3N correlations in
inclusive reactions. Probing type 3N-II SRCs will require
semi-inclusive processes in which the recoiling two-nucleon
system has a large invariant mass.

IV. FINAL STATE INTERACTIONS

Final state interactions (FSI) can both distort and mimic
3N-SRCs. Detailed quantitative studies of the FSI effects
are clearly necessary. Below we provide several qualitative
considerations based on the high energy nature of electropro-
duction reactions which are used to probe 3N-SRCs. The main
part here is that our interest is in LC momentum distribution
function ρ(αN ), with αN being the momentum fraction of
nucleus carried by the interacting nucleon. The latter is anal-
ogous to the Bjorken-x, which is in deep-inelastic processes
represents the LC momentum fraction of nucleon carried by
the interacting quark. Our arguments related to the FSI are
similar to that of DIS processes in which final state interaction
of struck quark does not change the initial partonic distribu-
tion in the nucleon. In this respect, it can be shown that ρ(α)

(2−α)
is analogous to the partonic distribution function defined for
the nucleon in the nucleus.

The 3N-SRC picture will be distorted mainly due to the
multiple rescattering of nucleons from 3N-SRCs with the
nucleons belonging to the “uncorrelated” spectator (A − 3)
system. An example is presented in Fig. 6(a) in which a
nucleon knocked out from a 3N-SRC rescatters off the un-
correlated nucleons in the (A − 3) residual nucleus. Other
examples are the rescattering of spectator nucleons in the
3N-SRC with the uncorrelated nucleons from the (A − 3) sys-
tem. For such rescatterings, because of inclusive nature of the
process, one integrates over the range of excitation energies
of the (A − 3) system. As a result the closure approximation
can be applied (see discussion in Sec. II) which cancels the
effects of long-range FSIs. The empirical evidence for such
cancellation follows from the experimental observation of
the 2N-SRC scaling in the 1 < x < 2 domain [1–3,6] (also
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FIG. 6. Possible FSI diagrams contributing in 3N-SRC kinematics. Detailed description given in the text.

Sec. II) in which case the closure condition is satisfied for the
FSI with the residual (A − 2) nucleus.

FSIs that can in principle mimic 3N-SRCs are diagram-
matically presented in Figs. 6(b) and 6(c). In the case of (b)
an uncorrelated nucleon in the mean field with initial LC
momentum fraction, αN ≈ 1, is struck and two successive
rescatterings may increase the momentum faction to αN �
1.6, making it appear as a nucleon from 3N-SRC. In the case
of (c) a nucleon is knocked out from a 2N-SRC, where the
characteristic momentum fraction is 1.3 � αN � 1.5 and FSI
shifts it to the αN � 1.6 region. An important feature that
suppresses the migration of a nucleon of modest αN into the
3N-SRC region is the approximate conservation of the LC
momentum fraction in the high energy (eikonal) regime of
small angle rescattering [38,39]. In this case the nonconser-
vation of αN is estimated as [38,39]

δα ≈ x2

Q2

2mN ER(
1 + 4m2

N x2

Q2

) , (16)

where ER =
√

m2
S + p2 − mS and p ≈ 0.7 − 1 GeV/c is the

characteristic momentum of the nucleon in a 3N-SRC.
In Fig. 7 we present the Q2 dependence of the noncon-

servation of αN for 2 � x � 2.9. The estimates are made for
p = 1 GeV/c and mS = 2mN . It follows from the figure that

FIG. 7. Nonconservation of αN as a function of Q2 according to
Eq. (16) for p = 1 GeV/c and 2 � x � 2.9.

for Q2 > 3 GeV2 that FSI may alter αN by no more than 0.14,
which is too small to shift the mean field nucleon, αN ≈ 1, to
the 3N-SRC domain. However, one may expect possible FSI
contributions from the 2N-SRC domain, 1.3 � α2N � 1.5, in-
fluencing the onset of 3N-SRCs at α3N ≈ 1.6.

