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Spin-isospin excitations in the direction of β+ decay for 80Zn and 126Ru at finite temperature
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We investigate the Gamow-Teller (GT) and spin-dipole (SD) transitions in the direction of β+ decay for
neutron-rich N = 50 nucleus 80Zn and N = 82 nucleus 126Ru, which are important for deleptonization phase in
core-collapse supernova, at T = 0, 1, 2 MeV with finite-temperature proton-neutron relativistic (quasiparticle)
random-phase approximation. At zero temperature, the GT+ transitions for 80Zn and 126Ru are almost completely
Pauli blocked because one more extra shell is occupied for neutrons than that for protons. With increasing
temperature to even 2 MeV, the thermal excitation still cannot open up GT+ transitions with strong strength.
The SD+ transitions in 80Zn are mildly affected by temperature, which means the experimental data measured
at the laboratory can provide useful information for transitions in an astrophysical environment. However, for
SD+ transitions in 126Ru, the transition energies have a decrease of about 2 MeV from zero temperature to T = 1
MeV due to the collapse of pairing gap of transition orbitals. The total strength in T + channel decreases with
increasing temperature for both GT and SD transitions, due to the suppression of their transition strength induced
by temperature effects.
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I. INTRODUCTION

The nucleus is composed of two kinds of fermions (neutron
and proton) with spin and isospin degrees of freedom. The
spin-isospin excitations of nuclear systems not only probe
the spin-isospin properties of nucleon-nucleon effective in-
teractions [1–3] but also dominate nuclear weak-interaction
processes such as β decay [4,5], electron capture [6–8],
and neutrino-nucleus scattering [9,10], which are important
for understanding the evolution of core-collapse supernova
[11,12] and the nucleosynthesis of elements heavier than
iron [13].

Spin-isospin excitations of nuclei include different modes
according to the changes in quantum numbers, such as
Gamow-Teller (GT) excitation and spin-dipole (SD) exci-
tation. The GT resonance, which involves the changes of
isospin and spin but the orbital angular momentum remains
unchanged (�S = 1, �T = 1, �L = 0), was predicted first
by Ikeda, Fujii, and Fujita in 1963 [14], while the first ex-
perimental indications of the GT resonance were observed
in 90Zr(p, n) change-exchange reactions in 1975 [15]. The
low-lying GT strength is connected with β decay and electron
capture, since allowed β decay and electron capture take place
at essentially momentum transfers q = 0 [1]. The SD reso-
nance has an additional one-unit transfer of orbital angular
momentum (�S = 1, �T = 1, �L = 1), with three compo-
nents �Jπ = 0−, 1−, 2−. This mode was discovered in a
208Pb(p, n) experiment by Horen et al. [16], and Gaarde et al.
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[17] further investigated its related properties. SD transitions
are first-forbidden transitions in β decay and electron-capture
processes.

Experimentally, the spin-isospin excitations can be investi-
gated by β− decay [18]. However, the energy window of β−
decay experiments are very limited and the strongest states in
the spectrum are missed. It is overcome by hadronic probes
such as (p, n) or (3He, t ) [3], and (n, p) charge-exchange re-
actions [19]. However, the extraction of spin-dipole transition
strengths from charge-exchange reaction is also challeng-
ing. Therefore, the theoretical study of spin-dipole transitions
is necessary, especially for those nuclei that cannot be
reached by experiment yet. Theoretically, spin-isospin re-
sponse can be studied by shell-model (SM) and random-phase
approximation (RPA). The SM calculations can provide good
agreements with the experimental data [20–23] in the mass
region A � 70 or heavier nuclei near shell closure, while its
results are difficult to extend beyond the p f shell due to the
huge configuration space required. The RPA approach is not
limited by configuration space and provides a unified descrip-
tion of all nuclei in nuclear chart except for a few light nuclei
[24,25].

In the context of nuclear astrophysics, temperature effects
become important for spin-isospin excitations of nuclei. For
instance, during the core-collapse of massive stars, the typ-
ical temperature at which electron capture occurs is about
T = 1 MeV [26,27]. Therefore, temperature effects have to
be considered in the description of spin-isospin excitations.
Based on Skyrme density functionals, the fully self-consistent
finite-temperature proton-neutron RPA (FT-PNRPA) was de-
veloped to study spin-dipole excitations at finite temperature
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and electron-capture rates [28,29]. Below the critical tem-
perature Tc � 0.5–0.6�T =0 (�T =0 is the pairing gap at zero
temperature), the pairing collapse does not occur [30–32],
and the pairing correlations would make the Fermi sur-
face of the open-shell nucleus diffuse, which is important
for the spin-isospin excitations of the nucleus. To further
consider the pairing correlations in open-shell nuclei, the
finite-temperature quasiparticle RPA (FT-QRPA) [33,34] and
the thermal quasiparticle RPA (TQRPA) [27,35] based on
Skyrme density functionals were developed. Recently, a more
advanced model which includes particle vibration coupling
has also been developed [36].

Covariant density-functional theory (CDFT) has achieved
great success in describing the nuclear ground-state and ex-
cited properties with only a few parameters [37,38]. Within
this framework, the finite-temperature proton-neutron rel-
ativistic RPA (FT-PNRRPA) approach was developed in
Ref. [8], which was applied to calculate spin-isospin excita-
tions in hot nuclei and electron-capture rates. Furthermore,
finite-temperature proton-neutron relativistic quasiparticle
RPA (FT-PNRQRPA) [39] was used to calculate electron-
capture rates and the temperature evolution of β-decay
half-lives [40,41].

