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Spectroscopic amplitudes in microscopic three-cluster systems
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I investigate three-body spectroscopic amplitudes in a microscopic three-cluster model. The total wave
functions are described in the resonating group method (RGM) formalism based on cluster wave functions
and on relative functions defined in the hyperspherical method. Core excitations are included. I develop a
method aimed to determine three-body spectroscopic amplitudes and spectroscopic factors. This technique also
provides three-body wave functions where the antisymmetrization is treated approximately. In this way, the
various channels are orthogonal to each other and can be used without the antisymmetrization operator. This
method is well known in two-cluster systems, and is based on the eigenvalues and the eigenvectors of the
antisymmetrization operator. I illustrate the formalism with the 6He, 11Li, and 14Be nuclei where 9Li and 12Be
excited states are taken into account.

DOI: 10.1103/PhysRevC.107.014312

I. INTRODUCTION

The description of exotic nuclei [1] is a challenge for
theoretical models [2]. These nuclei present a low breakup
threshold and the corresponding wave functions must be de-
scribed accurately up to large distances. Reproducing their
halo structure is crucial to investigate properties such as the
radius or the quadrupole moment [3].

Microscopic models are known for a long time to pro-
vide a reliable information on the nuclear structure [4–7].
Recent ab initio techniques [8] are well adapted to light nu-
clei, but are difficult to apply to medium-mass nuclei, such
as 11Li or 14Be, which are typical examples of three-body
halo structures (9Li +n + n and 12Be +n + n, respectively).
On the other hand, cluster models, which have been developed
in the past for α nuclei [9], can be directly applied to halo
nuclei. These models are based on the assumption of a cluster
structure of the nucleus. A typical example is 7Li, which is
seen as an α + t cluster structure [10]. These models have
been extended to halo nuclei, where the surrounding nucle-
ons are treated as clusters. This microscopic approach has
been successfully applied to three-body nuclei such as 6He or
11Li [11–14].

In a microscopic theory, the wave function depends on all
nucleon coordinates, and the information is obtained from a
nucleon-nucleon interaction. The cluster approximation per-
mits a simplification of the calculations. A halo nucleus
is considered as a core surrounded by valence nucleons.
Schematically, a microscopic three-body wave function in-
volving a core and two neutrons is written as

� = A�c�n�n g, (1)

where �c is the core wave function, �n is a neutron spinor,
and g is the unknown relative function, to be determined
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from the Schrödinger equation [4]. In this equation, A is the
A-nucleon antisymmetrization operator. The simplest example
is the 6He nucleus which can be described by an α + n + n
structure [13], with a (0s)4 shell-model wave function for the
α particle. The relative function g is determined in the hyper-
spherical formalism [15], which is well adapted to three-body
systems.

Recently, this theory was extended to heavier nuclei, such
as 11Li, 14Be, and 17Ne [14]. In these cases, the core nucleus
is described in the p shell and core excitations cannot be
neglected. Such calculations are very demanding in terms of
numerical capabilities (computer time and memory) but are
feasible with the current facilities. A limitation, however, is
that the microscopic wave function (1) is difficult to interpret
owing to the A-nucleon antisymmetrization. For this reason,
different channels are not orthogonal to each other, and prob-
abilities cannot be defined. In addition the relative function
without antisymmetrization is not physical and cannot be used
as input for other calculations.

These issues have been addressed in microscopic two-
cluster models [5,16–19]. From the eigenvalues and eigen-
function of the antisymmetrization operator A, the relative
function g can be transformed in order to provide the so-
called overlap function, and to approximate the total wave
function (1) by nonantisymmetrized cluster functions [19].
The goal of the present work is to extend this formalism to
three-cluster systems. This generalization provides three-body
spectroscopic factors, as well as approximate radial functions,
which can be used in further models, such as in distorted-wave
Born approximation (DWBA) calculations [20,21].

