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Current and future electron and neutrino scattering experiments will be greatly aided by a better understanding
of the role played by short-range correlations in nuclei. Two-body physics, including nucleon-nucleon correla-
tions and two-body electroweak currents, is required to explain the body of experimental data for both static and
dynamical nuclear properties. In this work, we focus on examining nucleon-nucleon correlations from a chiral
effective field theory perspective and provide a comprehensive set of new variational Monte Carlo calculations of
one- and two-body densities and momentum distributions based on the Norfolk many-body nuclear Hamiltonians
for A � 12 systems. Online access to detailed tables and figures is available.
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I. INTRODUCTION

The coordinate and momentum distributions of nucleons in
nuclei are one of the key indicators of short-range correlations
(SRCs) in multinucleon systems. SRCs represent a fascinating
aspect of nuclear dynamics; understanding their formation
mechanisms and specific characteristics is required to obtain
a comprehensive description of nuclei and nucleonic matter.
SRCs tell us much about (i) nuclear forces at short distances
and how they are generated from quantum chromodynamics;
(ii) the limitations of mean-field models and how to ameliorate
them; (iii) the properties of matter at high densities, such
as those found in compact stellar objects and in relativistic
heavy-ion collisions; (iv) the response functions in hadron
and lepton scattering from nuclei; (v) the origin of the EMC
effect, and (vi) the sensitivity of neutrinoless double beta
decay matrix elements to short-range dynamics.

Since the 1950s, many efforts have been devoted to the
study of SRCs and the short-range properties of the nuclear
force. It was only recently that experimental and theoretical
studies of these phenomena were placed on solid ground,
thanks to sophisticated high-energy and large-momentum-
transfer electron- and proton-scattering experiments [1–9],
allowing for precision measurements of small cross sections,
together with the enormous progress made by many-body
theories [10–18]. For instance, experiments involving high-
energy, semi-inclusive triple coincidence measurements that
successfully probed the isospin composition of nucleon-
nucleon (NN) SRCs in the relative momentum range of
300–600 MeV/c discovered a strong (by a factor of 20)
dominance of neutron-proton (np) pair SRCs in nuclei when
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compared with proton-proton (pp) and neutron-neutron (nn)
correlations in both light and heavy nuclei [6–8]. This was
explained on the basis of the large tensor force in the NN
interaction at the above-mentioned momentum range. As a re-
sult of this finding, it was predicted that the single-momentum
distributions of the proton and neutron, weighted by their
respective fractions, are nearly equal, and that the probability
of a proton or neutron being in high-momentum NN correla-
tion is inversely proportional to their relative fractions in the
nucleus. The validity of these predictions were confirmed by
results of ab initio variational Monte Carlo (VMC) calcula-
tions of the momentum distributions of light nuclei [16] and of
approximate schemes like cluster expansions [11,13,19] and
correlated basis function theory [20–22] for medium to heavy
nuclei. Moreover, calculations of the momentum distributions
of different light nuclei showed high-momentum tails that
resembled those of the deuteron, demonstrating a universal
nature of SRCs [11,13,16,19–22].

An extensive library of VMC one- and two-body den-
sities and momentum distributions for many different light
nuclei using the phenomenological Argonne v18 (AV18) two-
nucleon (NN) [23], and Urbana X (UX) three-nucleon (3N)
interactions was previously constructed and posted online for
the benefit of the nuclear physics community at large [16].
Additionally, these calculations have contributed to a novel
study of many-body factorization and the position-momentum
equivalence of nuclear short-range correlations, using a gener-
alized contact formalism (GCF), which was reported in Nature
Physics [24].

In this paper, we provide a comprehensive set of new
results of one-and two-body densities and momentum distri-
butions over a wide range of nuclei from 2H up to 12C, using
the Norfolk NN and 3N (NV2 + 3) forces [25–29]. These re-
sults feature new calculations of the pair density as a function
of both the pair separation and pair center of mass, and calcu-
lations of the two-body momentum distribution coming from
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FIG. 1. One-body neutron (left panel) and proton (right panel) densities are shown for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C using the
phenomenological AV18+UX and the local chiral NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions.

short- and long-range pairs differentiated by a pair separation
boundary. The full set of calculations is accessible in graphical
and tabular forms online [30].