Finally, the other FSI effects follow from the rescattering
within a 3N-SRC as shown in Fig. 6(d). In this case one
expects a modification of the p⊥ distribution in the 3N-SRCs.
However, the important feature of high energy small angle
rescattering, discussed above, is that while FSI redistributes
transverse momenta, it leaves the αN distribution almost intact
(see also Ref. [44]). As a result the measured inclusive cross
section in the 3N-SRC domain can be presented in a factorized
form similar to the 2N-SRC case [Eq. (4)]:

σeA ≈
∑

N

σeNρN
A (α3N ), (17)

where

ρN
A (α3N ) =

∫
ρN

A (α3N , p⊥)d2 p⊥ (18)

is weakly modified due to FSI, even if the p⊥ distribution
of the unintegrated nuclear density matrix, ρN

A (α, p⊥), is dis-
torted by the FSI [44].

In the discussion above we focused only on the part of
the FSI which corresponds to the pole contribution from the
struck nucleon propagator, representing the on-shell propa-
gation of the fast nucleon in the intermediate state. Another
contribution to FSI comes from the nonpole term of the FSI
amplitude, in which case the struck nucleon is highly virtual.
There are two main sources of the suppression of the off-shell
FSI contribution. First, the off-shell FSI contribution is pro-
portional to the square of the real part of the NN scattering
amplitude, which is smaller by an order of magnitude than the
imaginary part (see, e.g., [45,46]). Second, due to the large
virtuality of the fast nucleon the off-shell NN rescattering
amplitude is strongly suppressed [47]. There is also empirical
evidence from the studies of 2N-SRCs that off-shell rescatter-
ing amplitudes are negligible [1].

V. 3N-SRC OBSERVABLES

The experimental observation of 3N-SRCs is challenging
for many reasons. As Fig. 5 shows, extracting the momentum
distribution at �700 MeV/c will not allow the isolation of
3N-SRCs due to substantial 2N-SRC contribution. Further-
more, the 3N-SRC contribution to the momentum distribution
decreases faster with an increase of momentum than the 2N-
SRC contribution. Overall, the bound nucleon momentum is

014319-7



DAY, FRANKFURT, SARGSIAN, AND STRIKMAN PHYSICAL REVIEW C 107, 014319 (2023)

FIG. 8. Dependence of α3N on the recoil mass, ms, of the specta-
tor system in 3N SRC for different values of Q2, calculated according
to Eq. (12).

not a good parameter with which to explore 3N-SRCs. The
more natural parameter, as discussed earlier, is the light-cone
momentum fraction αN for which, according to Eq. (2), the
condition αN � 2 will completely isolate 3N-SRCs with the
transition region expected to start at αN � 1.6.

Moreover, according to Eq. (17) the cross section of
inclusive reaction factorizes in the form of the product
of electron-nucleon cross section and the p⊥ integrated
light-cone density matrix, ρA(α3N ). Hence, the appropriate
observable for 3N SRCs is the ratio of inclusive A(e, e′)X
cross sections for nuclei A2 and A1 in the region of α3N � α0

3N
and Q2 > 3 GeV2:

RA1 (A2) = A1σA2 (x, Q2)

A2σA1 (x, Q2)

∣∣∣∣
α3N >α0

3N

. (19)

In this case α0
3N (expected to be ≈1.6) should be defined

from the observation of the onset of a plateau in the α3N

dependence of the ratio RA1 (A2). Note that in Eq. (19) the off-
shell effects in electron–bound-nucleon scattering are mostly
canceled in the ratio.

The observation of a plateau assumes also that α3N is in-
sensitive to the recoil mass of the spectator 2N system, mS ,
over which the cross section of the inclusive scattering is
integrated. This imposes an additional condition for the ob-
servation of scaling. This insensitivity is shown in Fig. 8 and
is largely achieved at Q2 � 5 GeV2. However, the expectation
that the integral over the recoil mass will saturate in the range
of 2mN � mS � 2 GeV [19] indicates a possibility of an early
onset of the plateau already at Q2 = 3 GeV2.