The paper is organized as follows. In Sec. II, I present
the general formalism, with a brief overview of the gener-
ator coordinate method (GCM) and of the resonating group
method (RGM). I discuss in more detail the transformation
of the relative function in three-body systems. Applications
to 6He, 11Li, and 14Be are presented in Sec. III. I present the
conclusion and outlook in Sec. IV.
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II. THEORETICAL MODEL

A. GCM formulation

In this section, I briefly present GCM basis functions, and
refer the reader to Refs. [13,14] for more detail. I consider
three clusters with nucleon numbers (A1, A2, A3) and inter-
nal wave functions (�S1ν1

c ,�S2ν2 ,�S3ν3 ), defined in the shell
model with a common oscillator parameter b. In practice,
clusters 2 and 3 are s-shell nuclei, and therefore described by
a single Slater determinant (I omit the deuteron which cannot
be considered as a cluster). Cluster 1, associated with the core,
is a p-shell nucleus, and is described by a combination of
Slater determinants. Several states (or, in other words, several
S1 values), with different spins are labeled by index c (see
Ref. [22]).

The present model can be applied when the core nucleus
is well described in the shell model (the theory is identical
for the sd shell, but the examples considered here are in the
p shell). In some cases, however, the core nucleus presents
an extended density, and must be described by a multicluster
approach. A typical example is 8He, which can be seen as
an 6He core, surrounded by two neutrons. As 6He presents a
halo structure, an α + n + n + n + n five-body model [23,24]
is more suitable.

I define a channel function with total spin S by

�SMS
α (Rx, Ry) = A

[
�S1

c

(
−A23

A
Ry

)

⊗
[
�S2

(
A1

A
Ry + A1

A12
Rx

)

⊗ �S3

(
A1

A
Ry − A1

A12
Rx

)]S23
]SMS

, (2)

where index α stands for α = (c, S1, S2, S3, S23), Rx =
(Rx,�x ) is the generator coordinate between clusters 2 and 3,
and Ry = (Ry,�y) between cluster 1 and the center-of-mass of
system 2-3. In this equation, A12 = A1 + A2, A23 = A2 + A3,
and S23 represents the coupling of S2 and S3. Definition (2)
is a combination of three-cluster Slater determinants. Notice
that the generator coordinates Rx and Ry are parameters, not
physical coordinates. The antisymmetrization operator A does
not act on these parameters.

Wave functions (2) are first projected on the orbital mo-
menta �x and �y, associated with the coordinates Rx and Ry,
respectively. The projection on the total angular momentum
JM provides

φJMπ
γ (Rx, Ry) =

∑
MLMS

〈LMLSMS|JM〉

×
∫

d�xd�y YLML�
�x�y

(�x,�y) �SMS
α (Rx, Ry),

(3)

where index γ = (α, S, L, �x, �y) and where

YLML
�x�y

(�x,�y) = [
Y�x (�x ) ⊗ Y�y (�y)

]LML
. (4)

The parity π is given by

π = (−1)Kπ1π2π3, (5)

where πi is the parity of cluster i.
In the hyperspherical formalism [15,25], coordinates Rx

and Ry are replaced by the hyperradius R and the hyperangle
αR by

R =
√

μ23R2
x + μR2

y ,

tan αR =
√

μ

μ23

Ry

Rx
, (6)

with μ23 = A2A3/A23 and μ = A1A23/A. After projection on
the hyperangle, a GCM basis function is given by

ΦJMπ
γ K (R) =

∫
dαR F

�x�y

K (αR)

× φJMπ
γ (R cos αR, R sin αR) cos2 αR sin2 αR,

(7)

where K is the hypermoment, and F
�x�y

K (αR) is a function
depending on the hyperangle (see, for example, Ref. [14]).
Basis functions (7) depend on the hyperradius and on several
quantum numbers. When the number of core states is large,
the number of basis functions (7) strongly increases (see, for
example, 11Li with 9Li excited states in Ref. [14]).