During core collapse, electron capture is dominated by the
T + channel of GT (GT+) transitions, and the contributions
from first-forbidden spin-dipole (SD) transitions become im-
portant at higher densities or temperatures [26,42]. However,
various recent works have shown the insufficient understand-
ing of electron-capture processes, which has an impact on the
dynamics of core collapse, such as the mass of the inner core
at bounce and the neutrino luminosity peak [43–47]. Refer-
ences [43,48] have pointed out that the nuclei with the primary
contributors to the deleptonization during core collapse are the
neutron-rich nuclei close to the N = 50 and N = 82 neutron
closed shell. The contribution to the reduction of electron
fraction Ye(= Z/A) for individual nuclei relates to the product
of its electron-capture rate and its abundance. However, there
is not much information about these nuclei, both theoretically
and experimentally. Sullivan et al. [43] and Pascal et al. [49]
pointed out that the electron-capture rates for nuclei close
to the N = 50 neutron closed shell are overestimated by the
single-state approximation, and the N = 50 neutron shell gap
could act as a hindrance for stellar electron capture. This con-
clusion was supported by the experimental measurements of
GT+ strength distributions for the ground state in the N = 50
nuclei 86Kr [50] and 88Sr [51]. However, the calculations of
TQRPA [27], hybrid model [42], and FT-QRPA [52] indi-
cate that the Pauli blocking of GT strength for nuclei around
N = 50 can be overcome by thermal excitations under core-
collapse conditions. Furthermore, both models predict sizable
contributions to the electron capture from SD transitions
[27,42,52]. Therefore, theoretical and experimental studies on
the spin-isospin excitations of nuclei around N = 50 are still
insufficient, and even less for nuclei around N = 82, due to
the neutron-rich nature of these nuclei.

In this work, the self-consistent proton-neutron relativistic
QRPA (PNRQRPA) [53–55] is used to investigate the GT
and SD transitions in the direction of β+ decay of 80Zn and
126Ru with N = 50 and N = 82 neutron closed shells, respec-

tively, which are among those nuclei that mainly contribute
to the deleptonization phase of collapse [43]. According to
Ref. [56], 80Zn becomes most abundant at T = 16.76 GK
(1.44 MeV). When T = 23.2 GK (2 MeV), 126Ru may also
exist in the collapsing core. The pairing correlations can be
ignored for temperatures above the critical temperature, which
typically amounts to 0.5–1.0 MeV in medium-heavy nuclei
[30,31,36,57,58], and hence we adopt FT-PNRPA using rel-
ativistic density functional to study the T + channel of GT
and SD transitions in 80Zn and 126Ru at T = 1 and 2 MeV,
in order to see in detail how temperature effects play its role
in spin-isospin excitations, which could give us clues about
possible influences on electron-capture study.

The paper is organized as follows: In Sec. II the framework
of PNRQRPA and FT-PNRRPA are introduced. The GT and
SD strength distributions at zero temperature and finite tem-
peratures are discussed in Sec. III. Section IV summarizes the
present work.

II. THEORETICAL FRAMEWORK

A. Proton-neutron relativistic quasiparticle
random-phase approximation

The relativistic QRPA (RQRPA) equation can be de-
rived from the time-dependent relativistic Hartree-Bogoliubov
(RHB) model by using the small-amplitude approximation
[53]. For transitions between spherical even-even parent nu-
cleus with the 0+ ground state and the corresponding odd-odd
daughter nucleus with Jπ excited state, the matrix equations of
PNRQRPA in the form of angular momentum coupling read( AJ

pn,p′n′ BJ
pn,p′n′

−BJ
pn,p′n′ −AJ

pn,p′n′

)(
X νJ

p′n′

Y νJ
p′n′

)
= Eν

(
X νJ

pn

Y νJ
pn

)
. (1)

The matrix elements of AJ and BJ are calculated based on the
canonical basis,

AJ
pn,p′n′ = H11

pp′δnn′ + H11
nn′δpp′ + (upvnup′vn′ + vpunvp′un′ )

× V PHJ
pn′np′ + (upunup′un′ + vpvnvp′vn′ )V PPJ

pnp′n′ , (2)

BJ
pn,p′n′ = (upvnvp′un′ + vpunup′vn′ )V PHJ

pn′np′

− (upunvp′vn′ + vpvnup′un′ )V PPJ
pnp′n′ . (3)

The proton and neutron canonical states are denoted by p,
p′, and n, n′, respectively. The occupation amplitudes up,n

and vp,n are eigenvalues of the density matrix diagonalized
in canonical basis. The matrix elements H11

nn′ and H11
pp′ are

composed of a Dirac single-nucleon mean-field Hamiltonian
ĥD, obtained from the variation of energy functional with
respect to Hermitian density matrix and the pairing field �̂.
The matrix elements H11

κκ ′ (with κκ ′ = pp′ or nn′) read

H11
κκ ′ = (uκuκ ′ − vκvκ ′ )hκκ ′ − (uκvκ ′ + vκuκ ′ )�κκ ′ . (4)

In the PNRQRPA equation, Eν is the eigenenergy of the ex-
cited state |νJ〉. X νJ and Y νJ are the corresponding forward-
and backward-going QRPA two-quasiparticle amplitudes,
respectively. V PH is the particle-hole residual two-body in-
teraction between proton and neutron, derived from the

014318-2



SPIN-ISOSPIN EXCITATIONS IN THE DIRECTION OF … PHYSICAL REVIEW C 107, 014318 (2023)

Lagrangian density with medium-dependent meson-nucleon
couplings which is the same as that adopted in the RHB
model except the terms generated by π mesons. In the RHB
calculation, the contribution from π mesons is not present
without the inclusion of the Fock term due to parity conserva-
tion. However, it is important for the excited states involving
the spin degrees of freedom. For charge-exchange transition,
since isospin is almost conserved, the residual interaction V PH

are only generated by isovector mesons π and ρ. Furthermore,
the rearrangement terms introduced by the explicit density
dependence of the meson-nucleon couplings are absent in
the charge-exchange channel because coupling strengths only
depend on the isoscalar ground-state density. The strength
parameter g′ in zero-range Landau-Migdal term is determined
by reproducing experimental data on the GT resonance excita-
tion energy of 208Pb. For effective interaction DD-ME2 [59],
the parameter g′ is taken as 0.52. V PP is the proton-neutron
particle-particle residual interaction, where the Gogny pairing
force [60] is adopted. For the T = 1 channel, the same pairing
interaction set D1S [60] is used as proton-proton and neutron-
neutron pairing interactions in the particle-particle channel of
the RHB model [54]. The T = 0 pairing usually plays its roles
on the low-lying transition strength functions; for example,
it increases the low-lying strength of GT transitions in the
direction of β− decay [54,61,62]. For these very neutron-rich
nuclei studied in this work, we tested that the T = 0 pairing
also changes the low-lying strength of GT and SD transitions,
but with a very slight amount. Therefore, the T = 0 pairing
channel is ignored in the presented results for simplicity.

