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Quantifying uncertainties due to irreducible three-body forces in deuteron-nucleus reactions
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Background: Deuteron-induced nuclear reactions are an essential tool for probing the structure of nuclei as well
as astrophysical information such as (n, γ ) cross sections. The deuteron-nucleus system is typically described
within a Faddeev three-body model consisting of a neutron (n), a proton (p), and the target nucleus (A) interacting
through pairwise phenomenological potentials. While Faddeev techniques enable the exact description of the
three-body dynamics, their predictive power is limited in part by the omission of irreducible neutron-proton-
nucleus three-body force (n-p-A 3BF).
Purpose: Our goal is to quantify systematic uncertainties stemming from the reduction of deuteron-nucleus (d +
A) dynamics to a picture of three pointlike nuclear clusters interacting via pairwise nucleon-nucleus forces, using
as testing grounds d + α scattering and the 6Li ground state. We particularly focus on quantifying uncertainties
arising from the full antisymmetrization of the (A + 2)-body system with the target nucleus fixed in its ground
state.
Methods: We adopt the ab initio no-core shell model coupled with the resonating group method (NCSM/RGM)
to compute microscopic n-α and p-α interactions, and use them in a three-body description of the d + α system
by means of momentum-space Faddeev-type equations. Simultaneously, we also carry out ab initio calculations
of d + α scattering and 6Li ground state by means of six-body NCSM/RGM calculations to serve as a benchmark
for the three-body model predictions given by the Faddeev calculations.
Results: By comparing the Faddeev and NCSM/RGM results, we show that the irreducible n-p-α 3BF has a non-
negligible effect on bound state and scattering observables alike. Specifically, the Faddeev approach yields a 6Li
ground state that is approximately 600 keV shallower than the one obtained with the NCSM/RGM. Additionally,
the Faddeev calculations for d + α scattering yield a 3+ resonance that is located approximately 400 keV higher
in energy compared to the NCSM/RGM result. The shape of the d + α angular distributions computed using the
two approaches also differ, owing to the discrepancy in the predictions of the 3+ resonance energy.
Conclusions: The Faddeev three-body model predictions for d + α scattering and 6Li using microscopic n-α
and p-α potentials differ from those computed microscopically with the NCSM/RGM. These discrepancies are
due to the n-p-α 3BF, which arises from two-nucleon exchange terms in the microscopic d-α interaction and
are not accounted for in the three-body model Faddeev calculations. This study lays the foundation for future
parametrizations of the 3BF due to Pauli exclusion principle effects in improved three-body calculations of
deuteron-induced reactions.

DOI: 10.1103/PhysRevC.107.014315

I. INTRODUCTION

Deuteron-induced nuclear reactions are powerful tools for
probing the properties of nuclei, especially for short-lived
exotic isotopes for which direct measurements are unfeasible.
Additionally, combining experimental measurements with an
accurate reaction theory provides means for determining nu-
clear structure information as well as capture rates that are
needed for astrophysical nucleosynthesis modeling. An ab ini-
tio description of such deuteron-induced reactions requires the
solution of the many-body scattering problem, which at this
time is only feasible for light systems with up to nine nucleons
[1,2]. To overcome this limitation, deuteron-induced scatter-
ing and reactions on a target nucleus (A) are typically treated
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within a three-body model consisting of a dynamically inert
core, a proton (p), and a neutron (n) interacting through an
effective three-body Hamiltonian, such that an exact solution
can be obtained through the Faddeev formalism [3]. While
simplified numerical approaches have been applied with vary-
ing degrees of success [4–6], the use of the Faddeev formalism
eliminates additional errors due to approximate treatment of
three-body dynamics.

Typically, the effective three-body Hamiltonian is approx-
imated as a direct sum of the pairwise interactions of the sub-
systems, namely, the n-p, n-A, and p-A potentials. The n-p po-
tential is usually constrained by high-precision fits to nucleon-
nucleon (NN) elastic scattering data. Commonly adopted
models are, for example, the Bonn [7,8] or chiral effective
theory [9–11] (χEFT) potentials. Local phenomenological
nucleon-nucleus (WNA) potentials constrained using elastic
scattering data have been successfully applied to describe
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deuteron-induced reactions on targets ranging from the light-
est nuclei, e.g., the deuteron [12] to much heavier nuclei
such as nickel [13]. However, such nucleon-nucleus (N-A)
potentials are not uniquely defined and, as a result, different
functional forms provide accurate fits to N + A scattering
data but yield different predictions for the deuteron-nucleus
(d + A) systems [14–16]. Further, insights from microscopic
reaction theory revealed that the nucleon-nucleus potentials
are generally nonlocal and dispersive [17]. The works of
Ref. [15,18] demonstrated that nonlocality significantly im-
pacts predictions for d + A reaction observables. Moreover,
it was shown in Ref. [19] that imposing dispersivity leads
to improved nucleon-nucleus potentials that consistently de-
scribe both the bound and scattering states for the N + A
system. Finally, the formal projection of the (A + 2)-body
problem onto the three-particle space produces not only pair-
wise potentials but also an irreducible effective three-body
force (3BF). To improve the predictive power of the three-
body model it is thus necessary to investigate the origin of
this 3BF and assess its impact on properties of the d + A
system. Past attempts to quantify the effects of the 3BF on
deuteron-induced reaction observables based on simplified
nuclear structure and reaction models [20–23] have been
made. More recent investigations along these lines have been
carried out in Ref. [24], where the 3BF emerges from in-
teractions between the neutron and proton via excitation of
the target A. In Ref. [25] several bound systems (6He =
α + n + n, 9Be = α + α + n, 12C = α + α + α) were studied
using the no-core shell model coupled with the resonating
group method (NCSM/RGM) starting from phenomenolog-
ical nucleon-nucleon (NN) forces, where the α particle was
fixed in its ground state so that only antisymmetrization
contributions to the 3BF were captured. The results of the
three-body model were found to consistently lead to smaller
binding energies when compared to the fully microscopic
calculations.

In the present work we investigate the irreducible 3BF
in a light nuclear system and quantify its effects on
both bound-state and scattering observables using as a test
case the d + α system. Our objective is to isolate con-
tributions to the 3BF arising from the Pauli exclusion
principle, disentangling them from other mechanisms such
as target excitation and three-nucleon (3N) forces. Starting
from a five-nucleon Hamiltonian based on the χEFT NN
interaction of Ref. [9,10] softened with a similarity renor-
malization group (SRG) transformation [26] (in two-body
space), momentum-space nonlocal microscopic n-α (Wnα)
and p-α (Wpα) potentials are computed working within the
framework of the NCSM/RGM [27,28]. For the purpose of
the present study, we restrict the four nucleons within the α

particle to the ground state. These nonlocal, momentum-space
WNα potentials are then used together with the SRG-evolved
χEFT n-p interaction within the Faddeev formalism to make
predictions for the d + α system. To overcome the limitations
of the screening and renormalization approach introduced in
Ref. [29], which is valid only in regions where the effects
of the p + A Coulomb potential are relatively weak (i.e., at
high energies or in light nuclei) [30], here we utilize a new
capability [31] based on the Alt-Grassberger-Sandhas (AGS)

[32] formulation of the Faddeev equations in a basis of p + A
Coulomb scattering wave functions [33]. Simultaneously, we
also apply the (six-body) NCSM/RGM approach to directly
compute d + α bound and scattering observables starting
from the same χEFT NN interaction. By comparing the Fad-
deev and NCM/RGM results, we show that the irreducible
3BF owing to microscopic antisymmetrization effects has a
small but significant impact on the 6Li bound state and d + α

scattering, accounting for 600 keV of the binding energy and
shifting the 3+ resonance by ≈400 keV lower in energy.