The use of GCM basis functions (7) is well adapted to
numerical calculations since these functions are expressed
from Slater determinants. As is well known (see for example,
Ref. [5] for two-cluster systems, and Ref. [13] for three-
cluster systems), basis function (7) can be written as

ΦJMπ
γ K (R) = �cmAϕJMπ

γ K (�5)�K (ρ, R), (8)

where �cm is a center-of-mass factor. The radial functions are
defined by

�K (ρ, R)=
(

b2

ρR

)2(4π

b2

)3/2

exp

(
−ρ2 + R2

2b2

)
IK+2

(
ρR

b2

)
,

(9)

where IK (x) a modified Bessel function of the first kind (see
also Ref. [25]). In Eq. (8), the channel function ϕJMπ

γ K is given
by

ϕJMπ
γ K (�5) = F

�x�y

K (α)

[
YL

�x�y
(�x,�y)

⊗
[
φS1

c (ξ1) ⊗ [
φS2 (ξ2) ⊗ φS3 (ξ3)

]S23

]S
]JM

,

(10)

where the angles �5 = (�x,�y, α) are associated with the
physical hyperspherical coordinate ρ. In this definition, φSi

are translation-invariant wave functions of clusters i, and de-
pending on the set of internal coordinates ξi. These internal
coordinates are implied in the channel function [8].
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In the GCM, the total wave function of the system is
defined from a superposition of basis functions (7) as

�JMπ =
∑
γ K

N∑
n=1

f Jπ
γ K (Rn) ΦJMπ

γ K (Rn), (11)

where coefficients f Jπ
γ K (Rn) are referred to as the generator

functions, and are obtained from a diagonalization of the
Hamiltonian and overlap kernels [14]. Typically N ≈ 10–15
generator coordinates are used. For scattering states, the Gaus-
sian asymptotic behavior (9) must be corrected with the
R-matrix method [26]. In the present work, however, I am
only concerned with bound states, and I include large Rn

values, which means that the physical asymptotic behavior of
the wave functions is guaranteed for core +n + n systems.
In charged systems, such as core +p + p, the asymptotic
Coulomb wave functions are approximative only, and the hy-
perspherical expansion is known to converge slowly (see, for
example, Refs. [27,28]).

Notice that the Hamiltonian and overlap kernels require
seven-dimension integrals, which are computed numerically.
This represents a challenge, in particular when the core states
involve many Slater determinants.

B. RGM formulation

In the resonating group method [4,5], the wave function of
the system is written as

�JMπ = 1

ρ5/2

∑
γ K

AgJπ
γ K (ρ) ϕJMπ

γ K (�5), (12)

and the relative functions gJπ
γ K (ρ) are obtained from a set of

integrodifferential equations∑
γ ′K ′

∫ [HJπ
γ K,γ ′K ′ (ρ, ρ ′) − EJπN Jπ

γ K,γ ′K ′ (ρ, ρ ′)
]

× gJπ
γ ′K ′ (ρ ′)dρ ′ = 0, (13)

where the Hamiltonian and overlap kernels are defined by{N Jπ
γ K,γ ′K ′ (ρ, ρ ′)

HJπ
γ K,γ ′K ′ (ρ, ρ ′)

}

= 〈
ϕJMπ

γ K δ(ρ − r)
∣∣{ 1

H

}∣∣AϕJMπ
γ ′K ′ δ(ρ ′ − r)

〉
. (14)

The calculation of these kernels requires heavy analytical
calculations and, in practice, the RGM is not used for mi-
croscopic three-cluster studies involving p-shell nuclei. The
calculation of the overlap kernel, however, is necessary to
derive spectroscopic amplitudes.

The equivalence between the GCM and the RGM is ob-
vious with Eqs. (8), (11), and (12) which give the radial
functions as

gJπ
γ K (ρ) = ρ5/2

∑
n

f Jπ
γ K (Rn) �K (ρ, Rn), (15)

where function �K is defined by Eq. (9). Function (15), how-
ever, cannot be used without the antisymmetrization operator
A [see Eq. (12)], since it contains a spurious contribution

from the forbidden states. This problem is well known in
two-cluster systems and must be addressed by an appropri-
ate transform (see, for example, Ref. [5]). The formalism is
generalized here to three-cluster systems.

