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Ab initio no-core shell-model description of 10–14C isotopes
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We present a systematic study of the 10–14C isotopes within the ab initio no-core shell-model theory. We
apply four different realistic nucleon-nucleon (NN) interactions: (i) the charge-dependent Bonn 2000 (CDB2K)
potential; (ii) the inside nonlocal outside Yukawa (INOY) potential; (iii) the next-to-next-to-next-to-leading order
(N3LO) potential; and (iv) the optimized next-to-next-to-leading order (N2LOopt) potential. We report the low-
lying energy spectra of both positive- and negative-parity states for 10–14C isotopes and investigate the level
structures. We also calculate electromagnetic properties such as transition strengths, quadrupole moments, and
magnetic moments. The dependence of point-proton radii on the harmonic-oscillator frequency and basis space
is shown. We present calculations of the translation invariant one-body density matrix in the no-core shell-model
and discuss isotopic trends in the density distribution. The maximum basis space reached is 10h̄� for 10C and
8h̄� for 11–14C, with a maximum M-scheme dimension of 1.3 × 109 for 10C. We found that, while the INOY
interaction gives the best description of the ground-state energies, the N3LO interaction best reproduces the
point-proton radii.
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I. INTRODUCTION

Over the last few decades, the main goal of nuclear theo-
rists has been to explain the structure of the atomic nucleus
from ab initio theory [1]. Several ab initio approaches, in
which nucleons interact via realistic internucleon potentials,
have been developed to study the properties of nuclei. Exam-
ples of approaches utilized to solve the many-body problem
include the in-medium similarity renormalization-group (IM-
SRG) [2–6] approach, the coupled-cluster effective interaction
(CCEI) [7–10] approach, the quantum Monte Carlo (QMC)
method [11–13], the no-core shell-model (NCSM) [1,14–
22] approach, the many-body perturbation theory (MBPT)
[23], and the self-consistent Green’s function (SCGF) [24,25]
method. In addition to the complexity of quantum many-body
methods, it is challenging to develop the internucleon interac-
tions from first principles. Realistic potentials are frequently
built on the basis of either meson-exchange theory or the
underlying symmetries of quantum chromodynamics (QCD)
[26], e.g., via chiral effective-field theory (χEFT) [27–30].
In the past few years, several works have been dedicated to
investigate the carbon isotopes using ab initio many-body ap-
proaches, with various two-nucleon (NN) and three-nucleon
(3N) interactions employed. While we are specifically inter-
ested in application of the NCSM theory, we review several of
these works here.

The binding energy and reduced electric-quadrupole tran-
sition strength B(E2) of 10C were calculated with the Argonne
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V8’ (AV8’) [31] and CDB2K [32] NN potentials. At that
time, NCSM calculations of 10C with the CDB2K interaction
were only possible in a model space of 8h̄�. In more recent
studies, it has become possible to extend the size of the basis
space to 10h̄� [33]. Additional work has been dedicated to the
description of 12C, which has the highest isotopic abundance
in nature and is formed in stellar nucleosynthesis reactions.
Structurally, this nucleus poses a significant challenge for
shell-model approaches due to its triple α state, i.e., the Hoyle
state. In Refs. [34–36], 12C was studied using NCSM the-
ory with the AV8’ and AV8’+Tucson–Melbourne (TM’99)
[37] potentials at basis spaces of 4h̄�, in addition to the
chiral N3LO and CDB2K potentials at 6h̄� basis spaces. In
Ref. [38], the authors applied a semilocal momentum space
regularized chiral interaction up to third order (N2LO) to
study the properties of 12C. The binding energy increases
slightly with N2LO as compared with NLO. With the addition
of 3N forces, overbinding of the states are observed.

The N3LO potential was employed within the NCSM to
study of energy spectra for 13C in Ref. [36], utilizing a 6h̄�

basis space. In this work, an argument for the inclusion of
3N interactions is made, although even with 3N forces some
states are not adequately matched to experiment. These works
establish the success of ab initio methods in describing the
carbon isotopes; however, they also indicate that larger basis
spaces are required in order to obtain converged results. In
addition to the aforementioned studies, Forssén et al. [33]
investigated the low-lying states of even carbon isotopes in
the range of A = 10–20 using the CDB2K potential within the
NCSM approach. The dependence of the ground-state (g.s.)
and the excited 2+