This paper is organized as follows. In Sec. II A we present a
brief summary of the Faddeev-AGS equations in the Coulomb
basis. An overview of the momentum space NCSM/RGM
needed to evaluate the effective N-A potentials is provided in
Sec. II B and a detailed discussion with explicit expressions
for the potentials is given in Appendix. In Sec. III, we discuss
our results for d + α scattering and 6Li bound-state calcula-
tions, and assess the effect of the irreducible three-body force
by comparing results obtained within the Faddeev-AGS ap-
proach with those computed directly with the NCSM/RGM.
The conclusion and outlook are given in Sec. IV.

II. FORMALISM

A. Faddeev formalism with exact treatment of the average
Coulomb potential

The scattering of a deuteron from a target nucleus A lead-
ing to all possible three-body rearrangement processes (see
Fig. 1) can be consistently described using the Faddeev for-
malism. It is convenient to assign numerical labels {1, 2, 3}
to the particles {A, p, n}, respectively, and to define cor-
responding arrangement channels i = 1, 2, 3 consisting of a
spectator particle i and the remaining particle pair interacting
through their respective pairwise potential Wi. For example,
arrangement channel 1 contains an interacting n + p pair with
a spectator A, where W1 ≡ V np. Similarly, W2 ≡ WnA, and
W3 ≡ W pA. The binary potentials generally have a nonlo-
cal dependence on the momentum coordinates p and p′ or
WN−A = WN−A, Iπ

νν ′ (p, p′), where ν (ν ′) represents angular
momentum channels and Iπ is the spin-parity of the system.
For each arrangement channel i, in the center-of-mass (c.m.)
frame, the system can be represented by a pair of Jacobi
momenta: the relative momentum of the pair ( �pi ≡ pi p̂i) and
the momentum of the spectator with respect to the c.m. of the
pair (�qi ≡ qi q̂i). As such, the kinetic energy is given by [34]

H0 = p2
i

2μi
+ q2

i

2Mi
, (1)

where μi and Mi are, respectively, the reduced masses for the
interacting pair ( jk) and for the i + ( jk) system, where (i, j, k)
form a cyclic permutation of (1,2,3). At the relative three-
body energy E , the exact three-body scattering wave function
for the incident arrangement channel 1 (|�(1)〉) fulfills the
Schrödinger equation

[E − H0]|�(1)〉 =
3∑

i=1

Wi|�(1)〉. (2)
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FIG. 1. Schematic representation of all possible three-body rearrangement processes arising from the scattering of a deuteron with a target
nucleus A. The arrows (1)–(4) represent elastic scattering, neutron transfer, proton transfer, and three-body breakup.

The asymptotics of the wave function |�(1)〉 contain infor-
mation about all possible three-body processes and therefore
has complicated boundary conditions that make its direct
determination unfeasible. To circumvent this issue, Faddeev
[3] introduced the components |ψi1〉 ≡ G0(E ) Wi|�(1)〉 so
that the wave function is given by the sum |�(1)〉 = |ψ11〉 +
|ψ21〉 + |ψ31〉, where the free propagator has the definition
G0(E ) = [E − H0 + i0]−1. Unlike the full wave function, the
asymptotics of each Faddeev component describe a specific
reaction channel, in the present case of deuteron-induced
reactions |ψ11〉, |ψ21〉, and |ψ31〉 describe elastic deuteron
scattering, neutron transfer, and proton transfer reactions, re-
spectively.

Since scattering wave functions are ill behaved in momen-
tum space, it is customary to work with transition operators
instead. In the case of three-body scattering the transition
operators U 11, U 21, and U 31, contain the same information
as the corresponding Faddeev components and fulfill a set of
coupled momentum space integral equations [32] (Faddeev-
AGS equations)

U i1(E ) = δ̄i1 G−1
0 (E ) +

3∑
k=1

δ̄ik tk (E ) G0(E ) U k1(E ). (3)

Here, δ̄ik ≡ 1 − δik is the anti-Kronecker delta and ti(E ) is the
binary t matrix given by the Lippmann-Schwinger (LS) equa-
tion ti(E ) = Wi + Wi G0(E ) ti(E ). For processes leading to
complete three-body breakup the corresponding transition op-
erator is given by U 01 = U 11 + U 31 + U 31. The transition
amplitudes are connected to the scattering matrix (s ma-
trix) through the relation Si1 = δi1 − 2π iδ(E − H0) U i1. We
proceed by introducing the states |qi(λiI

πi
i )JiMJi〉, which de-

scribe the motion of the spectator relative to the pair with
λi and Iπi

i representing the orbital angular momentum and
spin parity of the spectator, respectively. Here Ji and MJi

denote the total spectator angular momentum and its z-axis
projection. Additionally, the bound-state wave function of the

pair (|φIπi
i

im 〉) is given by the Schrödinger equation[
ε

(m)
i − p2

i

2μi

]∣∣φIπi
i

im

〉 = WIπi
i

i

∣∣φIπi
i

im

〉
, (4)

where m = 1... Nbound is an index enumerating the bound
states and Nbound is the number of bound states. Here ε

(m)
i is

the binding energy of the mth bound state and Iπi is the spin
parity of the pair. The channel state corresponding to an ar-
rangement channel i and a conserved total angular momentum
J is constructed by coupling the bound state of the pair to the
relative motion of spectator leading to

∣∣(i),JM
mαi

〉|qi〉 ≡ |qi〉
[∣∣φIπi

i
im

〉|(λiIi )Ji〉
]JM

, (5)

where αi = {Iπi , λi, Iπi
i ,Ji} and M is the z-axis projection of

J . The transition matrix elements needed to evaluate the cross
section for the process 1 −→ i are then given by

X i1,J
mαi,nα′

i
(qi, q′

1; E ) ≡ 〈qi|
〈
(i),JM

mαi

∣∣ U i1(E )
∣∣(1),JM

nα1

〉∣∣q′
1

〉
,

≡ 〈
qi

∣∣X i1,J
mαi,nα′

1
(E )

∣∣q′
1

〉
. (6)

For cross section calculations we only need transition matrix
elements for which qim and q′

1n are determined by the on-shell
condition.