In the region of α3N < α0
3N at modest Q2 (�3 GeV2) one

expects an existence of a pre-asymptotic domain where the
ratios (19) are not constant as a function of α3N but are largely
Q2 independent for fixed α3N . This is mainly due to the factor-
ization of the inclusive cross section in the form of Eq. (17).

FIG. 9. The x dependence of α3N (solid lines) and α2N (dashed
lines) at different Q2.

Such a behavior would be analogous to the pattern observed
for α2N dependence of the ratio (5) at α2N < 1.3 [1]. This is
reinforced in Fig. 9 where one observes that α2N and α3N are
nearly identical for x < 1.6.

To connect the ratio RA1 (A2), defined in Eq. (19), with the-
oretical calculations of nuclear density function we introduce
parameter a3(A, Z ) characterizing the probability of 3N SRCs
for nearly symmetric nuclei as follows:

a3(A, Z ) = 3

A

σeA

(σe3He + σe3H)/2
. (20)

This parameter can be related to the ratio R3(A, Z ), which
is defined in Eq. (19) for A2 = A and A1 = 3He. The ratio
R3(A, Z ) is the most accessible experimental quantity.

Based on the factorization of Eq. (17), for R3(A, Z ) and
a3(A, Z ) one obtains

R3(A, Z ) = a3(A, Z )
(σep + σen)/2

(2σep + σen)/3
. (21)

Thus, a measurement of the ratio R3(A, Z ) will allow an
extraction of the parameter a3(A, Z ) which can be used for
verification of the theoretical models of 3N SRCs.

Based on the above definitions we can also formulate an
experimental observable which will allow us to verify the
prediction of Eq. (15). For this, we notice that for type 3N-I
SRC [Fig. 1(a)] the calculation of nuclear density function
[28] [Eq. (14)] yields

a3(A, Z ) = a2(A)2

ap
2 (3He)an

2(3He)
, (22)

where ap
2 and an

2 are per-nucleon probabilities of finding a
proton or neutron in a 2N-SRC. One can relate these to the
parameter a2(A, Z ) of Eq. (5) using the estimate of high
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FIG. 10. Data from E02-019 [6,36] showing the ratios of 2σA
AσD

against x and α2N (right). The horizontal lines are the a2 plateau values taken
from [6].

momentum part of the proton and neutron distributions in
nuclei within the pn-dominance model in the form [21]

np/n
2 (p) = a2(A)

2(X p/n)γ
nd (p), (23)

where X p/n = Z (N )
A is the relative fraction of the protons or

neutrons and nd (p) is the high momentum distribution of the
deuteron. According to Eq. (23) one estimates

an
2(3He) = a2(3He)

2(1/3)γ
and ap

2 (3He) = a2(3He)

2(2/3)γ
, (24)

where a2(3He) is defined according to Eq. (5).
Using above estimates together with Eqs. (21) and (22) one

obtains

R3(A, Z ) = 4

(
2

9

)γ (σep + σen)/2

(2σep + σen)/3

(
a2(A, Z )

a2(3He)

)2

= 4

(
2

9

)γ (σep + σen)/2

(2σep + σen)/3
R2

2(A, Z ), (25)

where in the last part of the equation we used the fact that the
variables α2N and α3N have nearly same magnitudes in the 2N-
SRC region (see Fig. 9) to relate the ratios of a2 parameters to
the experimentally measured ratio:

R2(A, Z ) = 3

A

σeA

σe3H

∣∣∣
1.3<α3N <1.5

= a2(A)

a2(3He)
. (26)

In the following section we will analyze experimental data at
Q2 ≈ 3 GeV2 for which σep ≈ 3σen. This and using γ ≈ 0.85
from Ref. [21] yields from Eq. (25)

R3(A, Z ) ≈ 0.96R2(A, Z )2 ≈ R2(A, Z )2. (27)

Equations (25) and (27) present a remarkable prediction: the
ratios of inclusive nuclear cross sections (R2 and R3) mea-
sured in different domains of α3N will be related by a simple
quadratic relation if the scattering in the α3N > α0

3N region
probes type 3N-I SRCs.