1 energies, the B(E2; 2+
1 → 0+

1 ) transition
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rates and the 2+
1 quadrupole moments on the NCSM basis

expansion parameters was discussed in this work.
In Ref. [39], the binding energy of 12C was computed

in the NCSM using the Daejeon16 NN interaction with an
Nmax = 8 basis space, which was compared with an Nmax =
10 calculation using the J-matrix inverse scattering potential
(JISP16). In addition, the h̄� dependence of 12C observables,
such as the point-proton root-mean-square (r.m.s.) radii (rp),
is contrasted between the two different interactions. In gen-
eral, it was found that rp is relatively sensitive to the NCSM
expansion parameters h̄� and Nmax. The study found that ab
initio calculations utilizing the Daejeon16 interaction better
described the binding energy and rp of 12C than results ob-
tained with the JISP16 interaction. So, calculation with the
Daejeon16 NN interaction indicates that a reasonable de-
scription of 12C can be obtained with only the two-nucleon
interaction. In Ref. [40], the r.m.s. radius of protons, neutrons,
matter, and the charge distribution for 8–22C were obtained
using relativistic mean-field calculations. For the smaller
carbon isotopes, a larger proton r.m.s. radius was observed
due to the strong effects of Coulomb repulsion between the
protons.

Experiment performed at GSI, Darmstadt [41] to investi-
gate proton radii for the carbon isotopic chain 12–19C, using the
technique of charge-changing cross-section measurements. In
this study, the authors observed a rapidly increasing neu-
tron skin in the larger isotopes 15–19C, which suggests the
formation of neutron halos. Furthermore, ab initio CC cal-
culations are performed using two different potentials, the
N2LOsat [42] and N2LOopt [43,44] interactions, which are
then compared with the experimental results. The CC results
obtained with the N2LOsat interaction provide good agree-
ment with the data in comparison to results obtained with
the N2LOopt interaction. Yet another experiment, detailed in
Ref. [45], at the Research Center for Nuclear Physics (RCNP)
at Osaka University utilized the same charge-changing cross-
section technique for measuring the proton r.m.s. radii for
12–16C, further expanding the abundance of precision carbon
measurements for theoretical comparison.

In recent years, experimental evidence for a proton subshell
closure at Z = 6 was discovered, in particular in neutron-
rich carbon isotopes [46]. The authors presented a systematic
study of 13–20C point-proton radii, electric-quadrupole tran-
sition rates B(E2; 2+

1 → 0+
g.s.), and atomic mass data. From

this information, the authors are able to deduce a subshell
magic number at Z = 6. The experimental observations were
further supported by ab initio CC theory calculations with the
SRG-evolved NN + 3N chiral and the N2LOsat interactions.
In Ref. [47], the isotopes 17–20C are studied and the author
found evidence that there is no shell closure at N = 14, which
is anticipated in carbon due to its appearance in the oxygen
isotopes. In Ref. [8], an effective valence-space shell-model
interaction is derived from ab initio CC theory and imple-
mented in calculations of the carbon isotopes 17–22C. Good
agreement between CCEI results and experiment is found,
with further indication of a weaker shell closure at N =
14. In Ref. [48], the energy-level structures for 12–20C have
been studied using the shell-model with a newly constructed
monopole based universal interaction.

In this paper, we have employed the ab initio NCSM
theory in description of the nuclear structure properties of
10–14C isotopes using the INOY, CDB2K, N3LO, and N2LOopt

realistic NN interactions. We have determined the g.s. ener-
gies, the positive- and negative-parity excitation spectra, the
reduced transition probabilities, the quadrupole moments, the
magnetic moments, and the point-proton radii of the carbon
isotopes. In terms of the basis space, the maximum basis size
reached is 10h̄� for 10C and 8h̄� for 11–14C. In addition, we
provide a comparison between ab initio results and experi-
ment. For the first time, a comparison of the local and nonlocal
g.s. nuclear densities of the carbon isotopes are presented. Us-
ing the CDB2K interaction, we study the convergence trends
of the isotopes with increasing Nmax.

In Sec. II, we explain the ab initio NCSM formalism. In
Sec. III, we introduce the realistic interactions employed in
construction of the NCSM Hamiltonian. Then, in Sec. IV, we
present and discuss the results of the energy spectra for 10–14C,
further comparing them with experimental data. In Sec. V,
we discuss the electromagnetic properties focusing on the
B(M1) and B(E2) transition strengths. In Sec. VI, we report
the point–proton radii for the g.s. of 12C utilizing the INOY
and N3LO interactions. Lastly, in Sec. VII, we show results
for the one-body density matrix calculated in the NCSM. We
then draw our conclusions in Sec. VIII.

II. NO-CORE SHELL-MODEL FORMALISM

The NCSM [1,19] is a nonrelativistic many-body theory
suited to describing low-lying bound and resonant states of s-,
p- and light sd-shell nuclei. In the NCSM, all nucleons are
treated as point-like and are considered to be active degrees
of freedom. Unlike traditional nuclear shell models, there is
no concept of an inert core. The translation invariance of
observables, angular momentum, and the parity of a given
system are all conserved in this approach.