To obtain numerical solutions of the Faddeev-AGS equa-
tions, we first note that the pairwise potentials have the general
form Wi = W s

i + V̄ c
i , where W s

i is short ranged and V̄ c
i =

ZjZke2/r is the average Coulomb potential, with Zj (Zk ) being
the charge of particle j(k). The corresponding binary t matrix
can be written as ti(E ) = t c

i (E ) + t s
i (E ), where t c

i (E ) is the t
matrix associated with the average Coulomb potential and t s

i is
the solution of the LS equation using the short-ranged residual
interaction W s

i ≡ Wi − V̄ c
i in the basis of Coulomb scattering

wave functions. The presence of the term t c
i (E ) introduces

nonintegrable singularities in the kernel of Eqs. (3) and thus
renders a direct numerical solution unfeasible [32,35]. By sub-
tracting t c

i (E ) from the overall t matrix, one can reformulate
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the Faddeev-AGS equations leading to [32]

U i1(E ) = U c,i1(E ) +
3∑

k=1

U c,ik (E ) t s
k (E ) G0(E ) U k1(E ), (7)

where U c,ik is the solution of the Faddeev-AGS equations with
only the average Coulomb potential and has an analytical
solution when only two of the three particles are charged.
To arrive at a numerical solution for Eqs. (8), we express the
short-ranged pairwise potentials in separable form via expan-
sion in a basis {|h̄i

n〉} (e.g., Ernst-Shakin-Thaler [36] basis),

W s
i (E ) = ∑Nrank

β,γ=1

∣∣h̄i
β

〉
λs

i,βγ

〈
h̄i

γ

∣∣, (8)

where Nrank is the number of basis functions, which are enu-
merated by the indices β(γ ) hereafter. This representation for
W s

i leads to a corresponding separable form of the binary t
matrix

t s
i (E ) = ∑Nbound

n=1

∣∣h̃i
n

〉
g0

in(E )

〈
h̃i

n

∣∣∣∣ + ∑Nrank
βγ=1

∣∣∣∣h̄i
β

〉
τ̄ s

i,βγ (E )
〈
h̄i

γ

∣∣,
(9)

where g0
in(E ) = (E − ε

(n)
i − q2

i /Mi + i0)−1 is the free propa-
gator for the spectator relative to the bound pair. The vectors
|h̃i

n〉 appearing in the first term of Eq. (10) are the so-called
bound-state form factors and are given by the product of
the pairwise potential and the bound-state wave function or
|h̃i

n〉 ≡ Wi|φ(i)
m 〉. The matrix elements τ̄ s

i,βγ (E ) are determined
by substituting Eqs. (9) and (10) into the LS equation. The
separable representation of the binary t matrix enables a re-
formulation of Eqs. (8) in terms of the transition operators
defined by Eq. (7) such that [32]

X i j
mn(E ) = Zi j

mn(E ) +
3∑

k=1

Nbound∑
n′=1

Zik
mn′ (E ) g0

kn′ (E ) X k j
n′n(E )

+
3∑

k=1

Nrank∑
β ′,γ ′=1

Zik
mβ ′ (E ) τ̄ s

k,β ′γ ′ (E ) X k j
γ ′n(E ), (10)

and

X i j
βn(E ) = Zi j

βn(E ) +
3∑

k=1

Nbound∑
n′=1

Zik
βn′ (E ) g0

kn′ (E ) X k j
n′n(E )

+
3∑

k=1

Nrank∑
β ′,γ ′=1

Zik
ββ ′ (E ) τ̄ s

k,β ′γ ′ (E ) X k j
γ ′n(E ), (11)

where we have suppressed the channel index αi for brevity and
the second equation is needed to determine the nonphysical
transition operators X k j

γ ′n(E ). The effective potentials have the
definition

Zi j
nm(E ) ≡ 〈

h̃i
m

∣∣G0(E ) U c,i j (E ) G0(E )
∣∣h̃ j

n

〉
, (12)

and their computation is generally very complicated since
U c,i j (E ) is the transition operator for the scattering of
three particles under the exclusive influence of the aver-
age Coulomb potential. However, it simplifies immensely for
cases where one of the particles is neutral. For example, if par-
ticle 3 is neutral the Coulomb three-particle transition operator

reduces to U c,i j (E ) = δ̄i j G−1
0 (E ) + δ̄i3 t c

3 (E ), where t c
3 (E ) is

the two-body Coulomb scattering t matrix for particles 2 and
3. The effective potentials can be numerically evaluated using

Zi j
mn(E ) ≡ δ̄i j

〈
hi

m

∣∣ G0(E )
∣∣h j

n

〉 + δ̄i3 δ̄ j3
〈
hi

m

∣∣ G0(E )

× t c
3 (E ) G0(E )

∣∣h j
n

〉
. (13)

It was already shown in Ref. [37] that the momentum
space matrix elements of the diagonal effective potentials
〈 �qi

′|Zii
mn| �qi〉 contain a singularity in the forward direction

( �qi −→ �qi
′). The nature of the singularity is revealed by re-

placing the Coulomb t matrix with its Born approximation
t c
3 = V̄ c

3 , leading to the factorization of the matrix elements
〈 �qi

′|Zii
mn| �qi〉 = δ̄i3 〈hi

m| G0(E , q′
i ) G0(E , qi ) |hi

n〉 ×V̄ c
3 (| �qi

′ −
�qi|). The forward singularity of the average Coulomb poten-
tial is thus propagated into the diagonal effective potentials,
leading to nonintegrable singularities in the kernels of
Eqs. (12) and (14). To circumvent this challenge, the Born
term is subtracted and treated analytically according to the
Gell-Mann-Goldberger [38] relation (two-potential formula).
Specifically, one defines the regularized effective potentials

Zsc,i j
mn = Zi j

mn − V̄ c
3 δi j δmn, (14)

so that the full transition operator is given by the sum X i j
mn =

X c,ii
mm δmn + �c

im X sc,i j
mn �c

jn, where X c,ii
mm corresponds to the

Rutherford scattering amplitude, �c
im(E ) ≡ gc

im(E ) g0,−1
im (E )

is the Möller wave operator with gc
im(E ) = (E − ε

(m)
i −

q2
i /Mi − V̄ c

i + i0)−1 being the Coulomb propagator. The reg-
ularized transition operators X sc,i j

mn are free of singularities
and are obtained by solving the modified Faddeev-AGS equa-
tions [32],

X sc,i j
mn (E ) = Zsc,i j

mn (E ) +
3∑

k=1

Nbound∑
n′=1

Zsc,ik
mn′ (E ) gc

kn′ (E ) X sc,k j
n′n (E )

+
3∑

k=1

Nrank∑
β ′,γ ′=1

Zsc,ik
mβ ′ (E ) τ̄ sc

k,β ′γ ′ (E ) X sc,k j
γ ′n (E ), (15)

and

X sc,i j
βn (E ) = Zsc,i j

βn (E ) +
3∑

k=1

Nbound∑
n′=1

Zsc,ik
βn′ (E ) gc

kn′ (E ) X sc,k j
n′n (E )

+
3∑

k=1

Nrank∑
β ′,γ ′=1

Zsc,ik
ββ ′ (E ) τ̄ sc

k,β ′γ ′ (E ) X sc,k j
γ ′n (E ). (16)

In this work we diagonalize Eqs. (19) and (21) in a Coulomb
basis to arrive at the transition amplitudes X i j

mn(qi, q j ) needed
to evaluate cross sections for the various three-body pro-
cesses. A detailed discussion on the evaluation of the effective
potentials Zsc,i j

mn (E ) and the diagonalization of the resulting
Faddeev-AGS equations in the Coulomb basis can be found
in Ref. [31].