The paper is structured as follows: a brief review of Nor-
folk interactions is given in Sec. II. In Sec. III we present
results for the one- and two-body densities calculated for 3H,
3,4,8He, 6,7Li, 9Be, 10B, and 12C. The pair density as a function
of both the pair separation and pair center of mass is presented
for 4He and 12C. In Sec. IV the results for the one- and two-
body momentum distribution are provided for 3H, 3,4,8He,
6,7Li, 9Be, 10B, and 12C. Results for momentum distributions
as functions of the relative momentum and center-of-mass
momentum without and with pair separation boundary are
displayed for 4He and 12C. Additional results are available
online.

II. NORFOLK MANY-BODY INTERACTIONS

The Norfolk interactions are obtained from a chiral ef-
fective field theory (χEFT) that uses pions, nucleons, and
�s as fundamental degrees of freedom and consists of long-
range parts mediated by one- and two-pion exchange, and
contact terms specified by unknown low-energy constants
(LECs). The LECs entering the NN contact interactions are
constrained to reproduce NN scattering data from the most
recent and up to date database collected by the Granada group
[31–33]. The contact terms are regularized via a Gaussian
cutoff function with RS as the Gaussian parameter [25–27].
The divergences at high-value of momentum transfer in the
pion-range operators are removed via a special radial function
characterized by the cutoff RL [25–27]. There are two classes
of NV2 potentials. Class I (II) has been fit to data up to
125 MeV (200 MeV). For each class, two combinations of
short- and long-range regulators have been used, namely
(RS, RL ) = (0.8, 1.2) fm (models NV2-Ia and NV2-IIa) and
(RS, RL ) = (0.7, 1.0) fm (models NV2-Ib and NV2-IIb).
Class I (II) fits about 2700 (3700) data points with a χ2/datum
�1.1 (�1.4) [25,26]. The short-range component of the 3N
interactions is parametrized in terms of two LECs, cD and
cE . In the first generation of Norfolk potentials (NV2+3-

Ia/b and NV2+3-IIa/b), these LECs have been determined
by simultaneously reproducing the experimental trinucleon
ground-state energies and nd doublet scattering length [34].
Within the χEFT framework, cD is related to the LEC entering
the axial two-body contact current [35–37]. This allows one
to adopt a different strategy to constrain cD and cE . In par-
ticular, in Ref. [27] they have been constrained to reproduce
the trinucleon binding energies and the empirical value of
the Gamow-Teller matrix element in tritium β decay. Norfolk
models that use this fitting procedure are designated with a
“*,” namely, NV2+3-Ia*/b* and NV2+3-IIa*/b*.

These interactions have been recently employed in the
VMC and Green’s function Monte Carlo (GFMC) approaches
[38,39] to calculate energies [34], charge radii and electro-
magnetic form factors [39], beta-decay transitions [27,40,41],
neutrinoless double beta decay [42,43] of light nuclei, beta
decay spectra [44], muon-capture rates [45], and with the
auxiliary field diffusion Monte Carlo (AFDMC) [39] to study
the equation of state of pure neutron matter [46,47].

III. DENSITY DISTRIBUTIONS

The one- and two-body densities are evaluated as simple
δ-function expectation values given by

ρN (r) = 1

4πr2
〈�|

∑
i

PNiδ(r − |ri − Rcm|)|�〉, (1)

ρNN (r) = 1

4πr2
〈�|

∑
i< j

PNi PNj δ(r − |ri − r j |)|�〉, (2)

where PNi represents the projector operator onto protons (+)
or neutrons (−) defined as PNi = (1 ± τzi )/2, ri is the position
of nucleon i and Rcm is the coordinate of the center of mass.