C. Three-body overlap functions

The overlap functions play an important role in transfer
reactions, and are well known for two-cluster systems (see,
for example, Ref. [20]). Schematically, the overlap function
of a two-cluster system with wave function � is given by

I (r) = 〈�1�2|�〉, (16)

where �1 and �2 are the cluster wave functions and r is
the relative coordinate between the centers of mass. This
definition does not depend on the model. It has been used
in various microscopic theories [21,29,30]. In the simple po-
tential model, I (r) is the relative function. From the overlap
integral, one defines the spectroscopic factor as

S =
∫

[I (r)]2 dr. (17)

In a microscopic three-cluster model, the concept of over-
lap integrals and spectroscopic factors remains valid (see
Ref. [31] for a detailed discussion). In hyperspherical coor-
dinates, the overlap integral in a component γ K reads

IJπ
γ K (ρ) = 〈

ϕJMπ
γ K

∣∣�JMπ
〉
, (18)

which can be derived from the overlap kernel (14) as

IJπ
γ K (ρ) =

∑
γ ′K ′

∫
N Jπ

γ K,γ ′K ′ (ρ, ρ ′)gJπ
γ ′K ′ (ρ ′)dρ ′

= g̃Jπ
γ K (ρ). (19)

Functions g̃Jπ
γ K (ρ) are not normalized to unity, but provide the

spectroscopic factors

SJπ
γ K =

∫ ∣∣g̃Jπ
γ K (ρ)

∣∣2
dρ. (20)

The notation g̃Jπ
γ K (ρ) for the overlap integral is adopted to un-

derline the link with functions gJπ
γ K (ρ) [18]. From the overlap

kernel, I derive [5]

ĝJπ
γ K (ρ) =

∑
γ ′K ′

∫ (
N Jπ

γ K,γ ′K ′ (ρ, ρ ′)
)1/2

gJπ
γ ′K ′ (ρ ′)dρ ′ (21)

with the normalization∑
γ K

∫ [
ĝJπ

γ K (ρ)
]2

dρ = 1. (22)

This property permits one to define occupancy probabilities
in the various core states, in contrast with Eq. (12) where the
channel components are not orthogonal to each other.

The transformed functions g̃ and ĝ can be written, in a
compact notation, as

g̃ = Ng,

ĝ = N 1/2g. (23)
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For the sake of clarity, I omit Jπ . In order to carry out these
transformations, I consider the eigenvalue problem of the an-
tisymmetrization operator

Aχα = μαχα, (24)

where μα are the eigenvalues and χα the eigenvectors, written
as

χα =
∑
γ K

χα
γ K (ρ)ϕγ K. (25)

Again, this problem is well known in two-cluster systems.
Eigenvalues with

μα = 0 (26)

correspond to forbidden states, which are typical antisym-
metrization effects. Small eigenvalues correspond to “almost”
forbidden states [19], and the μα values are contained in the
[0,1] interval. From the eigenvalues μα and eigenvector χα ,
functions (23) are written as

g̃(ρ) =
∑

α

μα〈g|χα〉χα (ρ),

ĝ(ρ) =
∑

α

μ1/2
α 〈g|χα〉χα (ρ). (27)

In a few two-cluster systems (essentially between closed shell
nuclei) the μα and χα are known analytically. Eigenvectors
corresponding to small μα are short ranged. Functions (27)
are conveniently written as

g̃(ρ) = g(ρ) −
∑

α

(1 − μα )〈g|χα〉χα (ρ),

ĝ(ρ) = g(ρ) −
∑

α

(
1 − μ1/2

α

)〈g|χα〉χα (ρ), (28)

which indicate that functions g, g̃, and ĝ have the asymptotic
behavior. Definitions (28) show evidence for short-range ef-
fects.