B. Microscopic calculation of nucleon-nucleus potentials in
momentum space

The ingredients for the three-body Faddeev calculations
discussed in Sec. II A are the momentum space microscopic
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pairwise N-A potentials (WNA) in addition to the n-p in-
teraction. To compute WNA, we start from the microscopic
(A + 1)-body Hamiltonian, which in general includes two-
and three-nucleon (NN and 3N) forces,

H =
A+1∑

i< j=2

(�ki − �k j )2

2mN
+

A+1∑
i< j=2

V NN
i j +

A+1∑
i< j<k=3

V 3N
i jk , (17)

where �ki is the momentum of the ith nucleon and mN is the
nucleon mass. The many-body Hamiltonian can be recast as

H = H (A) + p2

2μ
+ V̄ c(r) + V rel, (18)

where the intrinsic Hamiltonian H (A) governs the dynamics of
the A-nucleon target within the N + A system, with p and μ

being the relative momentum and reduced mass of the N + A
system. Here V̄ c(r) = 1

2 (1 + τ z
A+1)Ze2/r is the average N-A

Coulomb potential (with Z and τ z
A+1 representing, respec-

tively, the atomic number of the target and twice the isospin
projection of the nucleon), and the relative nucleon-nucleus
interaction is given by

V rel =
A∑

i=1

V NN
i,A+1 +

A∑
i< j=2

V 3N
i j,A+1 − V̄ c(r). (19)

In momentum space, the NCSM/RGM ansatz [28] for the
N + A scattering wave function for a given spin-parity and
isospin (IπT ) takes the form∣∣�Iπ T

ν0; p0

〉 =
∑

ν

∫
d pp2 χIπ T

νν0
(p, p0) Aν

∣∣Iπ T
νp

〉
, (20)

where ν is a collective index denoting an arbitrary angular
momentum channel while ν0 and p0 indicate the incident
channel and momentum. If we chose IA, πA, TA, and αA to
denote, respectively, the spin, parity, isospin, and additional
quantum numbers of the target nucleus, the channel states are
given by

∣∣Iπ T
νp

〉 =
[(

|A αAIπA TA〉
∣∣∣∣1 1

2

+ 1

2

〉)sT

Y�( p̂A,A+1)

]Iπ T

× δ(p − pA,A+1)

ppA,A+1
, (21)

where | αAIπA TA〉 is an eigenstate of the intrinsic Hamiltonian
H (A) with energy eigenvalue E (A)

ν , s the total spin, and � the
relative orbital angular momentum for the N + A system in
channel ν. The eiegenstate is obtained by diagonalizing H (A)

in the model space spanned by the NCSM Nmax h̄� harmonic
oscillator (HO) basis. Here Nmax is the maximum number of
HO quanta above the minimum energy configuration of the
nucleons and � is the HO frequency. The operator Aν anti-
symmetrizes the incident nucleon with respect to the nucleons
in the target A. The angular motion of the projectile nucleon
with respect to the target nucleus is described by Y�( p̂A,A+1)
while the relative momentum is given by

�pA,A+1 = pA,A+1 p̂A,A+1 = A

A + 1

[
�kA+1 − 1

A

A∑
i=1

�ki

]
. (22)

By introducing the momentum-space norm N Iπ T
νν ′ (p, p′) ≡

〈Iπ T
νp |AνA′

ν |Iπ T
ν ′ p′ 〉 and adopting the orthogonalization pro-

cedure of Ref. [28], the (A + 1)-body Schrödinger equa-
tion can be reduced into the binary form

[
EA+1 − E (A)

ν − p2

2μ

]
χIπ T

νν0
(p, p0)

=
∑
ν ′

∫
d p′ p′2 WIπ T

νν ′ (p, p′) χIπ T
ν ′ν0

(p′, p0), (23)

where χIπ T
ν ′ν0

(p′, p0) is the amplitude of relative motion,
WIπ T

νν ′ (p, p′) the effective two-body N-A potential and EA+1

the total energy of the N + A system. The N-A potential

Wνν ′ (p, p′) = H̄mod
νν ′ (p, p′) + Weev

νν ′ (p, p′) + Wkin
νν ′ (p, p′)

+ V̄coul
νν ′ (p, p′), (24)

contains contributions from: i) the orthogonalized Hamilto-
nian kernel inside the HO model space (H̄mod

νν ′ ), ii) the energy
eigenvalue of the target nucleus (Weev

νν ′ ), iii) the relative kinetic
energy (Wkin

νν ′ ), and iv) the average Coulomb potential (V̄coul
νν ′ ),

where we have dropped the JπT superscript for brevity. De-
tails of the derivation of the expressions for WIπ T

νν ′ (p, p′) are
presented in Appendix.

The corresponding t matrix that serves as input to the
Faddeev-AGS equations and is needed for computing N +
A scattering phase shifts satisfies the momentum space
Lippmann-Schwinger (LS) equation

tI
π T

νν0
(p, p0; Ekin ) = WIπ T

νν0
(p, p0) +

∑
ν ′

∫
d p′ p′2

×WIπ T
νν ′ (p, p′) G0ν (Ekin, p′) tI

π T
νν0

× (p′, p0; Ekin ), (25)

which is equivalent to Eq. (23) complemented by the scat-
tering boundary conditions, and the propagator is given
by G0ν (Ekin, p′) = [Ekin − εν − p′2/2μ + i0]−1. Here Ekin ≡
EA+1 − E (A)

ν0
is the relative kinetic energy of N + A system

corresponding to the incident channel while εν ≡ E (A)
ν − E (A)

ν0

is the excitation energy of the target nucleus. As already
noted in Sec. II A, the Faddeev calculations require a sep-
arable representation of the short-ranged component of the
potential WIπ T

νν ′ (p, p′). This is achieved by applying the
Ersnt-Shakin-Thaler [36,39] (EST) scheme, which has been
extensively verified for both nucleon-nucleus [40–42] and
deuteron-nucleus systems [34,43]. We also note that, unlike
typical phenomenological potentials based on local Woods-
Saxon (WS) functions, microscopic NCSM/RGM pairwise
potentials employed in this work are intrinsically separable
because they are given by expansions in the radial wave
functions for p and p′ separately. The EST scheme is merely
employed to arrive at a specific separable form for Wνν ′ (p, p′)
that is convenient for solving the Faddeev-AGS equations and
an accurate representation is attained using a small basis size.
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FIG. 2. The partial wave n-α potential W I
l (p, p′) in units of fm2

as a function of the momenta p and p′. (a) and (c) depict, respectively,
the s1/2 and p3/2 microscopic NCSM/RGM potentials while the
corresponding Woods-Saxon (WS) potential is shown in (b) and (d),
respectively. The WS potential is scaled down by the strength of the
Pauli projector [34] � = 1100 fm−1. The NCSM/RGM model space
is truncated at Nmax = 12/13 for the positive/negative parity partial
waves with h̄� = 14 MeV and λSRG = 1.5 fm−1.