The transition strengths for the spin-isospin operator T J

are calculated through

BνJ (T −) =
∣∣∣∣∣∣
∑

pn

〈p||T J ||n〉(X νJ
pn upvn + Y νJ

pn vpun
)∣∣∣∣∣∣

2

(5)

in the T − channel, and

BνJ (T +) =
∣∣∣∣∣∣
∑

pn

〈p||T J ||n〉(X νJ
pn vpun + Y νJ

pn upvn
)∣∣∣∣∣∣

2

(6)

in the T + channel, respectively.

B. Finite-temperature proton-neutron relativistic
random-phase approximation

The self-consistent FT-PNRRPA based on the finite-
temperature relativistic mean-field model has been proposed
for the study of charge-exchange transitions in a stellar envi-
ronment [8]. The framework of finite-temperature relativistic
mean-field (FT-RMF) model was introduced in Ref. [63],
based on the nonlinear effective interaction NL3 [64]. How-
ever, in the present theoretical framework, the relativistic
energy density functional with medium-dependent meson-
nucleon couplings is adopted [8,65]. In FT-RMF theory, the
temperature dependent mean-field equation can be derived
by minimization of thermodynamical potential, which retain
the same form as that of the relativistic mean-field (RMF)
equations for the static case. For a given temperature T ,

the temperature-dependent mean-field equation can be solved
self-consistently, and we could obtain the characteristic prop-
erties of the nuclear thermal state; that is, the single-nucleon
basis and thermal occupation probabilities fp(n), which repre-
sents a Fermi-Dirac distribution,

fp(n) = 1

1 + exp
( εp(n)−μp(n)

kT

) , (7)

where εp(n) is single-nucleon energy, and μp(n) is the chemical
potential determined by the conservation of the number of
nucleons

∑
p(n)(2 jp(n) + 1) fp(n) = Z (N ), where jp(n) is the

angular momentum of the single particle. The above single-
nucleon basis and thermal occupation factors are used as
inputs to RPA calculation. The corresponding FT-PNRRPA
equation derived using the single-nucleon basis of FT-RMF
model has the same general form as Eq. (1), but with different
matrix AJ and BJ , which read

AJ
pnp′n′ = (εP − εH )δpp′δnn′ + (ũpṽnũp′ ṽn′ + ṽpũnṽp′ ũn′ )

× (| fn′ − fp′ |)V PHJ
pn′np′ , (8)

BJ
pnp′n′ = (ũpṽnṽp′ ũn′ + ṽpũnũp′ ṽn′ )(| fp′ − fn′ |)V PHJ

pn′np′ . (9)

εP − εH is the difference between the single-particle energies
of particle-like and hole-like states. In FT-PNRRPA, εP − εH

could be either εp − εn̄ or εn − εp̄, where p (n) denote a proton
(neutron) state. The particle-like (hole-like) states of protons
and neutrons are represented by p ( p̄), n (n̄), respectively.
For a given proton-neutron pair configuration, the particle-like
state is defined as the state with a lower occupation proba-
bility, while the hole-like state is defined as the one with a
higher occupation probability. To ensure the completeness of
configuration space, the proton-neutron pairs formed by the
fully or partially occupied states in Fermi sea and the empty
negative-energy states in the Dirac sea are also considered.
The factors ũ and ṽ are introduced to distinguish the transi-
tions in the T − and T + channels,

ũp = 0, ṽp = 1, ũn = 1, ṽn = 0, when fp > fn ( p̄n),

(10)

ũp = 1, ṽp = 0, ũn = 0, ṽn = 1, when fp < fn (pn̄).

(11)

The particle-hole residual interaction V PHJ
pn′np′ is the same as

that used in PNRQRPA. After diagonalizing the FT-PNRRPA
matrix, one can obtain the excitation energies Eν and the
corresponding forward- and backward-going RPA amplitudes
X νJ and Y νJ , respectively. At finite temperature, the normal-
ization for X νJ and Y νJ reads [8]

∑
pn

[(
X νJ

pn

)2 − (
Y νJ

pn

)2]
(| fp − fn|) = 1. (12)
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The transition strength induced by the spin-isospin operator
T J for T − channel and T + channel can be calculated as
follows:

BνJ (T −) =
∣∣∣∣∑

pn

(
X νJ

pn ũpṽn + Y νJ
pn ṽpũn

)〈p||T J ||n〉(| fn − fp|)
∣∣∣∣
2

,

(13)

BνJ (T +) =
∣∣∣∣∑

pn

(
X νJ

pn ṽpũn + Y νJ
pn ũpṽn

)〈p||T J ||n〉(| fn − fp|)
∣∣∣∣
2

.

(14)

C. Non-energy-weighted sum rule for Gamow-Teller
and spin-dipole transitions

For the T ± channels of GT transition, the spin-isospin
operator reads [1]

T±(GT) =
A∑

i=1

σ(i)τ±(i), (15)

with the isospin operators τ3 = τz, τ± = (τx ± iτy), and σ de-
notes the spin operator, whose three components in spherical
coordinates are

σ± = ∓ 1√
2

(σx ± iσy), (16)

σ0 = σz. (17)

Based on the commutation relation [τ+, τ−] = τ3 and the
properties of tensor operator σ, one can obtain the non-energy-
weighted sum rule for the GT transition:

SGT
− − SGT

+ =
∑

ν

Bν
−(GT) −

∑
ν

Bν
+(GT)

= 3(N − Z ), (18)

where SGT
± is the total transition strength for the T ± channels

of the GT transition. For the charge-exchange SD transition,
it has three components �Jπ = 0−, 1−, 2− induced by the
tensor operator [17]

T±(SD) =
∑

i

ri[σ(i) ⊗ Y 1(i)]J=0,1,2τ±(i). (19)

The non-energy-weighted sum rule for SD transition as well
as its three components can be written as [66,67]

SSD
−,tot. − SSD

+,tot. =
∑
νJ

BνJ
− (SD) −

∑
νJ

BνJ
+ (SD)

= 9

4π
[N〈rn〉2 − Z〈rp〉2], (20)

SSD
−,J − SSD

+,J =
∑

ν

BνJ
− (SD) −

∑
ν

BνJ
+ (SD)

= 2J + 1

4π
[N〈rn〉2 − Z〈rp〉2], (21)

where SSD
±,tot. is the total strength including the summation of

three different Jπ components for the T ± channels of the SD
transition, and SSD

±,J is the total transition strength for the T ±
channel of the corresponding three components. 〈rn〉 and 〈rp〉

represent the rms radii of neutron and proton distributions,
respectively.