VI. EXPERIMENTAL EVIDENCE FOR 3N-SRCs

Conclusive evidence for two-nucleon SRCs first appeared
in 1993 [1] from the analysis of data from different experi-
ments at SLAC. The SLAC data sets for light nuclei did not
share common kinematics with the data for heavy nuclei [48]
and it was necessary, after rebinning into common x bins, to
interpolate the deuteron data across Q2 to form the ratios of
inclusive cross sections for nuclei A and the deuteron ( 2σA

AσD
).

The plateau for the available nuclei in these ratios had a weak
A dependence for A � 12. The ratios were smaller for 3He
and 4He (with large error bars). The 3σA

Aσ3He
ratios from Hall

B at JLab showed similar plateaus [2,3]. These measurements
provided persuasive evidence for the presence of 2N-SRCs yet
were limited in their precision and/or the desired expansive
range in x and Q2. Most recently, experiment E02-019 [6,36]
produced high quality data in the 2N-SRC region; these are
reproduced in Fig. 10.

The data available to study 3N-SRCs are sorely limited.
3He data (SLAC [15] and Hall B [2,3], Hall C [6], and Hall A
[33] at Jefferson Lab) provided good agreement for the height
of the 2N-SRC plateau for x < 1.5 < 2.0 yet there are signif-
icant disagreements in the x > 2 region. These arise from the
fact that the SLAC data and data from Jefferson Lab’s Hall A
[33] are at the lower limit of the range of Q2 necessary to study
3N correlations, and the same is true for a fraction of the data
from CLAS [2,3]. The reliability of the observed scaling in
the x > 2 region for CLAS data was questioned in Ref. [34],
which observed that the modest momentum resolution of the
CLAS detector in Hall B allows, when the cross sections are
falling steeply with x, bin migration, in which events in a
reconstructed x bin originated in a lower x bin. To get a sense
for paucity of the data, we show in Fig. 11 the kinematic extent
of all published 3He data cited above as a scatter plot of Q2

and x (top) and Q2 and α3N (bottom). As can be seen, only
a small fraction of the data satisfy the necessary condition of
Q2 � 3 GeV2 and α3N � 1.6, as indicated by the vertical line,
even though the large set of data to the right of the vertical line
at x = 2 in the top panel might suggest otherwise.
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FIG. 11. Kinematic distribution of the world data set for 3He with Q2 > 1: Q2 versus x (top) and Q2 versus α3N (bottom). Only data with
α3N > 1.6 are used when considering 3N-SRC, as indicated by the black vertical line in the bottom panel. The kinematic points above do not
necessarily imply corresponding data for other nuclei. It should be noted that at very large x and α3N the data have large relative errors.

Experiment E02-109 [36,49–52] was developed with the
goal, in part, to provide precision ratios, in the 2N-SRC re-
gion, at large momentum transfer for a wide range of nuclei.
The ratios 2σA

AσD
at Q2 ≈ 2.75 GeV2 (at x = 1) indicated scaling

patterns expected for the 2N-SRC region [6]. The heights
of the plateaus at x > 1.5 scale approximately with A [6]
(see Fig. 10) and have been related to the parameter a2(A, Z )
[Eq. (5)] characterizing the probability of finding 2N-SRCs in
nucleus A relative to the deuteron.

To check whether the α3N description of the data results in
the factorization implicit in Eq. (17), in Fig. 12 we compare
the x and α3N dependences of 3σA

Aσ3He
for all available Q2 from

Refs. [6,36] for A = 12. As the comparison shows, the Q2

spread of the data is significantly reduced once the ratios
are evaluated in terms of α3N , which absorbs part of the
Q2 dependence. The plateau in the region 1.3 < α3N < 1.5
manifests the dominance of 2N-SRCs corresponding, here, to
internal nucleon momenta in the range of 300–600 MeV/c.
The plateaus arising from 2N-SRCs in the ratios as a function
of α3N (similarly to α2N ) can be seen as following from the
fact (see Fig. 9) that numerically α2N and α3N have small
differences at Q2 > 2 GeV2 and x < 1.8. The observation of
2N-SRCs in terms of α3N is important for verifying the con-
jecture [Eq. (27)] that a plateau, if observed, in the 3N-SRC
region should be proportional to ( a2(A)