III. RESULTS AND DISCUSSION

A. Momentum-space microscopic n +4 He and p +4 He
potentials

The starting point for all our calculations is a soft
SRG-evolved NN potential at fourth order (SRG-N3LO NN
potential) obtained by evolving the χEFT interaction of
Ref. [9] to a momentum resolution scale of λSRG = 1.5 fm−1.
The low momentum resolution scale helps to speed up con-
vergence of the HO expansion and ensures a reasonable
description of 6Li bound state properties despite the omis-
sion of explicit 3N forces. For all calculations presented in
this section the wave function of the α particle is evaluated
using an HO basis expansion up to Nmax = 12 while the
positive/negative-parity NCSM/RGM partial-wave potentials
are computed in momentum space using Nmax = 12/13 for
the N-α system. This model space, together with the HO fre-
quency h̄� = 14 MeV, was demonstrated to yield an accurate
convergence for the d-α phase shifts for an identical choice of
the NN interaction [47].

To obtain the microscopic N-α momentum-space poten-
tials required as input for the Faddeev n + p + α calculation,
we apply the momentum-space NCSM/RGM approach de-
scribed in Sec. II B. For this case, the N-α potentials are
diagonal in � and the isospin is fixed at T = 1/2, or WIπ T

νν ′ ≡
W I

� δνν ′ , since the ground state spin and isospin of the α par-
ticle are zero. First, we note that the NCSM/RGM-generated
N-α potentials are smooth short-ranged functions of the mo-
mentum coordinates (Fig. 2) and are therefore suitable for
implementation in the Faddeev-AGS framework to compute
d + α observables. Further, we see that the microscopically
computed p-wave potential (Fig. 3) has a similar shape to
the phenomenologically fitted Woods-Saxon (WS) potential
[44] at low momenta. However, there is a bigger difference

0 1 2 3 4 5 6

p [fm
-1

]

-0.1

-0.05

0

 W
l=

1 (p
,p
�=

p)
 [

fm
2
]

NCSM/RGM
WS

FIG. 3. The diagonal elements of the p-wave potential
W I

�=1(p, p′ = p) for the n + α system as a function of the rel-
ative momentum coordinate p. The (red) solid lines depicts the
microscopic potentials computed with the NCSM/RGM while the
corresponding Woods-Saxon (WS) phenomenological potential
[44] is indicated by the (black) dashed line. The NCSM/RGM
model space is truncated at Nmax = 13 with h̄� = 14 MeV and
λSRG = 1.5 fm−1.

at large momenta owing to the presence of high-momentum
components in the WS potential. A comparison for the s
wave (Fig. 4) shows that the shape of the microscopically
computed potentials is similar to its WS counterpart. Similarly
to the p-wave potential, the s-wave potential NCSM/RGM
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]
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RGM( x 1.43 x 10
4
 )
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FIG. 4. The diagonal elements of the s1/2 potential W I
�=0(p, p′ =

p) for the n + α system as a function of the relative momen-
tum coordinate p. The microscopic potentials computed with the
NCSM/RGM are depicted by (red) solid lines while the Woods-
Saxon (WS) phenomenological potentials [44] are indicated by
(black) dashed lines. A scaled up (by a factor of 1.43 × 104)
NSM/RGM potential is indicated by the (green) dash-dotted line.
The NCSM/RGM model space is truncated at Nmax = 12 with h̄� =
14 MeV and λSRG = 1.5 fm−1.
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FIG. 5. The phase shifts for n + α scattering as a function of
the relative kinetic energy. The (red) solid lines show the phase
shifts computed in momentum space using the LS equation while the
(black) dashed lines represent the corresponding coordinate space
results obtained via the microscopic R-matrix formalism [45,46].
The dash-dotted lines with circles indicate the phase shifts computed
using a phenomenologically fitted Woods-Saxon (WS) potential [44].
The NCSM/RGM model space is truncated at Nmax = 12/13 for the
positive/negative parity partial waves. Note that the coordinate space
and momentum space NCSM/RGM results are indistinguishable
within the line thickness.

potential lacks the high-momentum components owing to the
low-momentum resolution of the NN potential used in the
microscopic calculation. We also note that the magnitude of
the WS s-wave potential is orders of magnitude larger than
the NCSM/RGM potential. This is a consequence of the
approximate treatment of the Pauli exclusion principle in the
WS potential [34]. Specifically, the WS well used to fit the
N + α phase shifts supports a Pauli-forbidden bound state that
is removed by adding the term |φ0〉�〈φ0|, with |φ0〉 being
the bound-state wave function and the parameter � → ∞ is
the strength of the Pauli projector (in practice we work with
finite values, e.g., � = 1100 fm−1 in this case). This proce-
dure approximates the Pauli exclusion principle by effectively
shifting the spurious bound state to very large positive ener-
gies, well beyond the kinematic range under consideration,
leading to the unusually large values for the s-wave potential.
It should be pointed out that, since the magnitude of the
s-wave potential reflects the size of the projector strength, it
is arbitrarily large. Also, the scattering states are unaffected
by the projector term so that the phase shifts are identical to
those of the unmodified Woods-Saxon potential.

To verify the accuracy of the NCSM/RGM-generated mo-
mentum space potentials, we employ the LS equation (25)
to compute N-α scattering phase shifts and compare them
with the results obtained by solving the orthogonalized
NCSM/RGM equations in coordinate space, using the mi-
croscopic R-matrix method on a Lagrange mesh [45,46]. The
agreement between the two calculations is excellent (Fig. 5),
and demonstrates the accuracy of the momentum space N-α
potentials. We also compare the results of the microscopic
potentials to the phase shifts computed using the phenomeno-

logical WS fits. There is generally a reasonable agreement
for the s1/2 and p3/2 partial waves. The s1/2 phase shifts are
substantially larger than those of the WS potential, indicat-
ing an underestimation of the spin-orbit splitting, as already
observed in Ref. [47]. The inclusion of three-nucleon forces
combined with the solution of the problem within the more
complete approach of the no-core shell model with continuum
(NSCMC) resolves this issue [48,49].