Consider an A-nucleon system interacting through a real-
istic nuclear interaction. In general, one considers realistic
NN and 3N potentials typically derived within the χEFT.
In the present work, we have considered only realistic NN
interactions and took advantage of an access to a larger basis
space. The nuclear Hamiltonian is then given by

HA = Trel + V = 1

A

A∑
i< j

( �pi − �p j )2

2m
+

A∑
i< j

V NN
i j , (1)

where Trel is the relative kinetic energy of the nucleons, m is
the nucleon mass, and V NN

i j corresponds to the realistic two-
body interaction containing both strong and electromagnetic
parts.

Solving the nuclear Hamiltonian requires a choice of ba-
sis. In the NCSM, we make use of a finite (but large) set
of antisymmetrized harmonic-oscillator (HO) many-body ba-
sis states. The HO many-body states preserve the symmetry
properties of the Hamiltonian, i.e., they conserve angular
momentum, parity, and isospin. The most desired property,
however, is that the HO basis preserves translation symmetry
of the A-nucleon system even when utilizing single-nucleon
coordinates. The basis truncation parameter Nmax defines the
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total number of allowed oscillator quanta above the lowest
Pauli configuration of the A-nucleon system. The HO many-
body expansion in the Cartesian coordinate Slater determinant
(SD) basis is given by

〈
�r1 · · · �rA

∣∣�Jπ T
A

〉
SD =

Nmax∑
N=0

∑
α

c(SD)
Nα

〈
�r1 · · · �rA

∣∣�A
Nα

〉
SD, (2)

where |�A
Nα〉 corresponds to the HO many-body states. In

the case of hard potentials, i.e., those which produce strong
short-range correlations, one often needs large Nmax in or-
der to reach many-body convergence. However, basis space
growth is exponential with respect to Nmax and we quickly
reach a computational ceiling. Thus, at the moment it is
necessary to employ renormalization methods which weaken
the short-range repulsion of nuclear interactions, allowing
for reduced correlations in the many-body calculation. This
“softening” of the interactions has been shown to accelerate
many-body convergence. Such renormalization schemes in-
clude the Okubo–Lee–Suzuki (OLS) method [49–52] and the
similarity renormalization-group (SRG) approach [53,54]. In
the present work we apply the OLS approach.

To facilitate the expansion in the HO basis, and the deriva-
tion of the OLS effective interactions in truncated basis
spaces, we add the center-of-mass (c.m.) Hamiltonian for an
A-body HO to the original Hamiltonian in Eq. (1), which is
given by

Hc.m. = Tc.m. + Uc.m., (3)

where

Uc.m. = 1

2
Am�2 �R2, �R = 1

A

A∑
i=1

�ri. (4)

The modified Hamiltonian then has a frequency-dependent
form

H�
A = HA + Hc.m. =

A∑
i=1

hi +
A∑

i< j

V �,A
i j

=
A∑

i=1

[ �p2
i

2m
+1

2
m�2�r 2

i

]
+

A∑
i< j

[
V NN

i j −m�2

2A
(�ri − �r j )

2
]
,

(5)

where �, the HO frequency, is a variational parameter in the
NCSM. Since the initial Hamiltonian of Eq. (1) is translation
invariant, addition of the c.m. Hamiltonian will not impact the
intrinsic properties of the Hamiltonian. With H�

A in this form,
it is possible to determine the effective interactions for a given
model space.

We first separate the infinite HO basis into two parts by
utilizing the projectors P and Q, defined such that P + Q = 1.
The P space contains all HO basis states up to the truncation
parameter Nmax, and the Q space contains all excluded states.
Thus NCSM calculations are performed solely in the P space.
The effective interaction is then obtained by applying the OLS
unitary transformation on the Hamiltonian (5). As a result
of the OLS transformation, this new Hamiltonian contains
induced terms up to the A-body level. Moreover, for an arbi-

trary A-nucleon system, one generally needs A-body effective
interactions to exactly reproduce the original Hamiltonian.
However, since we know that the two-body potential has the
dominant contribution in the interaction, it is a reasonable
approximation to keep only the two-body effective interaction
term. Finally, by subtracting out the c.m. Hamiltonian and
adding the Lawson projection term [55] (which shifts out
spurious c.m. excitations), the effective Hamiltonian takes the
form

H�
A,eff = P

{
A∑

i< j

[
( �pi − �p j )

2

2mA
+ m�2

2A
(�ri − �r j )

2

]

+
A∑

i< j

[
V NN

i j − m�2

2A
(�ri − �r j )

2
]

eff.

+ β

(
Hc.m. − 3

2
h̄�

)}
P. (6)

The resulting Hamiltonian of Eq. (6) is hence dependent
on the HO frequency h̄�, the basis truncation parameter Nmax,
and the parameter β. In our calculations, we fix β = 10. Since
β is fixed, the Hamiltonian depends on only two parameters:
h̄� and Nmax. For Nmax → ∞, the effective Hamiltonian ap-
proaches the nonrenormalized Hamiltonian and the results are
exactly reproduced.