A detailed survey of one- and two-body densities have
been calculated for a variety of nuclei in the range A =
2–12 using variational Monte Carlo wave functions developed
for the AV18+UX and the Norfolk local chiral interactions.
The corresponding tables and figures are available online
for the one-nucleon densities and two-nucleon densities (see
Refs. [48,49], respectively).
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TABLE I. Total number of spin-up and spin-down protons and
neutrons in J > 0 nuclei with MJ = J for the local chiral Nor-
folk NV2+3 interactions. Variation among the different interactions
NV2+3-Ia, -Ia*, -Ib*, -IIa*, and -IIb* is less than 0.01 unless other-
wise indicated by an error in parentheses.

Nucleus N↑p N↓p N↑n N↓n

2H(1+) 0.96 0.04 0.96 0.04
3He( 1

2

+
) 0.98 1.02 0.94 0.06

6Li(1+) 1.93 1.07 1.93 1.07
7Li( 3

2

−
) 1.94 1.06 1.99 2.01

8Li(2+) 1.91 1.09 2.85(1) 2.15(1)
9Li( 3

2

−
) 1.91 1.09 3.12(7) 2.88(7)

9Be( 3
2

−
) 2.00 2.00 2.85(2) 2.15(2)

10B(3+) 2.90(1) 2.10(1) 2.90(1) 2.10(1)
11B( 3

2

−
) 2.87(2) 2.13(2) 2.99(1) 3.01(1)

A. One-body density results

In Fig. 1 we present the neutron and proton densities cal-
culated for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C using the
AV18+UX and the NV2+3-Ia, NV2+3-Ia*, and NV2+3-
IIb* local chiral interactions. Additional densities for 2H, 6He,
8,9Li, 8,10,12Be, 11B, and 10,11C may be found in the online
tables, as well as results for the NV2+3-Ib* and NV2+3-IIa*
interactions. We also give neutron and proton rms radii there.

The VMC wave functions are treated as states of unique
isospin T . Thus for N = Z nuclei, proton and neutron densi-
ties are the same and only proton densities are given in the
online tables. However, the wave functions for nuclei with
T > 0 can be different for different isospin projections Tz,
so mirror nuclei are not isospin symmetric. This allows the
proton-rich nuclei to be slightly more diffuse than neutron-
rich nuclei due to their greater repulsive Coulomb interaction.

Spin-up and spin-down densities are also provided in the
online tables. In J = 0 nuclei, spin-up and spin-down den-
sities are identical, but not for J > 0 nuclei. If spin-up and
spin-down projections are the same, as in 0+ states, we give

only totals. The total number of spin-up and spin-down pro-
tons and neutrons in J > 0 nuclei with MJ = J are reported in
Table I. Unless otherwise indicated by an error in parentheses,
variation among the different interaction models is less than
0.01. We note that for these nuclei, the subset with an odd
number of neutrons has (n ↑ −n ↓) ≈ 0.7–0.9, while those
with an even number of neutrons have (n ↑ −n ↓) ≈ −0.02.
Similar results hold for nuclei with odd and even proton num-
bers. The sole exception is 9Li which has an exceptionally
large error bar.

We also note that the s-shell nuclei (A � 4) exhibit large
peaks at small separation, while the p-shell nuclei (A � 6) are
much reduced at small r and more spread out. This can be
attributed to the cluster structure of these light p-shell nuclei,
e.g., αd in 6Li, αt in 7Li, ααn in 9Be, and 3α in 12C. This puts
the center of mass of these nuclei in between clusters and thus
reduces the central density.

B. Two-body density results

In Fig. 2, we present the relative-distance pair densities,
with neutron-proton (np) in the left panel and proton-proton
(pp) in the right panel for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C
using the phenomenological AV18+UX and the local chiral
NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions. The
online tables contain additional results for the NV2+3-Ib*
and NV2+3-IIa* interactions.