B. NCSM/RGM calculations for 6Li and d- 4He scattering

We obtain the fully microscopic solution for the d-α bound
and scattering states using the NCSM/RGM approach for
deuteron-nucleus systems [47]. To enable a direct compari-
son with the Faddeev n + p + α calculations, we employ the
same NN interaction and consistent HO model space as for
the N-α potentials (Sec. III A). Different from the Faddeev
formalism, here the wave function of the deuteron projec-
tile is computed by diagonalizing the two-nucleon intrinsic
Hamiltonian in a two-body NCSM model space of consistent
size Nmax and HO frequency � as the α particle. Further,
the deformation and virtual breakup of the weakly bound
deuteron projectile are treated by including excited deuteron
pseudostates (discretizing the deuteron continuum) in the
NCSM/RGM coupled-channel equations, similar to what was
done in Ref. [47]. In that work it was demonstrated that the
inclusion of the n + p angular momentum channels 3S1 − 3D1,
3D2, and 3D3 − 3G3, while limiting the number of deuteron
pseudostates to no more than seven, yields well-converged
results for the d + α system.

C. Faddeev calculations for the d +4 He system

We proceed to solve the bound-state Faddeev equations for
the n + p + α system using the effective three-body Hamil-
tonian of Eq. (1) where Wnα , and Wpα are computed
microscopically as described in Sec. III A, and V np is the same
SRG-evolved NN interaction employed in the NCM/RGM
calculations above. By varying the value of Nmax used in the
computation of the N − α potentials, we determine that the
6Li ground-state energy is indeed well converged at Nmax =
12 (Fig. 6), which is consistent with the convergence patterns
of the d + α microscopic calculations discussed in Sec. III B.
Additionally, the convergence of the 6Li ground-state energy
with Nmax is similar to that of the relative binding ener-
gies E2 ≡ E (6Li) − E (α) − E (d ) and E3 ≡ E (6Li) − E (α).
Further, the Faddeev calculation requires a truncation in
the number of N-α partial waves included in the effective
three-body Hamiltonian. We find that the 6Li ground state
is well converged for the total angular momenta In+p �
3 and IN−α � 5/2 for the n + p and N + α subsystems,
respectively. The n + p + α three-body binding energy is de-
termined to be E3 = −3.18 MeV, which is combined with the
energy of the α particle (Table I) to obtain a 6Li ground-state
energy of E6 = −31.41 MeV. The resulting 6Li ground-
state energy is found to be E6 = −32.01 MeV, which is
approximately 600 KeV more bound than the Faddeev
three-body calculation. This underbinding of the Faddeev
calculation indicates a missing attractive strength in the
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FIG. 6. The 6Li ground-state binding energy as a function of
Nmax calculated using the NCSM/RGM and the three-body Fadeev
approach. (a) depicts the total six-body binding energy of 6Li while
(b) and (c), respectively, show the relative binding energy for the n +
p + α and d + α systems. The Faddeev results are indicated by (red)
solid lines with filled squares while the NCSM/RGM calculations
are depicted by (black) dashed lines with circles. The NCSM/RGM
model space is truncated at Nmax = 12/13 for the positive/negative
parity partial waves and h̄� = 14 MeV. The microscopic N-α po-
tentials that was used as input in the Faddeev computation of the
6Li bound state were obtained using Nmax = 12/13 with the angular
momentum truncation In+p � 2 and IN+α � 5/2.

n − p − α interaction that is not captured by the sum of the
pairwise n − α and p − α potentials. Since the α particle
is fixed in its ground state in both the NCSM/RGM and
Faddeev calculations, this effect can be attributed to the an-
tisymmetrization of the six nucleon problem. Indeed, a close
inspection of the NCSM/RGM deuteron-nucleus potential
(see, e.g., Eqs. (B2a)– (B2f) of Ref. [47]) reveals the presence
of irreducible three-body terms that arise from a simultaneous
exchange of the two nucleons inside the deuteron with nucle-
ons in the α particle.

Next, we solve the Faddeev-AGS equations for d + α

scattering at energies below the deuteron breakup threshold,
starting from the same three-body Hamiltonian as in the

TABLE I. The ground-state energies for the d , α, and 6Li com-
puted using the SRG-N3LO potential [9] with λSRG = 1.5 fm−1.
The NCSM results were obtained using Nmax = 12. The binding
energy of the deuteron calculated by solving the bound-state LS
equation in momentum space for the np system is also listed. The
angular momentum channels 3S1 − 3D1, 3D2, and 3D3 − 3G3 of the np
system were included in the NCSM/RGM calculation while limiting
the number of deuteron pseudostates to no more than seven. The
microscopic N-α potentials that was used as input in the Faddeev
computation of the 6Li bound state were obtained using Nmax =
12/13 with the angular momentum truncation In+p � 2 and IN+α �
5/2.

α d d 6Li 6Li
(NCSM) (NCSM) (LS) (NCSM/RGM) (Faddeev)

E (MeV) −28.22 −2.20 −2.22 −32.01 −31.41
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FIG. 7. The phase shifts for elastic d + α scattering as a function
of the center-of-mass energy for different partial wave three-body
model spaces. The (black) solid line with filled circles shows phase
shifts computed using the NCSM/RGM. The Faddeev results are
depicted by (red) solid, (blue) dashed, (green) dash-dotted, and
(turquoise) dash-dash-dotted lines for the partial wave model spaces
IN+α � 9/2, IN+α � 7/2, IN+α � 5/2, and IN+α � 3/2 as indi-
cated in the figure. The n + p partial waves are limited to In+p � 3.
The NCSM/RGM model space is truncated at Nmax = 12/13 for the
positive/negative parity partial waves and h̄� = 14 MeV.

bound-state calculations above. We first illustrate the conver-
gence of the Faddeev calculations with respect to the number
n + p and N + α partial waves, and determine that a max-
imum angular momentum of In+p = 3 and IN−α = 9/2 is
sufficient to reach convergence, respectively (Fig. 7). At the
same time, we employ the NCSM/RGM to microscopically
compute d + α (g.s) elastic scattering and proceed to compare
the results with the Faddeev calculations for the two domi-
nant d + α (g.s) partial waves at these energies. We find that
there is a relatively small difference between the 3S1 phase
shifts computed using the Faddeev and NCSM/RGM meth-
ods. However, there is a significant difference in the 3D3 phase
shifts, which manifests primarily as a shift in the position of
the 3+ resonance. The Faddeev calculations yield a resonance
energy that is approximately 400 keV larger relative to the
NCSM/RGM result, which is consistent with the underbind-
ing observed in the aforementioned ground-state calculations
of 6Li. We note that the 3D2 resonance is also shifted higher in
energy and lies beyond the kinematic range considered in this
work. Lastly, we compute energy and angular distributions
in order to quantify the effects of the irreducible three-body
force at the level of scattering observables. The energy distri-
butions are dominated by the 3D3 resonance and, as expected,
the Faddeev calculation exhibits a peak that is approximately
400 keV higher than that of the NCSM/RGM (Fig. 8). Also,
the differences between the angular distributions (Fig. 9) are
largest for energies closest to the resonance. The effect of the
omitted 3BF arising due to Pauli effects is thus sizable for
both the bound state and scattering observables of the d + α

system. Moreover, this missing 3BF is attractive in the d + α
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FIG. 8. The differential cross section for elastic d + α scattering
as a function of the center-of-mass energy Ec.m. at the scattering angle
θc.m. = 38.7 deg. The [blue] dashed lines shows phase shifts com-
puted using the NCSM/RGM while the Faddeev results are depicted
by (red) solid lines. The model space for the Faddeev calculation is
restricted to a total two-body angular momentum of In+p � 3 and
IN+α � 9/2 for the n + p and N-α subsystems. The NCSM/RGM
model space is truncated at Nmax = 12/13 for the positive/negative
parity partial waves and h̄� = 14 MeV.

partial waves considered here. Since the shapes of angular
distributions, e.g., in transfer reactions, are used to extract
spectroscopic information, the quality of such information can
be impacted by the 3BF effects.