In three-body systems, the calculation of μα and χα must
be performed numerically. This issue has been addressed by
Varga and Lovas [32] in the GCM formalism for two-cluster
systems. I expand the eigenstates χα

γ K (ρ) [see Eq. (25)] over
a GCM basis as

χα
γ K (ρ) = ρ5/2

∑
n

Cα
γ K (Rn)�K (ρ, Rn), (29)

in analogy with Eq. (15). Then, inserting this expansion in
definition (25), I end up with the eigenvalue problem∑

γ ′K ′Rn′

[
NJπ

γ K,γ ′K ′ (Rn, Rn′ ) − μαnJπ
γ K,γ ′K ′ (Rn, Rn′ )

]

× Cα
γ ′K ′ (Rn′ ) = 0, (30)

where the GCM kernel is defined as

NJπ
γ K,γ ′K ′ (R, R′) = 〈

ΦJMπ
γ K (R)

∣∣ΦJMπ
γ ′K ′ (R′)

〉
, (31)

and is used to determine the generator function in Eq. (11).
Matrix n has simple elements

nJπ
γ K,γ ′K ′ (R, R′) = δγ γ ′δKK ′

∫
�K (ρ, R)�K (ρ, R′)dρ

= (2π )3

(
2b2

R R′

)2

exp

(
−R2 + R′2

4b2

)
IK+2

(
RR′

2b2

)
. (32)

The determination of the eigenvalues μα and eigenvectors
χα is therefore straightforward from (30). Notice that, for
large values of Rn and Rn′ , the antisymmetrization is negligible
and I have, in these conditions,

NJπ
γ K,γ ′K ′ (R, R′) ≈ nJπ

γ K,γ ′K ′ (R, R′), (33)

which provides a test of the numerical calculation.
The transformed functions g̃ and ĝ [see (23)] are expressed

as in (15)

g̃Jπ
γ K (ρ) = ρ5/2

∑
n

f̃γ K (Rn)�K (ρ, Rn),

ĝJπ
γ K (ρ) = ρ5/2

∑
n

f̂γ K (Rn)�K (ρ, Rn), (34)

where the generator functions f̃γ K (Rn) and f̂γ K (Rn) are ob-
tained from

f̃ = M̃ · f ,

f̂ = M̂ · f . (35)

Matrices M̃ and M̂ are defined as

M̃i j =
∑

α

μαCα
i Cα

j ni j,

M̂i j =
∑

α

μ1/2
α Cα

i Cα
j ni j . (36)

Equations (35) and (36) provide a simple method to de-
termine functions g̃Jπ and ĝJπ . From these functions, various
components can be calculated. For example, the component in
the α = (c, S1, S2, S3, S23) channel is given by

PJπ
α =

∑
SL�x�yK

∫ ∣∣ĝJπ
γ K (ρ)

∣∣2
dρ, (37)

with ∑
α

PJπ
α = 1. (38)

III. APPLICATIONS

A. Conditions of the calculations

In this section, I apply the formalism to microscopic stud-
ies of 6He, 11Li, and 14Be. The 6He nucleus is a well known
halo nucleus and has been investigated in many works (see, for
example, Refs. [11,33] and references therein). It will be used
as a test of the present formalism. The conditions are those
of Ref. [33]: I use the Minnesota nucleon-nucleon interaction
[34] with an admixture parameter u = 1.0045 and a zero-
range spin-orbit force with an amplitude S0 = 37 MeV fm5.
In these conditions, the microscopic α + n + n model repro-
duces the experimental binding energy E = −0.975 MeV.
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From the modified radial functions ĝJπ
γ K (ρ), I can define a

two-dimension probability distribution as

PJπ
α (x, y) = x2y2

ρ5

∫
d�xd�y

∣∣∣∣∣
∑

�x�yLK

∫
ĝJπ

γ K (ρ)ϕJMπ
γ K (�5)