We can see that within a fixed interaction model, the two-
nucleon densities at r � 1.5 fm for various nuclei exhibit a
similar behavior, generated by the cooperation of the short-
range repulsion and the intermediate-range tensor attraction of
the NN interaction, with the tensor force governing the large
overshoot at r ≈ 1.0 fm between np pairs.

As shown in Fig. 3, where all calculations are scaled to
have the same value at ≈1 fm, the two-nucleon densities at
short separations appears to be the same for all values of A,
which leads to the nontrivial conclusion that at short ranges
the two-nucleon motion is not affected by the presence of the
other particles. This is what has been called universality of

FIG. 2. Relative-distance np (left panel) and pp (right panel) pair densities for several nuclei. Distributions are shown for 3H, 3,4,8He, 6,7Li,
9Be, 10B, and 12C using the phenomenological AV18+UX and the local chiral NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions.
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FIG. 3. Relative-distance np (left panel) and pp (right panel) pairs densities for several nuclei. Distributions are shown for
3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C using the phenomenological AV18+UX and the local chiral NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb*
interactions. For each potential, all calculations are scaled to have the same value at ≈1 fm.

SRCs [12]. Moreover, at large separation the asymptotic be-
havior of the two-nucleon densities for different nuclei differs
due to the different surface effects.

While the short-distance behavior is the same for all nu-
clei, it differs for each interaction. Indeed, the probability
of finding two nucleons at short distances is finite for the
“soft” NV2+3-Ia and NV2+3-Ia* chiral models, but ap-
proaches zero as we progress to the “hard” local chiral
interaction NV2+3-IIb* and the “hardest” phenomenological
AV18+UX.

Nucleon pair distributions in different combinations of ST
for different nuclei can also be found online. In Table II, we
report the number of pairs NST for 3,4,6,8He, 6,7,8,9Li, 8,9,10Be,
10,11B, and 12C using the NV2+3 potentials. We show both in-
dependent pair (IP) numbers for the highest spatial symmetry
states and for the fully correlated (cor) wave functions. Cor-
related pair counts for the AV18+UX interaction fall within
these ranges for all but two cases.

A common feature in the ST pair counts is that there is
a moderate 10%–15% depletion of the ST = 01 pairs going
from IP to correlated wave functions, with a corresponding
increase in the number of ST = 11 pairs. This is attributable
to the many-body tensor correlations, which can flip spins
(in exchange for orbital angular momentum) but not change
isospin. Because the ST = 01 interactions are more attractive
than ST = 11, this depletion mechanism is a source of satu-
ration of the nuclear binding. The ST = 10 pairs also show
a depletion going from IP to correlated wave functions, with
an increase of ST = 00 pairs, but the effect is much smaller,
probably because ST = 00 interaction is generally much more
repulsive than ST = 11.

The probability of finding two nucleons with relative sep-
aration r and center-of-mass distance R is described by the
calculation of the full probability density ρNN (r, R). These
densities are computationally demanding and are not available
for all nuclei and interactions, but they can be generated upon
request.

In Fig. 4, we present the np and pp densities, multiplied
by r2R2, as a function of r and R for 4He and 12C using

the phenomenological AV18+UX interaction. The curves are
normalized to obtain the corresponding np and pp pairs, 4np
and 1pp pairs in 4He, 36np and 15pp pairs in 12C.

TABLE II. Total number of spin-isospin ST pairs in different
nuclei for the NV2+3 potentials, showing both independent pair (IP)
for the highest spatial symmetry states and the fully correlated (cor)
wave functions. Correlated pair counts for AV18+UX are consistent
within error bars for all but a few cases.