IV. CONCLUSION AND OUTLOOK

While the three-body model provides an indispensable tool
for the description of deuteron-induced nuclear reactions, its
predictive power is still limited by the lack of constraints
on the effective three-body Hamiltonian. Particularly, the re-
duction of the many-body deuteron-nucleus problem into the
three-body space results in an effective Hamiltonian that con-
sists of an irreducible neutron-proton-nucleus 3BF in addition
to the pairwise nucleon-nucleus potentials. In this work we
have studied the irreducible n-p-α 3BF arising from antisym-
metrization effects and quantified its impact on observables
of the d + α system. We started from a microscopic five-body
Hamiltonian constructed using SRG-evolved N3LO chiral NN
potentials and employed the NCSM/RGM [28] to compute
momentum space N + α potentials. To benchmark the poten-
tials, we used the LS equation to obtain the corresponding
scattering solutions and demonstrated that the resulting phase
shifts are in excellent agreement with those obtained via the
standard two-body NCSM/RGM by solving R-matrix equa-
tions in coordinate space. Next, we constructed an effective
three-body potential for the n + p + α system by summing the
pairwise potentials and proceeded to solve the corresponding
Faddeev-AGS equations for the 6Li ground state as well as
d-α scattering. At the same time, we carried out correspond-
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FIG. 9. The differential cross section for elastic d + α scattering
as a function of the center-of-mass angle θc.m. at varying energies
Ec.m.. The solid lines shows phase shifts computed using the Faddeev
method while the NCSM/RGM results are depicted by dashed lines.
The model space for the Faddeev calculation is restricted to a total
two-body angular momentum of Inp � 3 and IN−α � 9/2 for the np
and N-α subsystems. Experimental data from Ref. [50] are included.
The NCSM/RGM model space is truncated at Nmax = 12/13 for the
positive/negative parity partial waves and h̄� = 14 MeV.

ing microscopic calculations using the NCSM/RGM starting
from a six-body microscopic Hamiltonian based on the same
NN interaction as in the N + α case.

We observed that the Faddeev calculation yields a 6Li
ground state that is approximately 600 keV shallower than
the one obtained with the NCSM/RGM, indicating an omitted
attractive 3BF. This is consistent with the findings of Ref. [25],
where similar calculations based on phenomenological micro-
scopic Hamiltonians were carried out. Additionally, the d + α

three-body calculations yield a 3+ resonance energy that is
approximately 400 keV larger compared to the NCSM/RGM
result, which is consistent with the observed underbinding
of the 6Li ground state. The two methods also yield angular
distributions with different shapes due to differences in the
position of the 3+ resonance. Since the α particle is fixed in
its ground state, the origin of this 3BF can be ascribed to two-
nucleon exchange processes that are intrinsically three-body
in nature.

In the future, three-body calculations of d + α may
be improved by using the two-nucleon exchange terms in
NCSM/RGM-generated d − α potential to evaluate the ir-
reducible three-body force. Moreover, a similar study based
on more complete formalism of the NCSMC [48,51] [where
the NCSM/RGM ansatz is augmented with an expansion in
square-integrable NCSM eigenstates of the composite (A +
2)-nucleon system], is necessary for the quantification of ad-
ditional components arising from excitations of the nucleons
inside the target nucleus. Lastly, performing similar studies
for other light nuclei and establishing a mass dependence
of the irreducible three-body force would provide valuable
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information for phenomenological models that have a wider
range of applicability in mass and energy.
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APPENDIX: AB INITIO NUCLEON-NUCLEUS
POTENTIALS IN MOMENTUM SPACE

To compute the potential WIπ T
νν ′ (p′, p), we first note that

the norm kernel consists of the identity operator and a short-
ranged exchange term N ex, Iπ T

νν ′ (p′, p), so that N Iπ T
νν ′ (p, p′) =

δνν ′ δ(p−p′ )
pp′ + N ex, Iπ T

νν ′ (p′, p). The superscript IπT will be
dropped from all terms hereafter for brevity. We proceed by
defining the harmonic oscillator (HO) model space

P� ≡
nmax∑
n=0

|Rn�〉〈|Rn�|, (A1)

and the complimentary space Q� ≡ 1 − P�, where the ba-
sis vectors are the radial harmonic oscillator wave functions
|Rn�〉, with n being the radial quantum number. The second
term of the norm kernel can be accurately represented within
the model space P, owing to its short-ranged character. Con-
trarily, the δ function has components within the HO model
space as well as in the complimentary space. By defining the
component of the norm kernel inside the model space �nν,n′ν ′ ,
we can express the momentum space norm kernel in the form

Nνν ′ (p, p′) = δνν ′ Q�(p, p′) + [P � P]νν ′ (p′, p),

≡
[

δ(p − p′)
pp′ −

∑
n

R̃n�(p)R̃n�(p′)

]
δνν ′

+
∑
nn′

R̃n�(p) �nν,n′ν ′ R̃n�′ (p′), (A2)

where the R̃n�(p) is the momentum space representation
of the radial harmonic oscillator wave function. Addition-
ally, we introduce the square root of the norm kernel N 1/2

and its inverse N−1/2, which are defined such that [N 1/2 ·
N 1/2]νν ′ (p, p′) ≡ Nνν ′ (p, p′) and [N 1/2 · N−1/2]νν ′ (p, p′) ≡
δ(p,p′ )

pp′ δνν ′ . The multiplication by the norm implies a sum
over channel indices and an integral over the momentum
coordinate such that, e.g.,

[N 1/2 · N 1/2]νν ′ (p, p′) =
∑
ν ′′

∫
d p′′ p′′2 N 1/2

νν ′′ (p, p′′)

×N 1/2
ν ′′ν ′ (p′′, p′). (A3)

Further, the (inverse) square root fulfills Eq. (A2), with matrix
elements �

±1/2
nν,n′ν ′ replacing �nν,n′ν ′ and represents the com-

ponent of the norm square (inverse square) root inside the P
space. To proceed, we note that the momentum space repre-
sentation of the average Coulomb potential V̄ c(r) is nonlocal
and has an angular dependence so that V̄ c ≡ V̄ c