III. EFFECTIVE INTERNUCLEON INTERACTIONS

In this work, we have chosen four different interactions
to analyze many-body results: (i) the inside nonlocal outside
Yukawa (INOY) potential [56–58]; (ii) the charge-dependent
Bonn 2000 (CDB2K) potential [59–62]; (iii) the chiral next-
to-next-to-next-to-leading order (N3LO) potential [26,63];
and (iv) the optimized chiral next-to-next-to-leading order
(N2LOopt) potential [43,44].

The INOY NN potential is formulated such that the short-
range physics (within some radius r ≈ 1 fm) is properly
nonlocal and the interaction is treated as local outside this
radius. The short-range nonlocality of the INOY interaction
is the outcome of the internal structure of the nucleons, while
the long-range local component is a Yukawa-type potential,
similar to that of the Argonne V18 potential discussed in
Ref. [64]. The ranges of both the local and nonlocal features
are adjustable as the interaction is derived in coordinate space.
The form of the INOY NN interaction is given by

V full
ll ′ (r, r′) = δ(r − r′)F cut

ll ′ (r)V Yukawa
ll ′ (r) + Wll ′ (r, r′).

The first term in this expression is the local interaction, char-
acterized by the V Yukawa

ll ′ (r) Yukawa tail. F cut
ll ′ (r) is the cutoff

function applied to the interaction, which is defined in coordi-
nate space as

F cut
ll ′ (r) = θ (r − Rll ′ )

(
1 − e−[αll′ (r−Rll′ )]2)

,

where

θ (r − Rll ′ ) =
{

1 for r > Rll ′

0 for r � Rll ′ .

014309-3



PRIYANKA CHOUDHARY et al. PHYSICAL REVIEW C 107, 014309 (2023)

The second term Wll ′ (r, r′) is the nonlocal component of
the interaction. When internucleon interactions are used to
describe atomic nuclei, it becomes necessary to incorporate
many-nucleon forces, e.g., three-body forces, for a complete
description. In the case of the INOY interaction, there is no
immediate need to include 3N forces due to the short-range
nonlocal character of the potential which captures some of the
intrinsic structure of the nucleon. This interaction is capable of
reproducing the properties of 3H and 3He with a high degree
of precision.

The CDB2K NN potential is based on meson-exchange
theory. The mesons which exist below the threshold of the nu-
cleon mass, e.g., the π±,0, η, ρ, ω, and the two scalar-isoscalar
σ bosons, are included. The construction of the potential is
based on analysis of the covariant one-boson-exchange Feyn-
man diagrams, the nonlocal character of which is particularly
valuable in solving the problem of underbinding in nuclei.

The chiral N3LO interaction is obtained from a formulation
of internucleon forces based on EFT for low-energy QCD.
By studying the low-energy symmetry of QCD, i.e., chiral
symmetry, it is possible to perturbatively construct two- and
many-nucleon interactions. Derived in the formalism of chiral
perturbation theory (χPT), the chiral orders are represented
in powers of Q/�χ , where Q is the low-momentum scale
being probed, usually on the order of the pion mass, and �χ

corresponds to the chiral symmetry-breaking scale ≈1 GeV
(the mass of the nucleon). The N3LO potential of Entem and
Machleidt is computed at fourth order in the χPT expansion
and has a precision comparable to one of the many high-
quality phenomenological potentials, yielding a χ2/datum ≈
1 for data up to 290 MeV.

Lastly, the optimized chiral N2LOopt interaction is a chiral
potential at next-to-next-to-leading order in the χPT expan-
sion which has been optimized via the practical optimization
using no derivatives for the sum of squares (POUNDerS)
algorithm up to a laboratory energy of 125 MeV. The three
pion-nucleon couplings (c1, c3, and c4) which emerge in χPT,
as well as the 11 partial-wave contact parameters (C and C̃),
are varied and optimized using POUNDerS. The axial-vector
coupling constant gA, the pion-decay constant Fπ , and all par-
ticle masses remain as constants. Comparatively, the N2LOopt

provides substantially better performance than the standard
N2LO interaction and is capable of reproducing nuclear prop-
erties such as the binding energies and radii of A = 3, 4 nuclei,
the position of the neutron drip line in the oxygen chain, shell
closures in the calcium isotopes and the neutron matter equa-
tion of state at subsaturation densities, all without the addition
of 3N forces. The standard N2LO produces a χ2/datum ≈ 10
below 125 MeV, whereas the N2LOopt interaction produces a
χ2/datum ≈1.