Nucleus � N01 N11 N10 N00

3He( 1
2

+
) IP 1.5 0.0 1.5 0.0

cor 1.37 0.13 1.49 0.01
4He(0+) IP 3.0 0.0 3.0 0.0

cor 2.57(1) 0.43(1) 2.99 0.01
6He(0+) IP 5.5 4.5 4.5 0.5

cor 4.95(1) 5.05(1) 4.49 0.51
6Li(1+) IP 4.5 4.5 5.5 0.5

cor 4.07(2) 4.93(2) 5.47 0.53
7Li( 3

2

−
) IP 6.75 6.75 6.75 0.75

cor 6.13(2) 7.37(2) 6.73 0.77
8He(0+) IP 9.0 12.0 6.0 1.0

cor 8.16(2) 12.84(2) 6.00 1.00
8Li(2+) IP 8.0 11.0 8.0 1.0

cor 7.42(3) 11.58(3) 7.94 1.06
8Be(0+) IP 9.0 9.0 9.0 1.0

cor 8.09(3) 9.91(3) 8.97 1.03
9Li( 3

2

−
) IP 10.5 15.0 9.0 1.5

cor 9.46(12) 16.04(11) 8.99(1) 1.51(1)
9Be( 3

2

−
) IP 10.5 13.5 10.5 1.5

cor 9.57(4) 14.43(4) 10.46 1.54
10Be(0+) IP 13.0 18.0 12.0 2.0

cor 11.73(4) 19.27(4) 11.98 2.02
10B(3+) IP 12.0 18.0 13.0 2.0

cor 11.01(7) 18.99(7) 12.94(1) 2.06(1)
11B( 3

2

−
) IP 15.0 22.5 15.0 2.5

cor 13.84(2) 23.66(3) 14.91(3) 2.59(3)
12C(0+) IP 18.0 27.0 18.0 3.0

cor 16.54(6) 28.46(6) 17.91(1) 3.09(1)
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FIG. 4. The surface plots show the np and pp densities as function of the relative distance r and center-of-mass R for 4He (left panel) and
12C (right panel) using the phenomenological AV18+UX. The curves are normalized to obtain the corresponding np and pp pairs.

IV. MOMENTUM DISTRIBUTIONS

A. One-body momentum distributions

The probability of finding a nucleon with momentum k and
spin-isospin projection σ, τ in a given nuclear state is obtained
by the Fourier transform of the one-nucleon nondiagonal den-
sity matrix

ρστ (k) =
∫

dr′
1 dr1 dr2 · · · drA ψ

†
JMJ

(r′
1, r2, . . . , rA)

× e−ik·(r1−r′
1 ) Pστ (1) ψJMJ (r1, r2, . . . , rA). (3)

where Pστ (i) is the spin-isospin projection operator for nu-
cleon i, and ψJMJ is the nuclear wave function with total spin
J and spin projection MJ . The normalization is

Nστ =
∫

dk

(2π )3 ρστ (k), (4)

where Nστ is the number of spin-up or spin-down protons or
neutrons.

Monte Carlo (MC) integration is used to construct the
Fourier transform in Eq. (3). A conventional Metropolis walk,
guided by |ψJMJ (r1, . . . , ri, . . . , rA)|2, is used to sample con-
figurations [50]. We average across all particles i in each
configuration, and for each particle, the Fourier transform is
computed using a grid of Gauss-Legendre points xi. Instead
of just moving the position r′

i in the left-hand wave function
away from a fixed position ri in the right-hand wave function,
both positions are moved symmetrically away from ri, so
Eq. (3) becomes

ρστ (k) = 1

A

∑
i

∫
dr1 · · · dri · · · drA

∫
d�x

∫ xmax

0
x2dx

×ψ
†
JMJ

(r1, . . . , ri + x/2, . . . , rA) e−ik·x

× Pστ (i) ψJMJ (r1, . . . , ri − x/2, . . . , rA). (5)

FIG. 5. Total one-body neutron (left panel) and proton (right panel) momentum distributions for 3H, 3He, 4He, 6Li, 7Li, 8He, 9Be, 10B, and
12C using the AV18+UIX phenomenological potentials, and the NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* local chiral interactions.
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FIG. 6. Total np (left panel) and pp (right panel) momentum distributions as function of the relative momentum q for 3H, 3He, 4He, 6Li,
7Li, 8He, 9Be, 10B, and 12C using the AV18+UIX phenomenological potentials, and the NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* local chiral
interactions.