III. RESULTS AND DISCUSSION

In this section we present the results of the GT+ and SD+

transition strengths for 80Zn and 126Ru at temperatures T = 0,
1, and 2 MeV. Since pairing correlations have to be taken into
account for open-shell nuclei at zero temperature, the QRPA
based on RHB model with the finite-range Gogny pairing
force is used in the corresponding calculations. The critical
temperature range for nuclear phase transition from super-
fluid to normal state is around 0.5–1 MeV [30,31,36,57,58].
Therefore, the FT-PNRRPA, which does not include pairing
correlations, can provide a reasonable description of GT+ and
SD+ transitions [8] for the temperature range considered in
the present paper (T = 1 and 2 MeV). The RHB equation and
FT-RMF equation are both solved based on the spherical
harmonic-oscillator basis, and 20 oscillator shells are included
in our calculation. In the PNRQRPA and FT-PNRRPA mod-
els, the maximum energy cutoffs for configurations from the
Fermi sea and from the Dirac sea are taken as 100 and 2000
MeV, respectively, and the minimum cutoff on the product
of the occupation factors, which means upvn or unvp in PN-
RQRPA or

√
fp(1 − fn) or

√
fn(1 − fp) in FT-PNRRPA, is

set to be 0.01.

A. The T + channel of Gamow-Teller and spin-dipole
transitions at T = 0 MeV

In Fig. 1(a) we display the GT+ strength distribution of
80Zn at zero temperature. To analyze the single-particle tran-
sition configurations of transition state in 80Zn, we also plot its
single-particle energy levels in Fig. 1(b). First, from Fig. 1(a)
it can be seen that GT+ transitions are generally with ex-
tremely low strengths, because possible transition channels
are Pauli blocked for this very-neutron-rich nucleus. The
whole p f neutron shell between N = 28–50 is fully occupied,
and the available orbitals are from sdg shell above N = 50
shell closure, while for protons the sdg shell is almost com-
pletely empty, except for a small occupation for the intruder
orbital π1g9/2 below Z = 50 shell closure. Considering the
selection rule of GT+ transitions, almost all transition chan-
nels of the same node are blocked with the only possibility
for the intruder orbital π1g9/2 → ν1g7/2. Here we use π (ν)
denote proton (neutron). In detail, transitions from π1 f7/2,5/2

to ν1 f5/2, which should give strong strengths, cannot proceed
because the latter orbital has been fully occupied, as marked
by the red arrows in Fig. 1(b). Other possible transition chan-
nels are also blocked, such as transition π1g9/2 → ν1g9/2.
The π1g9/2 orbital above the Fermi surface is partially occu-
pied due to pairing correlations. However, the ν1g9/2 orbital
is fully occupied due to the existence of N = 50 shell gap
which makes pairing scattering not possible, and hence the
transition π1g9/2 → ν1g9/2 cannot occur, while the transition
π1g9/2 → ν1g7/2 with relatively higher excitation energy can
proceed and give rise to the peak A in Fig. 1(a). The transitions
from π2p1/2,3/2 orbitals, which are partially occupied due to
pairing correlations, into ν2p1/2,3/2 orbitals are also blocked
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FIG. 1. (a) The GT+ strength distribution for 80Zn as a func-
tion of the excitation energy with respect to the ground state of
the daughter nucleus 80Cu, calculated with PNRQRPA at zero tem-
perature for the DD-ME2 relativistic density functional. (b) The
single-particle energy levels of 80Zn calculated with DD-ME2 rel-
ativistic functional at zero temperature. The left (right) part refers to
the neutrons (protons). A, B, and C in panel (a) label the main excita-
tion states with dominant single-particle transitions π1g9/2 → ν1g7/2

(A), π1d5/2 → ν2d3/2 (B), and π1 f7/2 → ν4 f5/2 (C), respectively.
The blocked transitions π1 f7/2,5/2 → ν1 f5/2 and π1g9/2 → ν1g9/2

are denoted by red dashed arrows in panel (b).

for the same reason as the transition π1g9/2 → ν1g9/2. There-
fore, the calculated GT+ transition spectra with low transition
strengths are due to the Pauli blocking effect.

From Fig. 1(a), three main peaks can be observed, which
reside at 7.56, 18.44, and 26.40 MeV, respectively. By an-
alyzing the X 2

πν − Y 2
πν of these three excited states, we find

their dominant components are transitions π1g9/2 → ν1g7/2,
π1d5/2 → ν2d3/2, and π1 f7/2 → ν4 f5/2 for states at Ex =
7.56, 18.44, and 26.40 MeV, respectively, which are marked
by A, B, and C in Fig. 1(a), correspondingly. For peak A
formed by the transition π1g9/2 → ν1g7/2, protons can be
scattered into π1g9/2 by pairing correlations, enabling GT+

transitions into ν1g7/2 orbitals. For peaks B and C located
at rather high excitation energies, these excited states are
not formed by the unblocking effect of pairing correlations
but by the transitions across major shells, and the unper-
turbed energies Eunper of their main transition configurations
π1d5/2 → ν2d3/2 and π1 f7/2 → ν4 f5/2 are 18.51 and 26.32
MeV, respectively, which are noticeably larger than that of

FIG. 2. Same as Fig. 1, but for the nucleus 126Ru. D and E label
states with dominated single-particle transitions π1 f7/2 → ν2 f5/2

(D) and π1h11/2 → ν1h9/2 (E), respectively.

the transition π1g9/2 → ν1g7/2, which is 7.55 MeV. For these
GT+ states formed mainly by single-particle transitions, the
residual interaction has little effect on them, and the corre-
sponding GT+ excitation energy is almost the same as the
unperturbed energy. It is noticed that, for GT excitations, it
is a unit operator in coordinate space, leading to the small
strengths of peaks B and C formed by transitions across major
shells. In contrast, these transitions across major shells mainly
contribute to isovector spin-monopole excitations with r2 op-
erator in the coordinate space.