a2(3He) )2.
As Fig. 12 shows, only the measurement at 18◦ [in which

Q2 � 2.5 (GeV/c)2 at the quasielastic peak, growing to Q2 �
3 (GeV/c)2 at x = 2.9] reaches the region α3N � 1.6 where

one expects the onset of 3N-SRCs. It is intriguing that, as
the lower panel of the figure shows at α3N > 1.6, the ratios
indicate possible onset of the scaling. In further discussions,
except where explicitly indicated, our analysis of [6] is limited
to this data set.

Problems arose when constructing the 3He cross sec-
tion between x = 2.68 and x = 2.85 (1.6 � α3N � 1.8) due to
difficulties with the subtraction of the walls of the aluminum
target cell containing the 3He. The limited vertex resolution
of the spectrometer made it impossible to isolate electrons
that scattered from the walls of the relatively small diameter
(4 cm) target cell. This and the fact that σ Al � σ

3He at large x,
as σ

3He must go to 0 at its kinematic limit, x = 3, resulted in
a set of negative cross sections in three bins at large x mixed
with other bins in which cross sections were consistent with
zero with large relative errors.

In contrast, the data in the region below x < 2.5 are of
excellent quality with small errors. As expected a y-scaling
analysis [53,54] of the E02-019 data found it to be in good
agreement with the SLAC data [12,15] from y = 0 (top of
the quasielastic peak) to y � −1 (GeV/c). In Fig. 13 we plot
the scaling function F (y) against y with the inset showing (in
a linear scale) the region −1.1 < y < −0.7 and where the
negative values of F (y) arise from the negative 3He cross
sections mentioned above. Despite the negative 3He cross
sections the ratios

4He
3He over the entire x region from E02-019

were formed and published in Ref. [6] by making use of the
following procedure. First, an inverted ratio,

3He
4He , was formed
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FIG. 12. The x and α3N dependences of the per-nucleon ratios of 12C / 3He for different angles with Q2 ranging 2.5–7.5 GeV2 (at x = 1)
against x (top) and α3N . Only data with relative errors less than 0.5 are shown.

and then, for the region of x � 1.15, the data were rebinned by
combining three bins into one, taking care of the error prop-
agation. Subsequently the data in the inverted ratio that had
error bars falling below zero were moved along a truncated
Gaussian, such that the lower edge of the error bar was at
zero. The result was then inverted to give the ratio

4He
3He shown

in Fig. 3 of Ref. [6] and as the triangles in Fig. 14. The use
of a truncated Gaussian gave rise to the asymmetric error bars

FIG. 13. F (y) plotted against y for 3He data from Refs. [6,12,15].
The inset shows F (y) for −0.7 > y > −1.1. This corresponds to the
region of interest for 3N-SRCs, α3N � 1.6 (at y = −0.7) to α3N �
1.8 (at y = −1.1). The selected SLAC data shown here have 1 <

Q2 < 4 GeV/c2. There is good agreement between the SLAC and
Jefferson Lab data.

seen in the ratio. A limitation of this approach is that it would
have to be repeated for every nucleus when forming σ A

σ
3He

.
As an alternative to the procedure of Ref. [6] we have used

the following approach [35] to avoid the problematic 3He data
of Refs. [6,49,51] in the 3N-SRC region. We fit the y-scaling
function F (y), derived from the SLAC 3He data between x =
2.68 and x = 2.85 (1.6 � α3N � 1.8). The fit was of the form
F (y) = a exp(−by). We were then able to replace, point by