For the present calculations using NCSM theory, we have
applied the OLS renormalization in calculations with the
INOY, CDB2K, and N3LO NN interactions [the Hamiltonian
is given in Eq. (6)], while no renormalization was used for
the N2LOopt interaction [the Hamiltonian is given in Eq. (1)].
We utilized the PANTOINE code [65–67] for the ab initio
calculations. Our group has recently reported NCSM results
in similar studies of the boron, neutron rich carbon, nitrogen,
oxygen, and fluorine isotopes in Refs. [68–71].

TABLE I. The dimensions corresponding to different model
spaces for the A = 10–14 carbon isotopes are presented. The Hamil-
tonian dimensions for which we have performed NCSM calculations
are shown in boldface.

Nmax 10C 11C 12C 13C 14C

0 51 62 51 21 5
2 1.0 × 104 1.6 × 104 1.8 × 104 1.2 × 104 5.8 × 103

4 4.3 × 105 8.1 × 105 1.1 × 106 1.1 × 106 7.3 × 105

6 9.2 × 106 2.0 × 107 3.3 × 107 3.8 × 107 3.4 × 107

8 1.3 × 108 3.2 × 108 5.9 × 108 8.2 × 108 8.7 × 108

10 1.3 × 109 3.7 × 109 7.8 × 109 1.2 × 1010 1.5 × 1010

IV. RESULTS AND DISCUSSIONS

In this section we present the NCSM results for the
spectra of 10–14C. The Hamiltonian dimensions calculated in
M scheme for 10–14C are shown in Table I for model space
sizes corresponding to Nmax = 0–10. The Hamiltonian dimen-
sion poses a significant challenge in nuclear theory due to its
exponential behavior with respect to the truncation parameter
Nmax and so advances in computational power are necessary
for the extension of the NCSM calculations to heavier sys-
tems. With the available computational resources, we have
successfully reached basis spaces up to Nmax = 10 for 10C and
Nmax = 8 for 11–14C, the corresponding dimensions are shown
in boldface in Table I. We have reached maximum dimension
of 1.3 × 109 for 10C.

Analysis of the NCSM calculations is generally a two-step
process. In the initial step, the minimum of g.s. energy with
respect to the oscillator frequency is determined. The con-
vergence of the g.s. energy of 10C with respect to the HO
frequency parameter is shown in Fig. 1 for Nmax = 2–8 basis
spaces corresponding to the four aforementioned interactions.
The oscillator frequency is varied on the interval 10–28 MeV.
It is clear that, as we increase the basis truncation parameter
Nmax, the dependence of the g.s. energy on the oscillator fre-
quency is reduced, as expected. It should be noticed that due
to the application of the OLS renormalization, the CDB2K,
INOY, N3LO calculations are not variational. We observe,
however, that the INOY results behave variational-like for
Nmax > 2 spaces. Inclusion of the three-body effective in-
teraction does not change the nonvariational nature of the
method; it contributes either positively or negatively to the
binding energy. The N2LOopt calculations are, on the other
hand, variational because no Hamiltonian renormalization is
applied.

We have extracted the HO frequency corresponding to
minimal g.s. energy in the Nmax = 8 space as optimal and
used it for the g.s. energy in the Nmax = 10 space. The optimal
frequencies for 10C are then h̄� = 14, 18, 12, and 22 MeV for
the CDB2K, INOY, N3LO, and N2LOopt interactions, respec-
tively. Similarly, we have determined the respective optimal
frequencies for other carbon isotopes. In general, we obtain
lower optimal frequencies for the CDB2K and N3LO inter-
actions, while we observe larger optimal frequencies for the
INOY and N2LOopt interactions. It is clear that the optimal
frequency of the HO expansion is highly sensitive to the
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FIG. 1. Dependence of the g.s. energy for 10C on HO frequency ranging over 10–28 MeV is presented. NCSM results are obtained using
the CDB2K, INOY, N3LO, and N2LOopt interactions. We show NCSM calculations for Nmax = 2–8 and include the Nmax = 10 result evaluated
at the minima corresponding to Nmax = 8, of the respective interactions. The experimental g.s. energy for 10C is indicated by a horizontal line
[72].

nuclear interaction employed. Once the optimal frequency is
determined for a particular nucleus and interaction, the next
step is to determine the energy spectra.

In the present work, we discuss results for the natural as
well as unnatural parity states of the carbon isotopes. These
results are presented for 10,12,14C in Figs. 2 and 4 and for 11,13C
in Figs. 3 and 5, along with the available experimental spectra.
For the CDB2K interaction, we show the convergence of the
spectra with Nmax beginning from Nmax = 0 to the maximal
value. For all other interactions, the results are shown for the
largest Nmax basis space. We indicate the optimal frequencies
for each interaction at the top of the figures.