The GT+ transition strength distribution and single-particle
energy levels of 126Ru are shown in Figs. 2(a) and 2(b), re-
spectively. Just as the case of 80Zn, GT+ transition strengths
of 126Ru are also very small due to the Pauli blocking effect.
Neutrons in 126Ru occupy one more extra shell (sdg shell
between N = 50–82) than protons do, and hence the only
possible transition within the same shell is from the intruder
orbital π1h11/2 → ν1h9/2 unblocked by pairing correlations,
which gives rise to peak E in Fig. 2(a). Other small transition
strengths are formed by transitions across major shells, for
instance, from π2p3/2 to ν3p1/2,3/2, ν4p1/2 orbitals, from
π1 f5/2 to ν2 f5/2,7/2 orbitals, from π1 f7/2 to ν2 f5/2,7/2 or-
bitals, and so on, among which, π1 f7/2 → ν2 f5/2 gives rise
to the highest peak at Ex = 11.0 MeV, as marked by D in
Fig. 2(a). For transitions within the same major shell, such
as π1g9/2 → ν1g7/2 in 80Zn and π1h11/2 → ν1h11/2 in 126Ru,
are Pauli blocked since their final orbitals ν1g7/2 and ν1h11/2
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FIG. 3. Spin-dipole transition strength distributions in T + chan-
nel of 80Zn and 126Ru calculated by PNRQRPA at zero temperature
with DD-ME2 interaction. The solid line, dashed line, and dotted line
show the 0−, 1−, and 2− components, respectively.

are fully occupied due to the existence of N = 50 and 82
shell gaps.

Since the GT+ transitions are almost blocked by the Pauli
principle, we next investigate the first-forbidden transition
for weak decays, which is a spin-dipole transition. The SD+

transition strength distributions of 80Zn and 126Ru are shown
in Fig. 3. It is obvious that relatively strong SD+ transitions
appear for both 80Zn and 126Ru. For spin-dipole transi-
tions, the angular-momentum selection rule requires �L = 1,
thus making SD+ transitions of neutron-rich nuclei possible.
For example, transitions π1 f7/2 → ν1g7/2, ν2d3/2, π1 f5/2 →
ν2g7/2 in 80Zn, and π1g9/2 → ν1h9/2, ν2 f5/2 in 126Ru, as can
be seen from Tables I and II are not affected by Pauli blocking
and lead to the appearance of SD+ transitions. Besides, SD+

transitions of 126Ru reside at lower energies compared with
the case of 80Zn because 126Ru is more neutron rich and
hence the ground-state energy difference between mother and
daughter nuclei for 126Ru is larger than that for 80Zn.

TABLE I. Excitation energy Ex and transition strength B(T +) of
main excited states of charge-exchange SD transitions of 80Zn shown
in Fig. 5, together with their dominant single-particle transitions and
the corresponding unperturbed energy Eunper (with respect to daugh-
ter nucleus), relative RPA norm contribution X 2

pn − Y 2
pn and reduced

transition amplitude Apn. All results are calculated with the DD-ME2
interaction at T = 0, 1, and 2 MeV.

T Jπ Ex B(T +) Configuration Eunper X 2
pn Apn

[MeV] [MeV] [fm2] [MeV] −Y 2
pn [fm]

0 0− 7.16 9.48 1 f7/2 → 1g7/2 6.88 99.4% 3.20
0 1− 8.08 8.34 1 f7/2 → 1g7/2 6.88 74.2% 3.55
0 1− 8.08 8.34 1 f5/2 → 2g7/2 8.36 21.8% −0.12
0 1− 8.37 2.89 1 f5/2 → 2g7/2 8.36 72.7% −0.21
0 1− 8.37 2.89 1 f7/2 → 1g7/2 6.88 21.9% −1.93
0 2− 5.82 5.19 1 f7/2 → 2d3/2 5.73 96.5% −2.13
1 0− 6.80 9.54 1 f7/2 → 1g7/2 6.51 99.9% −3.21
1 1− 7.77 11.41 1 f7/2 → 1g7/2 6.51 97.4% −4.07
1 2− 5.37 5.13 1 f7/2 → 2d3/2 5.28 97.6% 2.13
2 0− 5.76 8.35 1 f7/2 → 1g7/2 5.49 99.2% 2.98
2 1− 6.58 10.39 1 f7/2 → 1g7/2 5.49 95.7% −3.75
2 2− 4.22 3.62 1 f7/2 → 2d3/2 4.13 85.8% −1.82

TABLE II. Same as Table I, but for the nucleus 126Ru.

T Jπ Ex B(T +) Configuration Eunper X 2
pn Apn

[MeV] [MeV] [fm2] [MeV] −Y 2
pn [fm]

0 0− 2.43 7.32 1g9/2 → 1h9/2 2.24 99.8% 2.91
0 1− 2.71 8.16 1g9/2 → 1h9/2 2.24 99.0% −3.71
0 2− 1.64 2.87 1g9/2 → 2 f5/2 1.61 99.5% 1.77
0 2− 2.31 2.36 1g9/2 → 1h9/2 2.24 99.4% 2.02
1 0− 0.54 7.23 1g9/2 → 1h9/2 0.35 100.0% −2.90
1 1− 0.82 7.96 1g9/2 → 1h9/2 0.35 100.0% −3.72
1 2− −0.30 2.78 1g9/2 → 2 f5/2 −0.34 99.6% −1.78
1 2− 0.42 2.30 1g9/2 → 1h9/2 0.35 99.6% −2.02
2 0− −0.37 6.98 1g9/2 → 1h9/2 −0.55 99.5% −2.83
2 1− −0.09 7.00 1g9/2 → 1h9/2 −0.55 84.4% −3.34
2 1− −0.09 7.00 1h9/2 → 3i11/2 −0.10 14.4% −0.01
2 1− −0.10 1.16 1h9/2 → 3i11/2 −0.10 85.6% −0.01
2 1− −0.10 1.16 1g9/2 → 1h9/2 −0.55 14.2% 1.37
2 2− −1.37 2.45 1g9/2 → 2 f5/2 −1.40 99.4% 1.70
2 2− −0.49 2.34 1g9/2 → 1h9/2 −0.55 99.5% 1.97