FIG. 14. The α3N dependence of the inclusive cross section ratios
for 4He to 3He. Triangles: JLAB data [6,49]; circles: ratios when
using a parametrization of SLAC 3He cross sections [12,15]. The
horizontal line at 1.3 � α3N < 1.5 identifies the magnitude of the
2N-SRC plateau. The line for α3N > 1.6 is Eq. (27) with a 10% error
introduced to account for the systematic uncertainty in a2(A, Z ) pa-
rameters across all measurements. The data correspond to Q2 ≈ 2.5
GeV2 at x = 1, α3N = 1. The figure is adapted from Ref. [35].
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FIG. 15. Left: Sensitivity of ratio
4He
3He

to the procedure of replacing the anomalous 3He data for 12 different trials; four of the data sets

used to form F (y), including three sets for which fraction of the data have been replaced. Right: Sensitivity of the weighted average of
4He
3He

in the 3N-SRC region to the lower limit of α3N . The results shown in Fig. 17(a) remain unchanged within errors which grow with a larger
α3N > 1.6 limit. In all cases (here and our final results) we restricted the upper limit such that W3N was at least 50 MeV less than the elastic
limit α3N � 1.75, x � 2.85, and y � −0.92 so as to avoid, as much as possible, FSI.

point, the 3He cross sections from E02019 for which the cen-
tral value was negative or its error bar fell below zero, through
the following: d2σ

d
 dE ′ = ∑
eN σeN KF (y), where K is a kine-

matic factor and σeN is the elementary electron-nucleon cross
section. The absolute error of the E02019 data set [6,49,51]
was kept rather than the smaller errors from the fit. The fit
parameters are a = 0.296 and b = 8.241. Note that a similar
approach was used in Ref. [1], where the first evidence of
2N-SRCs through cross section ratios in inclusive scattering
were revealed. Subsequently those results were confirmed by
precision studies [2,3,6] in which the heavy and light cross
section data were measured in single experiment.

Figure 14 presents the results for the cross section ra-
tios obtained from the approaches described above: the one
adopted in Ref. [6] (blue triangles) and another (red circles)
in which the scaling function F (y) is used to reconstruct cross
sections between x = 2.68 and x = 2.85 (1.6 � α3N � 1.8).
While the two approaches give similar results, we consider
the replacement of the problematic data points as the best
alternative procedure of Ref. [6] in part because it allows a
consistent treatment of the ratios for all A.

Studies of systematics

We have worked to evaluate the sensitivity of the procedure
above to obtain the

4He
3He ratios, as measured by Rexp

3 [Eq. (19)],
in multiple ways. We varied both the data sets used in the fit to
F (y) and the fraction of the data in the fit range, −1.08 � y �
−0.84, that is replaced. We made fits to F (y) built from four
different data sets (1) the SLAC data only, (2) the JLAB data
only, (3) both the JLAB and the SLAC data, and finally (4) the
JLAB data absent its negative values. In addition, using the
four fits to F (y), we examined three variations of the fraction
of the JLAB data set replaced by cross sections from the F (y)
fits: all the data in the fit range; just the six bins in the fit range
where the data or its error bar went below zero; and only the
data where the cross section values were negative. We found
that these 12 variations for the 3He cross sections resulted in

weighted averages in the 3N region that agreed easily within
their error bars. See Fig. 15. We show on the right-hand side
of Fig. 15 the dependence of Rexp

3 on the lower limit in α3N

when taking the weighted average. As can be seen, the result
is not strongly dependent on α3N and the error bars increase
due to the worsening statistics.

Going back to Fig. 14 we notice that the plateau due to
2N-SRCs is clearly visible for 1.3 � α3N � 1.5. In this region
α3N ≈ α2N , where α2N is the LC momentum fraction of the
nucleon in the 2N-SRC. Because of this, we refer to the
magnitude of this plateau as R2(A, Z ), defined in Eq. (26).

The horizontal line in the region of 1.3 � α3N � 1.5 is
given by the right-hand side of Eq. (26), in which the values
of a2(3He) and a2(A) are taken from the last column of Table
II in Ref. [55], an average of the SLAC, JLAB Hall C, and
JLAB Hall B results. The magnitude of the horizontal solid
line in the region of 1.6 � α3N � 1.8 is the prediction of
R3N (A, Z ) ≈ R2

2N (A, Z ), which was explained in the previous
section [Eq. (27)]. We assigned a 10% error to this prediction
(dashed lines) related to the uncertainty of a2(A, Z ) magni-
tudes across different measurements.