� (p, p′). By in-
troducing the average Coulomb potential kernel Vc

νν ′ (p, p′) =
V̄ c

� (p, p′) δνν ′ and the relative potential kernel

V rel
νν ′ (p, p′) ≡ 〈νp|A V relA|ν ′ p′ 〉, (A4)

the Hamiltonian kernel can be expressed as

Hνν ′ (p, p′) = E (A)
ν Nνν ′ (p, p′) + p2

2μ
Nνν ′ (p, p′)

+ [Vc N ]νν ′ (p, p′) + V rel
νν ′ (p, p′). (A5)

The (A + 1)-body Schrödinger equation satisfied by the
NCSM/RGM wave function of Eq. (24) can thus be cast as

∑
ν ′

∫
d p′ p′2 [EA+1 Nνν ′ (p, p′) − Hνν ′ (p, p′)]

× [N−1/2 χ ]ν ′ν0 (p′, p0) = 0, (A6)

or in the condensed form

[EA+1 − H̄] χ = 0, (A7)

after multiplying by N−1/2 from the left, where the effective
potential is given by H̄ ≡ N−1/2 H N−1/2 and EA+1 is the
total energy of the nucleon-target system. The model space
Hamiltonian kernel H̄mod (i.e., the component of the Hamil-
tonian kernel H̄νν ′ within the HO model space is computed
similarly to the NCSM/RGM presented in Ref. [28] except
that the momentum space HO wave functions are used in the
place of their coordinate space counterparts. Further, there are
corrections to H̄νν ′ (p, p′) emerging from outside the model
space P due to the presence of long-ranged terms in Eq. (A5),
namely, the target nucleus energy eigenvalue Heev

νν ′ (p, p′) ≡
E (A)

ν Nνν ′ (p, p′), the relative nucleon-nucleus kinetic energy
Hkin

νν ′ (p, p′) ≡ E (A)
ν Nνν ′ (p, p′), and the average Coulomb po-

tential, Vcoul
νν ′ (p, p′) ≡ δνν ′ [V̄ c

� Q�]νν ′ (p, p′). To compute the
out-of-model-space contributions to H̄νν ′ (p, p′) arising from
these terms, we multiply by N−1/2 from both sides and Her-
mitize (i.e., add Hermitian conjugate and multiply by 1/2)
leading to

H̄eev
νν ′ (p, p′) = E (A)

ν δνν ′
δ(p − p′)

pp′

× − E (A)
ν δνν ′

nmax∑
n=0

R̃n�(p) R̃n�(p′), (A8)

for the energy eigenvalue term. Although the Hamilto-
nian kernel H̄νν ′ (p, p′) in the full space (i.e., nmax →
∞) is Hermitian, the representation at finite nmax does
not fulfill this symmetry and therefore necessitates the
explicit Hermitization. Additionally, the kinetic energy
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term gives

H̄kin
νν ′ (p, p′) = p2

2μ
δνν ′

δ(p − p′)
pp′ − p2

2μ
δνν ′

nmax∑
n=0

nmax∑
n′=0

R̃n�(p) T�,nn′ R̃n�(p′)

−
nmax∑
n=0

R̃nmax+1,l (p) T�,nmax+1,nmax

[
δνν ′ δnnmax − 1

2
�

−1/2
nν,nmaxν ′ − 1

2
�

1/2
nν,nmaxν ′

]
R̃n�(p)

−
nmax∑
n=0

R̃n�′ (p′)
[
δνν ′ δnnmax − 1

2
�

−1/2
nmaxν,nν ′ − 1

2
�

1/2
nmaxν,nν ′

]
T�,nmax,nmax+1R̃nmax+1,l (p), (A9)

where T�,nn′ ≡ 〈Rn�| p2/2μ |Rn′�〉 are the kinetic energy matrix elements in the HO basis. The first term in Eq. (A8) and Eq. (A9)
is, respectively, the energy eigenvalue of the target nucleus and the relative nucleon-target kinetic energy. The remaining terms
constitute the respective contributions to the effective nucleon-target potential Weev

νν ′ (p, p′) and Wkin
νν ′ (p, p′), such that

H̄eev
νν ′ (p, p′) = E (A)

ν δνν ′
δ(p − p′)

pp′ + Weev
νν ′ (p, p′), (A10)

and

H̄kin
νν ′ (p, p′) = p2

2μ
δνν ′

δ(p − p′)
pp′ + Wkin

νν ′ (p, p′). (A11)

Additionally, the correction due to the average Coulomb potential is given by

H̄coul
νν ′ (p, p′) = V̄ c

� (p, p′) δνν ′ +
nmax∑
n=0

nmax∑
n′=0

(
R̃n�(p) 〈Rn′�′ | V̄ c

� |p′〉 + 〈p| V̄ c
� |Rn�〉R̃n′�′ (p′)

)(1

2
�

−1/2
nν,n′ν ′ − δνν ′ δnn′

)

+
nmax∑
n=0

nmax∑
n′=0

Rn�(p) Rn′�′ (p′)
(

δνν ′ ˜̄V c
�,nn′ − 1

2

nmax∑
n′′=0

( ˜̄V c
�,nn′′�

−1/2
n′′ν,n′ν ′ + �

−1/2
nν,n′′ν ′

˜̄V c
�,n′′n′

))
, (A12)

where ˜̄V c
�,nn′′ ≡ 〈Rn�|V̄ c

� |Rn′′�〉 are the matrix elements of average Coulomb potential in the HO basis. The full nucleon-target
potential is therefore given by the sum

Wνν ′ (p, p′) = H̄mod
νν ′ (p, p′) + Weev

νν ′ (p, p′) + Wkin
νν ′ (p, p′) + H̄coul

νν ′ (p, p′), (A13)

and the full Hamiltonian kernel takes the form

H̄νν ′ (p, p′) =
[

E (A)
ν + p2

2μ

]
δνν ′

δ(p − p′)
pp′ + Wνν ′ (p, p′), (A14)

which is substituted into Eq. (A7) to arrive at the effective two-body Schrödinger in momentum space. Finally, we can write
Eq. (A7) explicitly leading to[

EA+1 − E (A)
ν − εν − p2

2μ

]
χνν0 (p, p0) =

∑
ν ′

∫
d p′ p′2 Wνν ′ (p, p′) χν ′ν0 (p′, p0). (A15)

We note that the quantity EA+1 − H̄ contains the difference EA+1 − E (A)
ν , which is the total energy of the (A + 1) system relative

to the energy of the target nucleus. It is customary to define an incident relative kinetic energy Ekin ≡ EA+1 − E (A)
ν0

so that
the relative kinetic energy has the form energy EA+1 − E (A)

ν = Ekin − εν . The corresponding t matrix fulfills the Lippmann-
Schwinger (LS) equation

tνν0 (p, p0; Ekin ) = Wνν0 (p, p0) +
∑
ν ′

∫
d p′ p′2 Wνν ′ (p, p′) G0ν ′ (Ekin, p′) tνν0 (p′, p0; Ekin ). (A16)

which is equivalent to Eq. (A15) complemented by the scattering boundary conditions, and the propagator is given by
G0ν ′ (Ekin, p′) = [Ekin − εν ′ − p′2/2μ + i0]−1.
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