B. Temperature effects on T + channel of Gamow-Teller
and spin-dipole transitions

To investigate temperature effects on GT+ transitions, in
Figs. 4(a) and 4(c), we plot GT+ strength distributions of 80Zn
and 126Ru at T = 0, 1, and 2 MeV. In general, GT+ transition
energies decrease with increasing temperature. The effects of
temperature on nuclear excitations mainly manifest itself in
the evolution of single-particle energy levels and occupation
factors of neutron and proton orbitals fn(p) [seeing Eq. (7)] that
appear in the FT-PNRRPA matrix elements [8]. The evolution
of single-particle energy levels directly leads to the change
in unperturbed energy Eunper, while the occupation factor can
affect the residual interaction in matrix elements of A and
B. For most transitions in these neutron-rich nuclei, they are
simply single-particle transitions across major shells, where
the residual interaction plays almost no role on them, so the
energy changes with temperature are mainly reflected in their
unperturbed energies. From T = 0 MeV to T = 1 MeV, in
principle, pairing collapses due to pairing phase transition,
and hence the unperturbed energy should decrease due to
the vanishing pairing gap. However, since transitions around
Fermi surface with big pairing gaps are almost completely
blocked, and the GT+ states are formed by single-particle
transitions between orbitals far away from the Fermi surface
with small pairing gap, the collapse of pairing correlations
has almost no influence on them, and the unperturbed energy
from T = 0 MeV to T = 1 MeV is only changed by a small
amount. More obvious changes in unperturbed energy happen
from T = 1 MeV to T = 2 MeV. As an example, one can see
for the peak around 25 MeV in 80Zn labeled by C in Fig. 4(a),
whose dominant component is π1 f7/2 → ν4 f5/2, the unper-
turbed energies are 26.32, 25.92, and 24.93 MeV with respect
to the daughter nucleus for T = 0, 1, and 2 MeV, respectively.
The same case is found in 126Ru, for example, the state at
around 10 MeV labeled by D with dominant single-particle
configuration π1 f7/2 → ν2 f5/2 in Fig. 4(c). It is noticed that
in 80Zn, compared with the higher-energy region, the temper-
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FIG. 4. (a), (c) GT+ strength distributions of 80Zn and 126Ru, calculated by PNRQRPA at T = 0 MeV (solid line) and FT-PNRRPA at
T = 1 MeV (dashed line) and 2 MeV (dotted line). C and D label GT+ states with dominant single-particle configurations π1 f7/2 → ν4 f5/2

(C) and π1 f7/2 → ν2 f5/2 (D), respectively. (b), (d) Single-particle energy levels of 80Zn and 126Ru at T = 2 MeV. All results are calculated
with effective interaction DD-ME2.

ature effects on GT+ spectra of low-energy region below 5
MeV are bigger. At T = 1 MeV some transitions are already
shifted below 5 MeV, and they become even lower in energy
at T = 2 MeV, which may cause a lowering of threshold en-
ergy for electron capture. However, these transition strengths
are very small, so it is hard to say their possible effects on
electron-capture cross sections.

In addition to the excitation energy, instead of thermal
unblocking, GT+ transition strengths become weaker with
increasing temperature, and some strengths even vanish at
finite temperature. The origin of this temperature dependence
results from the smearing of the Fermi surface induced by
the variation of the occupation factors fn(p) [8,68]. At zero
temperature, there are two types of excitations. One is the
transitions formed by unblocking of pairing correlations, like
peak A in Fig. 1(a) and peak E in Fig. 2(a), and the other
kind is the transitions across different major shells, which
are hence not influenced by Pauli blocking, like peaks B
and C in Fig. 1(a) and peak D in Fig. 2(a). The first kind
of excitations even vanish as the temperature increases, due
to changes of occupation probabilities of the corresponding
proton and neutron orbitals for these transitions. With in-
creasing temperature, the neutron valence orbitals above the
big shell closure can be occupied through thermal excitation,
as can be seen in Figs. 4(b) and 4(d), and correspondingly
the occupation probabilities of neutron orbitals for transitions
A and E, for example, which are 0.006 (1 MeV) and 0.06
(2 MeV) for ν1g7/2 in 80Zn, become even higher than those of

the corresponding proton orbitals, for example, 0.001 (1 MeV)
and 0.019 (2 MeV) for π1g9/2. The particle-like and hole-like
properties of neutron and proton orbitals for this transition
are reversed, which makes the forward π1g9/2 → ν 1 g7/2

transition not possible, and becomes the backward transition
in FT-PNRRPA [seeing Eqs. (10) and (11)].

For the second kind of excitations across the major shell,
the transition strengths become weaker with increasing tem-
perature. Since these transitions are simply single-particle
transitions, the transition strength is determined by the
single-particle transition matrix element and the occupation
probability difference between the proton and neutron or-
bitals of this transition. With increasing temperature, the
Fermi surface becomes more smeared also for neutrons, lead-
ing to a smaller occupation probability difference between
the corresponding proton and neutron orbitals, while the
single-particle matrix element almost keeps constant with
variations of temperature. It is noticed that for these two
very neutron-rich nuclei, even at T = 2 MeV, the temper-
ature effects still cannot open up new transition channels
due to the big difference between proton and neutron Fermi
surfaces. The transitions such as π2p1/2,3/2 → ν2p1/2,3/2,
π1 f5/2,7/2 → ν1 f5/2,7/2, and π1g9/2 → ν1g9/2 for 80Zn as
well as π1g9/2 → ν1g7/2 and so on for 126Ru, as shown by the
red dashed arrows in the Figs. 4(b) and 4(d), are still blocked
at high temperature.

Figure 5 displays SD+ transition strength distributions
in 80Zn at various temperatures. One can observe that the
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FIG. 5. SD+ transition strength distributions of (a) 0−, (b) 1−,
and (c) 2− components in 80Zn at T = 0, 1, 2 MeV. The zero-
temperature results are calculated by the PNRQRPA, and the
finite-temperature results are obtained by FT-PNRRPA. The ex-
citation energy is referred to the ground state of the daughter
nucleus 80Cu.

increased temperature induces a shift of the strength dis-
tribution towards lower energies as well as the decrease of
transition strengths. However, those changes caused by tem-
perature effects in 80Zn are small, especially for T = 1 MeV,
which is almost the same as the results obtained at zero tem-
perature. This means that the experimental data measured at
ground state of 80Zn can be approximately used for the hot
supernova environment. From T = 0 MeV to T = 1 MeV,
the energy shifts for different components of SD transitions
are all within 0.5 MeV, as can be seen from Table I, where
the excitation energies and transition strength of main peaks,
together with their dominant single-particle transitions and
corresponding reduced transition amplitude are listed. The
reduced transition amplitude Apn in the direction of β+ decay
is calculated with

Apn = 〈p||T J ||n〉(X νJ
pn vpun + Y νJ

pn upvn
)