With the same 3He cross sections in Fig. 16 we evaluated
ratios of cross sections 3σ A

Aσ 3He for the nuclei (4He, 9Be, 12C,
64Cu, and 197Au). Additionally in this figure we evaluated
the magnitudes of a2(A)

a2(3He) (taken from Ref. [6]) which are
indicated by horizontal lines for 1.3 � α3N � 1.5, where the
plateau due to 2N-SRCs is observed.

As can be seen from these figures, despite large errors, the
data (similar to Fig. 14) indicate a strong enhancement in the
ratio R3(A) as soon as α3N � 1.6, and are in qualitative agree-
ment with the prediction of Eq. (27). To test quantitatively the
prediction of Eq. (27), in Fig. 17(a) we evaluated the weighted
average of Rexp

3 (A, Z ) for α3N > 1.6 and compared them with
the magnitude of ( a2(A,Z )

a2(3He) )2 in which a2(A, Z )’s are taken from

Ref. [55]. In these evaluations 3He cross sections were taken
from the F (y) fit to the SLAC data. Numerical data of Fig. 17
are presented also Table I. The comparison in Fig. 17(a)
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FIG. 16. Per-nucleon cross section ratios for 9Be, 12C, 64Cu, 197Au to 3He. Horizontal lines indicate a2 (A)
a2 (3He)

in the 2N-SRC region.

shows good agreement with the prediction of Eq. (27) for
the full range of nuclei. We investigated the sensitivity of the
weighted average of R3(A, Z ) on the lower limit of α3N (before
rebinning) and found that the results shown in Fig. 17(a)
remain unchanged within errors which grow with a larger
α3N > 1.6 cut.

The agreement presented in Fig. 17(a) represents the
strongest evidence yet for the presence of 3N-SRCs. If it is
indeed due to the onset of 3N-SRCs then one can use the
measured Rexp

3 ratios and Eq. (21) to extract the a3(A, Z )
parameters characterizing the 3N-SRC probabilities in the nu-
clear ground state. The estimates of a3(A, Z ) and comparisons
with a2(A, Z ) are given in Fig. 17(b) (see also Table I). These
comparisons show a faster rise for a3(A, Z ) with A, consistent
with the expectation of the increased sensitivity of 3N-SRCs
to the local nuclear density [32]. If this result is verified in
the future with better quality data and a wider range of nuclei
then the evaluation of the parameter a3(A, Z ) as a function of
nuclear density and proton-neutron asymmetry together with

a2(A, Z ) can provide an important theoretical input for the
exploration of the dynamics of superdense nuclear matter (see,
e.g., [56]).

VII. SUMMARY AND OUTLOOK

We determined the kinematic conditions for isolating 3N-
SRCs in inclusive A(e, e′)X reactions at large x. Based on the
analysis of short-range structure of 3He nuclei we expect that
the dominant mechanism of 3N-SRCs in inclusive processes is
due to three-nucleon correlations, in which one fast nucleon is
balanced by two spectator nucleons with rather small invariant
mass, 2mN � mS � 1.9 GeV. Momenta of all three nucleons,
however, exceed the characteristic Fermi momentum of the
nucleus, kF ≈ 250 MeV/c. We referred such correlations as
type 3N-I SRCs.

We explain that due to the specific nature of the high
momentum components of the nuclear wave functions, the
momentum of the fast nucleon is not the optimal variable

FIG. 17. (a) The A dependence of the experimental evaluation of R3 compared with the prediction of Eq. (27). (b) The A dependence of
a3(A, Z ) parameter compared to a2(A, Z ) of Ref. [6].
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TABLE I. Numerical values a2 [55], R2 [Eq. (26)], Rexp
3 (the

weighted average in the 3N region), and a3 calculated from Eq. (21).