Here the polar angle d�x is also sampled by MC integration,
with a randomly chosen direction for each particle in each
MC configuration. This approach is analogous to that used
in studies of the nucleon-pair momentum distribution, see
Refs. [10,16], and has the benefit of significantly decreas-
ing statistical errors caused by the rapidly oscillating nature
of the integrand for large values of k. To reach momenta
k ≈ 10 fm−1 in 4He with good statistics requires integrating
to xmax = 20 fm using 200 Gauss-Legendre points.

The results for a variety of nuclei in the range A =
2–12 are available online [51]. They are generated as dis-
tributions for neutron spin-down ρn↓(k), neutron spin-up
ρn↑(k), proton spin-down ρp↓(k), and proton spin-up ρp↑(k),
for the MJ = J state. Where proton and neutron momen-
tum distributions are the same, as in T = 0 nuclei, only
one set is given, and similarly, if spin-up and spin-down
projections are the same, as in 0+ states, we give totals
only.

FIG. 7. Ratio of np to pp pairs as function of relative momentum q for various nuclei; the constant line in each panel is the total pair ratio.
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FIG. 8. The surface plots show the np (left panels) and pp (right panels) momentum distributions as functions of the relative momentum q
and center-of-mass momentum Q for the alpha particle obtained with the NV2+3-Ia* and AV18+UX interactions.

In Fig. 5 we show the total one-body neutron (left panel),
ρn↓(k) + ρn↑(k), and proton (right panel), ρp↓(k) + ρp↑(k),
momentum distributions for 3H, 3,4He, 6,7Li, 8He, 9Be, 10B,
and 12C using the phenomenological AV18+UX, and the local
chiral NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions.
Additional results for 2H, 6He, 8,9Li, 8,10Be, and 11B are
shown in the online tables.

All models show the progressive high-momentum behavior
in k as the number of nucleons increases. Adding nucleons
to the p shell widens the distribution at low momenta and
creates a peak at a finite k. All of these nuclei have a dra-
matic shift in slope at k = 2 fm−1 to a broad shoulder, which
is attributed to the large tensor correlation caused by the
pion-exchange component of the nuclear force. As expected,
the differences between the models are most noticeable in
the high-momentum tails, which decay more rapidly with
increasing k for the “soft” NV2+3-Ia and NV2+3-Ia* interac-
tions than the “hard” NV2+3-IIb* and AV18+UX potentials.
The difference in momentum distributions observed for the
NV2+3-Ia and NV2+3-Ia* models, which have the same
two-body interaction but different the three-nucleon force
parametrization, is small. For NV2+3-Ia, there is a minor
overall shift in ρn(k) and ρp(k) toward bigger k.

B. Two-body momentum distributions

The probability of finding two nucleons in a nucleus
with relative momentum q = (k1 − k2)/2 and total center-of-
mass momentum Q = k1 + k2 in a given spin-isospin state is

given by

ρST (q, Q) =
∫

dr′
1dr1dr′

2dr2dr3 · · · drA

×ψ
†
JMJ

(r′
1, r′

2, r3, . . . , rA)

× e−iq·(r−r′ )e−iQ·(R−R′ )

× PST (12)ψJMJ (r1, r2, r3, . . . , rA), (6)

where r = r1 − r2, R = (r1 + r2)/2, and PST (12) is a projec-
tor onto pair spin S = 0 or 1, and isospin T = 0 or 1. The total
normalization is

NST =
∫

dq

(2π )3

dQ

(2π )3 ρST (q, Q), (7)

where NST is the total number of nucleon pairs with given
spin-isospin. Alternate projectors can also be used, e.g., for
NN pairs pp, np, and nn (and each of these with spin S) with
corresponding normalizations.