∣∣∣∣∣
2

,

(39)

with ρ2 = x2 + y2, α = arctan(y/x). The integrals over �x

and �y can be performed analytically. I find

PJπ
α (x, y) = x2y2

ρ5

∑
�x�yL

∣∣∣∣∣
∑

K

ĝJπ
γ K (ρ)F �x�y

K (α)

∣∣∣∣∣
2

, (40)

which is normalized as∑
α

∫
PJπ

α (x, y) dx dy = 1. (41)

In practice however, I use the physical coordinates

rnn = √
μ23 x,

rc-nn = √
μ y, (42)

where rnn is the neutron distance, and rc-nn is the distance
between the core and the c.m. of the external neutrons. The
modified probability distribution is therefore given by

P̃Jπ
α (rnn, rc-nn) = √

μ23μPJπ
α

(
rnn√
μ23

,
rc-nn√

μ

)
, (43)

where the scaling factor ensures the normalization to unity.

B. Application to 6He

In Fig. 1, I present the eigenvalues of the overlap kernel,
and some of the corresponding eigenstates. In Fig. 1(a), I
limit the number of eigenvalues to 40, for the sake of clarity.
Eigenfunction A corresponds to μα ≈ 10−8 and is plotted
in Fig. 1(b) for �x = �y = K = 0. When the eigenvalue in-
creases (B,C,D), the range of the eigenfunctions is longer.
The property is well known in two-cluster systems, and is
extended to three-cluster models. Notice, however, that each
eigenfunction contains many (γ , K ) values, but a single value
is illustrated in the figure. For the eigenfunction D, the main
component is in a different channel.

In Fig. 2, I compare the radial functions g̃Jπ
γ K (ρ) (solid

lines) and ĝJπ
γ K (ρ) (dashed lines) for the 0+ ground state.

I illustrate two dominant partial waves: (�x = �y = 0, K =
2) corresponding to S = 0, and (�1 = �y = 1, K = 2) cor-
responding to S = 1. The dotted lines are obtained in a
nonmicroscopic α + n + n model [35]. They are close to the
microscopic ĝJπ

γ K functions, which is not surprising since both
are normalized to unity. Functions g̃Jπ

γ K , however, are differ-
ent at short distances, due to antisymmetrization effects. The
long-range parts of g̃Jπ

γ K and of ĝJπ
γ K are identical, as expected.

Figure 3 presents the probability distributions (43) for
S = 0 and S = 1. The S = 0 probability is similar to previous
nonmicroscopic [3,35] and microscopic [36] results with two
maxima, corresponding to the so-called “dineutron” (rnn ≈
2.5 fm) and “cigar” (rnn ≈ 4.0 fm) configurations. The S = 1
amplitude is smaller, as the wave function contains 86% of

0
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0.5

0.6

0.7

0 5 10 15 20

2, 1, 2, 0

2, 1, 2, 0

K=2,lx=0

= 2, ℓ = 0

= 2, ℓ = 1

 

  

 

,
 

,
 (

fm
/

)

FIG. 2. Hyperradial functions g̃ and ĝ for the 6He ground state,
as well as non-microscopic approximation (gpot; see text). The dom-
inant partial waves S23 = 0, K = 2, �x = �y = 0 (black) and S23 =
1, K = 2, �x = �y = 1 (red) are shown.

S = 0 and 14% of S = 1, which is consistent with nonmicro-
scopic approaches.