A a2 R2 Rexp
3 a3

3 2.13 ± 0.04 1 NA NA
4 3.57 ± 0.09 1.68 ± 0.03 2.74 ± 0.24 3.20 ± 0.28
9 3.91 ± 0.12 1.84 ± 0.04 3.23 ± 0.29 3.77 ± 0.34
12 4.65 ± 0.14 2.18 ± 0.04 4.89 ± 0.43 5.71 ± 0, 50
64 5.21 ± 0.20 2.45 ± 0.04 (5.94 ± 0.52 6.94 ± 0.77
197 5.13 ± 0.21 2.41 ± 0.05 6.15 ± 0.55 7.18 ± 0.64

for the analysis since it does not allow the separation of
2N- and 3N-SRCs. In this respect the light-cone momentum
fraction of 3N-SRC carried by the interacting nucleon, α3N ,
is more suitable and existing phenomenology indicates that
the onset of the 3N-SRC dominance is expected at α3N > 1.6.
We derived the expression for α3N for inclusive A(e, e′)X
processes and demonstrated that the α3N � 1.6 condition puts
a strong constraint on Q2 of the reaction, requiring Q2 �
3 GeV2. Under these conditions we expect that the dominance
of 3N-SRCs will lead to a plateau for per-nucleon inclusive
cross section ratios of heavy to light nuclei. This will be in
addition to the plateau observed in the 2N-SRC region.

Furthermore, based on the pn dominance in 2N-SRCs we
predict that 3N-SRCs are generated through two successive
pn short-range interactions. Within such a scenario we derived
a quadratic relation between per nucleon ratios of nuclear and
3He inclusive cross sections measured in the 2N- (R2) and 3N-
(R3) SRC regions: R3 ≈ R2

2.
We analyzed the existing inclusive data under the above

conditions and found an indication for the onset of the plateau
at α3N > 1.6. It is very intriguing that the magnitude of
the plateau, R3, is in agreement with predicted R3 ≈ R2

2 ≈
( a2(A)

a2(3He) )2 dependence. This agreement allowed us to extract

per-nucleon probabilities, a3(A, Z ) of finding 3N-SRCs in
nuclei A relative to the 3He nucleus.

The forthcoming experiments at Jefferson Lab will be able
to significantly improve the current experimental situation.
One important condition is that such experiments will be able
to cover a larger Q2 region. As Fig. 18 shows an increase of Q2

will significantly widen the range of the α3N accessible by the
experiment. It is worth mentioning that at Q2 � 5 (GeV/c)2

one will be able to cross to the α3N � 2 region, where one
expects maximal contribution due to 3N-SRCs.

It is with anticipation that we await the running and anal-
ysis of Jefferson Lab’s E1206-105 [57] experiment which
has multiple goals: to measure cross sections (1) from light
nuclei to compare to ab initio calculations and to study FSI;
(2) from nuclei at low and moderate Q2 with a range of p-n
asymmetries in order to look for isospin dependence in the
per-nucleon ratios; (3) at moderate Q2 and large x to search
for definitive evidence to 3N-SRCs; and finally (4) at very
large Q2 to look for the transition from quasielastic to deep
inelastic scattering from nuclei as part of an effort to extract
nuclear parton distribution functions at x > 1. The lines in
Fig. 18 indicate the tentative range in Q2 and α3N which
will be part of the goal of this experiment in studying 3N
SRCs.

Finally, type 3N-I SRCs the discussed in this work corre-
spond to those states in superdense nuclear matter in which no
inelastic transition took place in the intermediate states. To in-
vestigate type 3N-II SRCs that are sensitive to irreducible 3N
nuclear forces containing inelastic transitions one will need
studies of semi-inclusive processes in which nucleons from
3N-SRCs are detected in coincidence with scattered electrons.
In particular, it would be instructive to compare production
from 3N system in different isospin states, such as three pro-
tons, where contribution of the repulsive core is enhanced, and
the 2p + n state, in which the attraction dominates.

FIG. 18. The Q2 range necessary in order to isolate 3N-SRCs. Also shown is the kinematic extent of an upcoming 12 GeV experiment [57].
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