The nucleon-pair momentum distributions can be exam-
ined in a number of different ways. One way is to integrate
over all values of Q and reduce the total pair density to a
function ρNN (q) of the relative momentum q only. In this case,
Eq. (6) reduces to a form similar to Eq. (5), with a sum over all
configurations in the Monte Carlo walk controlled by |�JMJ |2,
and a Gauss-Legendre integration over the relative separation
x = r − r′. Again, the polar angle �x is sampled by randomly
choosing the direction of x in space, and an average over all
pairs in every MC configuration is made.
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FIG. 9. Same as Fig. 8 but for 12C using the AV18+UX.

Many results for ρST (q) and ρNN (q) obtained for various
light nuclei in the range A = 3–12 are recorded in the online
tables [52]. These are from VMC calculations using different
Norfolk NV2+3 potentials, including -Ia, -Ia*, -Ib*, -IIa*,
and -IIb*, as well as results obtained with the AV18+UX.
The nuclei covered include 3H, 3,4,6,8He, 6,7,8,9Li, 8,9Be, 10B,
and 12C.

In Fig. 6, we display the np and pp momentum dis-
tributions for selected nuclei using the AV18+UX phe-
nomenological potentials, and the NV2+3-Ia, NV2+3-Ia*,
and NV2+3-IIb* local chiral interactions. They have been
calculated for relative momentum q from 0 to 10 fm−1 and

integrated over all values of Q. All the four Hamiltonians
show the high-momentum tail in q, but it decays more rapidly
for the soft NV2+3-Ia and NV2+3-Ia*.

In Fig. 7, we show the ratio of the np and pp momentum
distributions for several nuclei relative to the total np/pp
ratio. For q � 2 fm−1 the ratios are virtually identical for the
different interactions and close to the total number of np and
pp pairs. Beyond that point, the np/pp ratio gets larger, with
the soft interactions showing a larger peak at smaller q, while
the hard interactions interactions show a lower but broader
peak at larger q. This behavior is probably due to the strong
tensor correlations in the np channel. Note these ratios are

FIG. 10. np (left panel) and pp (right panel) momentum distributions in 4He from pairs with separation r � 2.0 fm of each other and from
pairs with r � 2.0 fm.
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FIG. 11. Same as Fig. 10 but for 12C using the AV18+UX with separation boundary a = 2.5 fm.

integrated over all Q, while the much larger np/pp ratios,
mentioned above from Refs. [6–8] are for small Q.

We can also integrate Eq. (6) over all q, leaving a function
ρNN (Q) of the total pair momentum Q only. In general, the
ρNN (Q) for a given nucleus has a smaller falloff at large
momenta than the ρNN (q) and the ratios of different NN
components vary less over the range of Q. These distributions
are generally not as interesting, but they can be generated on
request.

Calculations of the full ρNN (q, Q) are more challenging
as they require a double Gauss-Legendre integral over two
randomly chosen directions for each pair in each MC sam-
ple: x for r and X for R. In Fig. 8, we display the surface
plots of ρnp(q, Q) and ρpp(q, Q) as functions of the relative
momentum q and center-of-mass momentum Q for 4He us-
ing the NV2+3-Ia* and AV18+UX interactions. In Fig. 9
we show similar plots for 12C but only for the AV18+UX
interaction. In the online tables we present ρNN (q, Q) results
for 3,4He, 6Li, 12Be, and 12C for the AV18+UX and one or
both of the NV2+3-Ia* and NV2+3-IIb* interactions.

In addition, we can differentiate between short-range (SR)
and long-range (LR) pair contributions by simply sorting our
MC samples into two sets, where r < a for SR pairs and
r > a for LR pairs. For example, in 4He, a boundary of a = 2
fm divides the six NN pairs into approximately two equal
groups. Figure 10 shows the np (left panels) and pp (right
panels) SR and LR pair distributions for the alpha particle
using the NV2+3-Ia* and AV18+UX interactions. Taking the
integral of these distributions we find that in the case of the
NV2+3-Ia* the number of np SR and LR pairs are 2.04 and
1.96, respectively, while the number of pp SR and LR pairs
are 0.53 and 0.47. For the case of the AV18+UX the of np SR
and LR pairs are 2.06 and 1.94 while the number of pp SR
and LR pairs are 0.48 and 0.52.