A. Natural-parity energy states for 10–14C

We begin by discussing the spectra for the even-even nuclei
10,12,14C. We first look at 10C, the positive-parity spectra for
which is shown in the top panel of Fig. 2. Experimentally,
the spin-parity of only the g.s. 0+

1 and first-excited 2+ states

is confirmed (shown in the “Expt.” column). Hence, it is a
valuable task for an ab initio theory to make predictions for the
spin-parity of excited states of 10C. As expected, the g.s. spin-
parity is correctly reproduced by all four interactions. We have
calculated many positive-parity states with spin ranging from
J = 0 to 4; however, here we discuss solely the first-excited
state. The experimental energy of the first-excited state 2+

1 is
3.354 MeV. Studying the convergence of the energy spectra
with Nmax using the CDB2K interaction reveals that, as we
increase the basis space from 6 h̄� to 10 h̄�, the energy of the
excited 2+

1 approaches the experimental value. With Nmax =
10 model space, the excitation energy of the 2+

1 is 3.590 MeV
for CDB2K, 3.798 MeV for INOY, 3.388 MeV for N3LO, and
3.440 MeV for N2LOopt. Interestingly, the description from
ab initio theory with N3LO is more accurate for this state in
this nucleus.

Next, we look at 12C, the positive-parity spectra for which
is shown in the middle panel of Fig. 2. The optimal HO
frequencies for 12C are identified as 14 h̄�, 20 h̄�, 12 h̄�,
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FIG. 2. Excited-state spectra for 10,12,14C obtained from the NCSM at their respective optimal frequencies, utilizing four interactions: (i)
CDB2K, (ii) INOY, (iii) N3LO, and (iv) N2LOopt. 10C is calculated at Nmax = 10, while 12,14C are computed at Nmax = 8. Convergence in Nmax

is shown using the CDB2K interaction. Experimental energies are taken from Ref. [72].

and 24 h̄� for the CDB2K, INOY, N3LO, and N2LOopt in-
teractions, respectively. The correct spin-parity of the g.s.
is reproduced as anticipated. Looking at the first-excited 2+

1
state, we see that across all interactions the NCSM has a ten-
dency to overbind this particular state. Furthermore, looking
at the excited 2+

2 state, the energy difference between the
NCSM state and the experimental value is large across all

interactions. Using the experimental spectra as reference, we
see that the NCSM is incapable of reproducing the energy
of the excited 0+

2 state, i.e., the Hoyle state, which exists at
about 7.65 MeV. The NCSM tends to underbind this state
drastically and estimates energy around 15 MeV for the var-
ious interactions. At the reached basis spaces, the structure
of the calculated 0+

2 state does not have the α clustering
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FIG. 3. Excited-state spectra for 11,13C obtained from the NCSM at their respective optimal frequencies, utilizing four interactions: (i)
CDB2K, (ii) INOY, (iii) N3LO, and (iv) N2LOopt. 11,13C are calculated at Nmax = 8. Convergence in Nmax is shown using the CDB2K interaction.
Experimental energies are taken from Ref. [72].

developed as the Hoyle state has. This means that larger
model space is required to obtain converged energy for the
state with cluster structure. Lastly, we mention the 1+

1 and
the 4+

1 states, both of which are reasonably described within
the NCSM with the INOY interaction predicting their correct
order. In the NCSM, the excitation energy of the 4+

1 is 12.789
MeV for CDB2K, 14.450 MeV for INOY, 12.144 MeV for
N3LO and 12.888 MeV for N2LOopt, while experimentally
the value sits at 13.300 MeV. Generally, compared with the
experimental spectra, the NCSM produces an energy levels
with a significant gap between the first-excited state and the
next excited state as the experimental α-cluster-dominated
state is not obtained in the accessible Nmax spaces. We have
calculated 1+ eigenstates corresponding to isospin T = 0 and
T = 1. Experimental 1+

1 state has T = 0 and 1+
2 has T = 1.

We obtain 13.782, 14.446, 13.269, and 13.705 MeV excita-
tion energies for T = 0 1+

1 state from NCSM calculations
corresponding to Nmax = 8 using CDB2K, INOY, N3LO and
N2LOopt interactions, respectively, while experimentally it is
measured at 12.710 MeV. For Nmax = 8, the CDB2K inter-
action gives energy of T = 1 1+

2 state at 15.665 MeV. The
INOY and N2LOopt underbind the aforementioned state. The
excitation energy for this state is 14.842 MeV obtained from

the N3LO interaction, which is close to the experimental value
of 15.110 MeV. Thus, we can conclude that 1+

2 is better de-
scribed by N3LO interaction than other interactions. It is also
noted that enlargement in the basis size improves the energy
of 1+

1 and 1+
2 states for the CDB2K interaction.