C. Application to 14Be

The conditions of the calculations are those of Ref. [14].
I use Rn values from 1.5 to 15 fm by steps of 1.5 fm, with
Kmax = 16. The nucleon-nucleon interaction is the Volkov V 2
force with M = 0.6119 and includes a spin-orbit force with
an amplitude S0 = 40 MeV fm5. With these conditions, the
ground-state binding energy is S2n = 1.12 MeV, in agreement

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

0 10 20 30 40

10

10
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 (
fm

/
)

10

10
(a)

(b)

FIG. 1. (a) Eigenvalues μα of 6He (J = 0+). Notice that only
40 eigenvalues are shown. (b) Corresponding functions χα

γ K (ρ ) [see
Eq. (24)] for �x = �y = K = 0.
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6He, S=0

6He, S=1

FIG. 3. Probability distribution P̃Jπ
α (rnn, rc-nn) of the 6He ground

state for S = 0 and S = 1.

with experiment. The calculation involving the p shell for
12Be provides 15 Slater determinants corresponding to two
0+ states, one 1+ state, and two 2+ states. For the sake of
completeness, I compare the multichannel calculation to the
single-channel approximation, which involves the 12Be(0+

1 ) +
n + n configuration only. In that case, the Majorana parameter
is modified to M = 0.59 in order to keep the same binding
energy.

In Table I, I present the probabilities (37) associated with
the core states. I separate the contributions from S23 = 0 and
from S23 = 1. In all cases, the S23 = 1 component is small. In
the multichannel calculation, the ground-state configuration
is dominant, with 12% of the 12Be(2+) excited state. Other
states (0+

2 , 1+, 2+
2 ) correspond to pseudostates, and improve

the description of 14Be. However, they do not have experi-
mental counterparts.

Figure 4 presents the K components of the 14Be ground
state, with a separation between the core states. As expected
from Table I, the 12Be ground state is dominant. However, the
2+

1 component is not negligible for K = 2 and K = 4.
In Fig. 5, I display some radial functions g̃γ K (solid lines)

and ĝγ K (dashed lines). In each case, I show the single and
multichannel results and illustrate K = 0 and K = 4, which

TABLE I. 14Be occupancy probabilities (37) for different core
states S1 and neutron-neutron coupling spins S23.

S1 S23 = 0 S23 = 1

0+ 0.843 0.017
2+ 0.122 0.012

0.1

0.2

0.3

0.4

0.5 = 0

= 2

= others

= 0 , SC

FIG. 4. K components in the 14Be ground state for the multi-
channel model (left columns) and for the single-channel model (right
columns). The probabilities associated with the 12Be core states are
shown in different colors. The single-channel calculation is labeled
as “SC.”

are the dominant hypermomenta. In agreement with Table I,
the single and multichannel functions are similar.

Figure 6 represents the density distributions (43) for S1 =
0+ and S1 = 2+. In both cases, I select S23 = 0 which is the
main component. Both probabilities present three peaks. This
figure shows that reproducing accurately the wave function at
large distances is fundamental. Large neutron-neutron coordi-
nates (up to rnn ≈ 10 fm) play a role.

D. Application to 11Li

As for 14Be, I use the conditions of calculations of
Ref. [14]. In this case, the 9Li core involves 90 Slater deter-
minants in the p shell, and the calculations are much longer.
After diagonalization, I keep S1 = 3/2− and S1 = 1/2− states,

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15

= 4

= 0

,
 (

fm
/

)

SC

SC

MC

MC

FIG. 5. Multichannel (MC, red color) and single-channel (SC,
black color) functions g̃γ K (ρ ) (solid lines) and ĝγ K (ρ ) (dashed lines)
in the 14Be ground state. The dominant partial waves are K = �x =
�y = 0 and K = 4, �x = �y = 2.
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14Be, S1=0

14Be, S1=2

FIG. 6. Probability distribution P̃Jπ
α (rnn, rc-nn) of the 14Be ground

state. The upper and lower figures correspond to the S1 = 0+ and
S1 = 2+ core states, respectively. In both cases, the external neutrons
are coupled to S23 = 0.

which correspond to the ground and first excited states of 9Li.
Notice that other 3/2− and 1/2− eigenvalues arise from the
diagonalization. They do not have experimental counterparts,
but contribute to the 11Li wave function.

In Table II, I discuss the probabilities (37) for the different
core states and for the neutron-neutron spin S23 = 0 and 1.
In this case, the 9Li(gs) + n + n component is only 50% of
the total wave function, which means that core excitations
are quite important. Without core excitations and with the
same nucleon-nucleon interaction, the 11Li ground state is
unbound (+0.61 MeV). As in 14Be the spin coupling S23 = 0
is dominant.