(22)

in PNRQPA and

Apn = 〈p||T J ||n〉(X νJ
pn ṽpũu + Y νJ

pn ũpṽn
)| fn − fp| (23)

in FT-PNRRPA according to Eqs. (6) and (14). The reduced
transition amplitude contains more information about the tran-
sition operator than the relative RPA norm does. For example,
for the 1− state with energy of 8.37 MeV at zero temperature,
which has two main configurations, the configuration with a
large norm 1 f5/2 → 2g7/2 actually has a small reduced tran-
sition amplitude, leading to a small contribution to the total
transition strength. The pairing collapse has no influence on
these transitions due to the small pairing gaps of most related
transition orbitals that are far from the Fermi surface, just as
for the case of GT+. From T = 1 MeV to T = 2 MeV, the
energy shift can reach 1 MeV, mainly due to the changes
in unperturbed energy caused by the evolution of single-
particle spectra with temperature. As discussed in the case
of the GT+ transition, the decreasing of transition strength
results from the changes of occupation probability difference
between proton and neutron transition orbitals induced by
thermal excitation. Let us consider the peak of 0− state at
7.16 MeV as an example and analyze the evolution behavior
of the occupation probabilities of neutron and proton orbitals
with temperature. As can be seen from Table I, the peak of 0−

FIG. 6. Same as Fig. 5 but for the nucleus 126Ru.

state is mainly contributed by the transition π1 f7/2 → ν1g7/2.
At T = 0 and 1 MeV, the occupation probabilities are 0.99
and 1.00 for the proton orbital π1 f7/2, respectively, while it
is always zero for the neutron orbital ν1g7/2. Therefore, there
are almost no changes in the transition strength from 0 to 1
MeV, because the thermal excitations at T = 1 MeV are not
sufficient to change the occupation of proton orbital π1 f7/2.
However, the occupation probability of proton orbital π1 f7/2

is 0.91 at T = 2 MeV, and it is 0.06 for ν1g7/2. This results in
the decrease of the transition strengths compared with those
at T = 0 and 1 MeV.

Figure 6 also shows the evolution of SD+ transition
strength distributions in 126Ru with temperature. Being differ-
ent from 80Zn, the energy decrease from T = 0 MeV to T =
1 MeV is relatively large, and even larger than the decrease
from T = 1 MeV to T = 2 MeV for all the SD components.
It means that the pairing collapse plays a role here. From
Table II, one can see the proton orbitals of most transitions
are π1g9/2, which is at Fermi surface, seeing Fig. 2(b), so
the pairing gap of this orbital is large (1.50 MeV). After the
pairing collapse, this pairing gap vanishes, and it results in
the decrease of unperturbed energy. From T = 1 MeV to T =
2 MeV, the energy shift is about 1 MeV, being similar as that
in 80Zn. The evolution of transition strength with temperature
is also the same as the case of 80Zn, and the same mechanism
plays its role here.

C. Sum rule

To investigate temperature effects on the non-energy-
weighted sum rule, we list in Tables III and IV the exhaustion
of the non-energy-weighted sum rule obtained with and with-
out contributions from the Dirac sea for 80Zn and 126Ru at
various temperatures. The non-energy-weighted sum rules of
GT and SD transitions are calculated by Eqs. (18) and (21).
Both for 80Zn and 126Ru, obviously the non-energy-weighted
sum rule can be almost 100% fulfilled only when the contribu-
tions from Dirac sea are included, which are about 3.5%–7%.
This confirms the importance of the inclusion of Dirac sea for
the fulfillment of sum rule in relativistic calculations [69–71].
However, by comparing the transition strength distributions
above the ground-state difference threshold with and without
the contributions from Dirac sea, it is found that the transition
strengths are the same, and hence the antiparticle contribu-
tion is fully decoupled from the particle contribution. For the
case without Dirac sea, the non-energy-weighted sum rule
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TABLE III. Non-energy-weighted sum-rule values of GT and
SD transitions in 80Zn calculated with and without the contribu-
tions from Dirac sea at T = 0, 1, 2 MeV. The zero-temperature
and finite-temperature results are obtained by PNRQRPA and FT-
PNRRPA with the DD-ME2 interaction, respectively. S− and S+
are the summed strengths of the T − channel and the T + channel,
respectively, up to 100 MeV. The column labeled “Sum rule” gives
the model-independent nonenergy weighted sum-rule values [14,17].
The exhaustion of the non-energy-weighted sum rule calculated by
our model is shown in the last column.

T Jπ S− S+ S− − S+ Sum rule S−−S+
Sum rule

[MeV] [fm2] [fm2] [fm2] [fm2] [%]

0 1+ without 56.4 0.6 55.8 60.0 93.1
0 1+ with 65.2 5.2 60.1 60.0 100.1
0 0− without 42.7 11.4 31.3 33.5 93.3
0 0− with 47.1 13.6 33.5 33.5 100.0
0 1− without 112.1 16.3 95.8 100.6 95.2
0 1− with 122.0 21.3 100.6 100.6 100.0
0 2− without 173.4 14.3 159.1 167.7 94.9
0 2− with 190.5 22.7 167.7 167.7 100.0
1 1+ without 56.4 0.5 55.9 60.0 93.1
1 1+ with 65.0 5.0 60.0 60.0 99.9
1 0− without 43.4 11.1 32.3 34.4 93.9
1 0− with 47.7 13.3 34.4 34.4 99.9
1 1− without 114.7 16.1 98.5 103.3 95.4
1 1− with 124.3 21.1 103.2 103.3 99.9
1 2− without 177.8 13.9 163.9 172.1 95.2
1 2− with 194.4 22.3 172.1 172.1 100.0
2 1+ without 56.6 0.5 56.1 60.0 93.6
2 1+ with 64.7 4.8 59.9 60.0 99.9
2 0− without 47.5 10.0 37.5 39.4 95.2
2 0− with 51.4 12.1 39.3 39.4 99.8
2 1− without 129.2 15.7 113.5 118.1 96.1
2 1− with 138.3 20.5 117.8 118.1 99.7
2 2− without 202.9 13.9 188.9 196.9 96.0
2 2− with 218.3 21.9 196.4 196.9 99.7

becomes more exhausted with increasing temperature. The
reason is that the transition strengths of T + channel are sup-
pressed with increasing temperature, as analyzed in Sec. III B,
and hence the S+ becomes smaller. While on the other hand,
S− becomes larger with increasing temperature. However, for
the case with Dirac sea, the increase in temperature causes a
slight decrease in the exhaustion of non-energy-weighted sum
rule (about 0.2%–0.3% from T = 0 to 2 MeV), which could
be related to the fact that the excitation strengths related to
antinucleon degrees of freedom in T − channel decrease with
increasing temperature.