We look at 14C, the positive-parity spectra for which is
shown in the bottom panel of Fig. 2. Like other nuclei, the
NCSM successfully reproduces the g.s. spin-parity with all
interactions. Studying the Nmax trend with the CDB2K inter-
action, the energies of the first excited 2+

1 and 1+
1 correctly

increase with increasing Nmax towards the respective experi-
mental values. The excited 2+

1 state corresponding to CDB2K
interaction is in good agreement with the experimental data.
Furthermore, the energies of the excited 0+

2 and 2+
2 states

are substantially different from the experimental values as
the experimental states are multi-h̄� dominated and much
large NCSM basis spaces would be required to describe them
properly.

Now we discuss the energy spectra of even-odd nuclei
11,13C. The 11C negative-parity spectra are shown in the
top panel of Fig. 3. The optimal HO frequencies for 11C are
identified as 14 h̄�, 20 h̄�, 12 h̄�, and 24 h̄� for the CDB2K,
INOY, N3LO, and N2LOopt interactions, respectively.

014309-7



PRIYANKA CHOUDHARY et al. PHYSICAL REVIEW C 107, 014309 (2023)

FIG. 4. Excited unnatural parity spectra for 12,14C obtained from the NCSM at their respective optimal frequencies, utilizing four
interactions up to Nmax = 7. Convergence in Nmax is shown using the CDB2K interaction. Experimental energies are taken from Ref. [72].

Experimentally, the g.s. spin-parity for 11C is 3/2−
1 , with

the first-excited state being a 1/2−
1 lying at 2.000 MeV.

Notably, in the case of the CDB2K interaction, we see
that with increasing Nmax the energy difference between
the 1/2−

1 and 3/2−
1 states decreases, ultimately reversing

the order of the states such that the 3/2−
1 is then correctly

determined to be the g.s. at Nmax = 8. Nevertheless, the
1/2−

1 lies extremely close to the g.s., indicating a significant
amount of overbinding compared with experiment due to
the insufficient strength of the spin-orbit interaction. We see
a similar squeezing in the excited 3/2−

2 and 5/2−
1 states,

which essentially overlap in energy at Nmax = 8. As with the
CDB2K, NCSM calculations with the INOY and N2LOopt

interactions successfully reproduce the spin-parity of the g.s.
and the first-excited state, although with varying degrees
of overbinding in the first-excited state still present. Still,
the best description is obtained by the INOY interaction for
low-lying states. The N3LO interaction is unable to produce
the correct g.s. and first-excited state ordering. It is feasible
that an increase in the model space size would change this
ordering, as is seen with the CDB2K spectra. The INOY and
N2LOopt are also able to reproduce the correct ordering of the
first five low-lying states of 11C.

Next, we look at 13C, the negative-parity spectra for which
is shown in the bottom panel of Fig. 3. The optimal HO
frequencies are exactly the same as in the case of 11C. Ex-
perimentally the g.s. spin–parity is 1/2−; T = 1/2, which is
reproduced by all interactions. Interestingly, looking at the
CDB2K spectra convergence trends, we see that the g.s. 1/2−

1
and excited 3/2−

1 are nearly degenerate at Nmax = 0. However,
by Nmax = 8 the 3/2−

1 has moved substantially far from the
g.s. in the correct direction, yet it does not shift nearly close
enough to the true experimental value. The INOY interac-
tion on the other hand reproduces the g.s. and first-excited
state quite well, with the NCSM energy for the 3/2−

1 being
3.792 MeV compared with the experimental value of 3.684
MeV. The low–lying states are better described using the
INOY interaction, however the remaining spectra is not as
dense as expected.

B. Unnatural-parity energy states of 11–14C

In this section, we present the energy spectra of unnat-
ural parity states, which are negative-parity states in the
case of even-even carbon isotopes and positive for even-odd
isotopes. Negative-parity energy spectra for 12C and 14C are
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FIG. 5. Excited unnatural parity spectra for 11,13C obtained from the NCSM at their respective optimal frequencies, utilizing four
interactions up to Nmax = 7. Convergence in Nmax is shown using the CDB2K interaction. Experimental energies are taken from Ref. [72].

shown in Fig. 4 and positive-parity spectra for 11C and 13C
in Fig. 5, calculated at same optimal frequency as for the
natural-parity states. Experimental negative-parity states are
unknown for 10C. Thus, we have not performed calcula-
tions for 10C negative-parity states. The ordering of low-lying
negative-parity states up to 4−