Similarly, The np and pp SR and LR pair distributions
for 12C employing the AV18+UX interactions are shown in
Fig. 11 for a = 2.5 fm. By integrating these distributions,
we find that the number of np SR and LR pairings is 12.9
and 23.1 respectively, while the number of pp SR and LR
pairs is 4.3 and 10.7, respectively. In the online figures and
tables we also provide the breakdown for 3,4He and 6Li for

the AV18+UX, NV2+3-Ia*, and NV2+3-IIb* with the break
point a = 2.5 fm. These figures clearly show that the LR
pairs dominate at low pair momenta but falloff rapidly beyond
q ≈ 1.5 fm−1, while the SR pairs provide the high-momentum
tail. For the pair center-of-mass momentum, the total number
of pairs declines significantly beyond Q ≈ 2 fm−1 but there
continues to be a high-momentum tail in q.

V. CONCLUSIONS

We have performed VMC calculations of one- and two-
body density distributions and one- and two-body momentum
distributions for a wide variety of nuclei from 2H up to 12C
using the �-full Norfolk interactions obtained from χEFT.
The results are compared with those obtained with the conven-
tional AV18+UX interaction, some of which were previously
reported in Ref. [16]. New features in the present work include
(i) calculations of the pair density ρNN (r, R) as a function
of both the pair separation r and pair center-of-mass R;
and (ii) calculations of the two-body momentum distribution
ρNN (q, Q, a) coming from short- and long-range pairs differ-
entiated by a pair separation boundary a.

Comparing results among the different NV2+3 and
AV18+UX interactions, we find the one-body densities ρN (r)
for a given nucleus are very similar for all cases. Also, the
total number of spin-up and spin-down protons and neutrons
is remarkably constant. In contrast, the two-body densities
ρNN (r) vary significantly at short distances, depending on
whether the interaction is “soft” like NV2+3-Ia or “hard”
like NV2+3-IIb*. However, the total number of spin-isospin
ST pairs for a given nucleus shows little variation among the
different interactions.

One-body momentum distributions ρ(k) all share the same
characteristics, with a maximum at k = 0 fm−1, a rapid falloff
to k ≈ 2 fm−1, followed by a high-momentum tail that is more
prominent for hard interactions, and less so for soft interac-
tions. For a given interaction, the low-k behavior varies with
the nucleus, but the high-k tails are essentially parallel for all
A = 2–12 nuclei. Two-body momentum distributions ρNN (q)
are similar, but tend to change slope near q ≈ 1.5 fm−1.
Again, the high-q tail is larger for hard interactions. We also
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note that the ratio ρnp(q)/ρpp(q) is relatively flat and propor-
tional to the number of pairs of each type at lower q, but much
larger at higher q, reflecting the importance of the stronger
tensor correlations in np versus pp pairs. Finally, our studies
of ρNN (q, Q, a), which separates the contributions of short-
from long-range pairs, clearly indicate that the high-q tails are
due to SRCs.

Concurrent to these studies, are QMC studies of nu-
clear electroweak response densities and response functions
[53–55] where the interaction of the external probes (both
electron and neutrinos) is accounted for at one- and two-body
level along with SRCs. In particular, within the short-time-
approximation [53] it is possible to analyze electroweak
nuclear responses in terms of the kinematic variables, that is
relative and center-of-mass momenta, associated with a pair of
correlated nucleons struck by the probe. Many-body effects in
the coupling of electroweak probes with correlated nucleons
are being vigorously investigated due to their relevance to both
electron and neutrino scattering processes.

While this paper provides examples of the densities and
momentum distributions, the full set of results is accessible in

graphical and tabular forms online [30]. We expect to continue
expanding and updating these results in the future.
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