In Figs. 7 and 8, we display the exhaustion of non-energy-
weighted sum rule in T + channel (defined as the ratio of
the strength summation in T + channel to the non-energy-
weighted sum rule, i.e., S+

Sum rule ) for 80Zn and 126Ru calculated
with and without contributions from Dirac sea at different
temperatures. It is clear to see that the exhaustion of the
non-energy-weighted sum rule for SD+ transitions is remark-
ably higher than that of GT+ transitions for the case without
contributions from the Dirac sea. The strengths for GT+ tran-

TABLE IV. Same as Table III but for the nucleus 126Ru.

T Jπ S− S+ S− − S+ Sum rule S−−S+
Sum rule

[MeV] [fm2] [fm2] [fm2] [fm2] [%]

0 1+ without 106.8 0.9 105.9 114.0 92.9
0 1+ with 121.4 7.4 114.0 114.0 100.0
0 0− without 88.7 8.9 79.8 85.5 93.4
0 0− with 97.9 12.5 85.3 85.5 99.9
0 1− without 255.4 11.7 243.7 256.4 95.0
0 1− with 277.5 21.4 256.1 256.4 99.9
0 2− without 415.7 10.9 404.8 427.3 94.7
0 2− with 453.5 26.7 426.9 427.3 99.9
1 1+ without 106.9 0.8 106.1 114.0 93.1
1 1+ with 121.2 7.3 113.9 114.0 99.9
1 0− without 91.0 8.5 82.5 87.8 94.0
1 0− with 99.8 12.1 87.7 87.8 99.9
1 1− without 261.7 10.6 251.1 263.3 95.3
1 1− with 283.3 20.3 263.0 263.3 99.9
1 2− without 427.3 9.9 417.4 438.9 95.1
1 2− with 464.1 25.7 438.4 438.9 99.9
2 1+ without 107.3 0.7 106.5 114.0 93.5
2 1+ with 120.9 7.1 113.7 114.0 99.8
2 0− without 103.1 8.4 94.6 99.4 95.2
2 0− with 111.2 12.1 99.1 99.4 99.7
2 1− without 297.0 11.0 286.1 298.2 95.9
2 1− with 317.5 20.3 297.2 298.2 99.7
2 2− without 486.6 10.3 476.3 497.0 95.8
2 2− with 521.2 25.7 495.4 497.0 99.7

sitions are almost negligible at different temperatures due to
the Pauli blocking effects, as seen from Sec. III B, while the
SD+ transitions still have relatively large transition strengths.
This indicates that, for the electron-capture cross sections, the
first-forbidden SD transitions could play a more important
role compared with the allowed GT transitions. The inclusion
of the Dirac sea is particularly important for GT+ transitions,
which increases its summed transition strength by a factor of
nearly 10. Besides, the exhaustion of non-energy-weighted
sum rule even decreases with increasing of temperature for
both GT+ and SD+ transitions, which is due to the sup-
pression of their transition strength induced by temperature
effects, as seen in Sec. III B. Moreover, for SD+ transitions,

FIG. 7. The exhaustion of non-energy-weighted sum rule of
summed transition strengths in T + channel for 80Zn, calculated with
effective interaction DD-ME2 at T = 0, 1, 2 MeV. The results with-
out Dirac-sea contributions (without Dirac sea) and with Dirac-sea
contributions (with Dirac sea) are represented by red and blue bars,
respectively.
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FIG. 8. Same as Fig. 7 but for the nucleus 126Ru.

the exhaustion of non-energy-weighted sum rule also de-
creases with the increasing multipole J of SD transitions.

IV. CONCLUSIONS

In this work we investigate the GT+ and SD+ transition
properties in neutron-rich N = 50 nucleus 80Zn and N = 82
nucleus 126Ru at T = 0, 1, and 2 MeV, based on the self-
consistent PNRQRPA model and FT-PNRRPA model. These
two nuclei are among the nuclei that have primary contribu-
tions to the deleptonization phase of collapse in supernova, as
suggested in Ref. [43].

At zero temperature, the GT+ transitions for 80Zn and
126Ru are almost completely Pauli blocked because one more
extra shell is occupied for neutrons than that for protons in
both nuclei. Therefore, the existing small strengths come from
either transitions from the proton intruder orbitals with small
occupations induced by pairing correlations, or transitions
between orbitals with different node numbers across major
shells. In contrast, the SD+ transitions still have relatively
large transition strengths, comparing with GT+ transitions
through the exhaustion of sum-rule values of T + channel.

Upon increasing the temperature to even 2 MeV, the ther-
mal excitation still cannot open up GT+ transitions with high
strength because 80Zn and 126Ru are too neutron rich. Instead,
the unblocked small GT+ transition strength by pairing cor-
relations even vanishes due to the reversal of particle-like

and hole-like properties of corresponding neutron and proton
orbitals, caused by the collapse of pairing correlations at high
temperatures as well as the thermal excitation of neutron or-
bitals. Other transitions also become a bit weaker due to the
smearing of the Fermi surface at finite temperatures. For the
SD+ transitions in 80Zn, the temperature has very small effects
both in transition energies and strengths, therefore, the exper-
imental data measured in the laboratory can provide useful
information for transitions in an astrophysical environment.
However, for SD+ transitions in 126Ru, the transition energies
have a decrease of about 2 MeV from zero temperature to
T = 1 MeV due to the disappearance of pairing gap of the
transition orbitals, which could cause an increase of electron-
capture cross section because of the increased phase space. In
the T + channel, the exhaustion of non-energy-weighted sum
rule decreases with increasing of temperature for both GT+

and SD+ transitions due to the suppression of their transition
strength induced by temperature effects.

It should be noticed that, in this work, the deexcitations
which could happen at high temperatures are not consid-
ered. These deexcitations for T + channel can be obtained
by the transitions in T − channel at negative transition ener-
gies [41,52]. Although the GT+ transitions are still blocked
at finite temperature in these neutron-rich nuclei, there
can be considerable transition strengths at negative ener-
gies contributed by deexcitations, which could increase the
electron-capture rates by a large amount, as discussed in
Ref. [52,72]. Therefore, the further study on electron-capture
rates based on spin-isospin excitations at finite temperature is
envisaged.
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