Figure 7 displays the K components of the 11Li ground
state for the multichannel and single channel calculations. In
the latter case, the Majorana parameter has been slightly mod-
ified to reproduce the two-neutron separation energy (M =
0.741). I find that K = 2 is dominant with a small contribution
of K = 0 and of K = 4. Other K values are negligible.

TABLE II. 11Li occupancy probabilities (37) for different core
states S1 and neutron-neutron coupling spins S23.

S1 S23 = 0 S23 = 1

3/2− 0.498 0.073
1/2− 0.018 0.019
3/2− (others) 0.160 0.155
1/2− (others) 0.020 0.058

= 3/2

= 1/2

= 3/2 , others

= 3/2−, SC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

= 1/2 , others

FIG. 7. See caption to Fig. 4 for the 11Li ground state.

In Fig. 8, I present radial functions g̃γ K (ρ) (solid lines) and
ĝγ K (ρ) (dashed lines) for the 9Li(gs) + n + n configuration. I
illustrate the multichannel (MC) and single-channel (SC) cal-
culations. For the dominant component K = 2 the difference
is rather large, as expected from Table II.

Figure 9 displays the density distribution (43) associated
with the 9Li ground state (upper panel) and with the first
3/2− excited state (lower panel), which represent the main
contributions to the wave functions (see Table II). In both
cases, I select S23 = 0. The maximum of the density distri-
bution is located at large distances (rnn = 2.3 fm, rc−nn =
4.0 fm), which is consistent with the halo interpretation
of 11Li.

IV. CONCLUSION

In this paper, I have developed a technique to determine
spectroscopic amplitudes of three-body systems in the mi-
croscopic three-cluster RGM/GCM method. This approach is
based on an effective nucleon-nucleon interaction and on a
cluster structure of the nucleus. The core nucleus is described
by a combination of shell-model states, and includes not only
the ground state, but also excited states. The model requires

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15

= 0

= 2

,
  (

fm
/

)

SC

SC

MC

MC

FIG. 8. Multichannel (MC, red color) and single-channel (SC,
black color) functions g̃γ K (ρ ) (solid lines) and ĝγ K (ρ ) (dashed lines)
in the 11Li ground state.
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11Li, S1=3/2-

11Li, S1=3/2-*

FIG. 9. Probability distribution P̃Jπ
α (rnn, rc-nn) of the 11Li ground

state. The upper and lower figures correspond to the S1 =
3/2− 9Li ground state and S1 = 3/2− first excited state states,
respectively. In both cases, the external neutrons are coupled to
S23 = 0.

long computer times and large memories, but can be applied
with modern computing facilities.

The main goal of this work is to provide approximations
of the relative wave functions, where the antisymmetrization
is simulated by an appropriate transformation of the wave
functions. This technique represents an extension of previ-
ous works developed for two-cluster systems [5,16,17]. It is
based on the eigenvalues and eigenfunctions of the overlap
kernel. These quantities can be calculated numerically. The
transformed wave functions provide overlap integrals and
probability distributions, which help to analyze the struc-
ture of the nucleus, and in particular the role of the core
excitations. I have shown that core excitations are quite
important in 11Li (about 50%), but play a smaller role in
14Be (12%).

In scattering theory, the use of overlap integrals and spec-
troscopic factors is widespread (see, for example, Ref. [20]
and references therein). At the DWBA approximations, they
are essentially used to determine one-nucleon transfer cross
sections. The present work paves the way to more ambitious
calculations involving two-nucleon transfer reactions. A typi-
cal example is the 11Li(p, t ) 9Li cross section, which has been
measured [37], but its theoretical description using a nonmi-
croscopic 9Li +n + n model of 11Li is not fully satisfactory
[38]. Works in this direction are in progress.
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