1 for 12C is obtained in the
correct sequence similar to the experiment using CDB2K,
INOY, and N3LO interactions. The energy difference between
the lowest T = 0 3− and 1− states is higher for all interac-
tions compared with the experimental difference, especially
in the case of bare N2LOopt interaction. Similarly, 2− and
4− states are obtained at high excitation energies. Experi-
mentally, the first lowest negative-parity state for 14C is 1−
that is reproduced by all interactions except for N2LOopt. Re-
sults of excited negative-parity states obtained with CDB2K
are improved with increasing basis size. In the case of 11C,
CDB2K interaction gives the lowest positive-parity state as
1/2+, which is in agreement with the experimental spin. The
5/2+ state is obtained as the lowest positive-parity state with
INOY and N2LOopt interactions. With INOY interaction, the
energy difference between 5/2+ and 1/2+ states is 6.6 keV
at Nmax = 7. Since this difference is very small and decreased
with increasing Nmax, one could expect to get the correct order

of these states as in the experiment for a larger basis size.
For CDB2K, INOY, and N3LO interactions, the first three
lowest positive-parity states are in the same order as for the
experiment for 13C. The order of 13C 5/2+ and 1/2+ states is
reversed using N2LOopt compared with the experimental re-
sult. The first (7/2+) state at 7.492 MeV (4.403 MeV relative
to 1/2+

1 state) is confirmed from our theoretical NCSM cal-
culations. The energy splitting between 9/2+

1 and 5/2+
3 states

is 2.45 MeV, experimentally. We can see from the spectrum
that, at Nmax = 1, these two states are almost degenerate. This
energy splitting between these two states starts to increase as
we move to the higher basis size using CDB2K interaction,
and it becomes around 1 MeV at Nmax = 7.

In Fig. 6, the lowest both positive- and negative-parity
states of 11–14C are presented in the model space from 0h̄�

to 7h̄� in the case of the CDB2K, and results corresponding
to 6h̄� and 7h̄� model spaces are shown for other three
interactions. The excitation energy of unnatural-parity states
in Nmax h̄� model space is taken relative to the natural-parity
g.s. in (Nmax − 1)h̄� space. We found from the convergence
of spectra for CDB2K interaction that, with basis size enlarge-
ment, excitation energies of unnatural-parity states improve
for all carbon isotopes. For further improvement, the basis
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FIG. 6. Excitation energy of lowest unnatural parity states of
11,12,13,14C relative to the g.s. (lowest natural-parity state) in the model
space from 0h̄� to 7h̄� for CDB2K. For other interactions, 6h̄� and
7h̄� model space results are shown. Experimental energies are from
Ref. [72].

size needs to be extended. Excitation energy obtained using
INOY interaction for the unnatural-parity state is quite large
in comparison with the experimental excitation energy.

V. ELECTROMAGNETIC PROPERTIES

In Table II, we report g.s. energies, quadrupole moments,
magnetic moments, reduced electric-quadrupole transition
strengths and reduced magnetic-dipole transition strengths of
the carbon isotopes obtained from the ab initio NCSM calcu-
lations using the four NN interactions. These properties were
obtained using the optimal oscillator frequencies and largest
possible Nmax basis space. We provide the corresponding ex-
perimental data for comparison.

We first discuss the g.s. energies briefly by using 10C as
an example. The energy of the g.s. of 10C is −60.320 MeV
according to experiment. As shown in Table II, the NCSM
calculations with the various interactions yield the following
results: −51.685 MeV for CDB2K, −58.697 MeV for INOY,
−50.250 MeV for N3LO, and −49.836 MeV for N2LOopt.
This data indicate that the INOY result is close to the ex-
perimental value. Referring to Fig. 7, we have plotted the
g.s. energy of the carbon isotopes against mass number for

FIG. 7. The g.s. energies for 10–14C obtained from the NCSM as
a function of mass number A, utilizing four interactions: (i) CDB2K,
(ii) INOY, (iii) N3LO, and (iv) N2LOopt. NCSM calculations are per-
formed at the optimal frequency and largest model space identified
in the previous section. These are compared with experimental data
[72].

all aforementioned interactions. The plot reinforces the fact
that within the set of ab initio calculations, use of the INOY
interaction provides the best g.s. energy agreement with the
experiment.

For the even-A nuclei, we have performed calculations of
the quadrupole and magnetic moments for the first-excited
state of each nucleus (for the even carbon isotopes discussed,
this is a 2+

1 state). Experimental data for the Q(2+
1 ) exists

only for 12C. The sign of Q is correct for each interaction,
however with the NCSM the magnitude is best reproduced
by the CDB2K and the N3LO interactions. No experimental
data for the μ(2+

1 ) of 10,12,14C are available. The calcula-
tions of μ(2+

1 ) are substantially consistent with one another.
We also calculate the reduced electric-quadrupole transition
strength B(E2; 2+

1 → 0+
1 ) for 10,12,14C and compare them to

experiment. For 10C, the B(E2) value is far from experiment
regardless of the interaction chosen. The B(E2) result is in
good agreement with the experimental data for N3LO interac-
tion in 12C, while for N2LOopt interaction in the case of 14C.
The B(E2) transition strength from the first-excited state 2+

1
to the g.s. 0+ is reduced from 10C to 14C. As the number
of neutrons is increased from N = 4 to N = 8, experiment
suggests a decrease in collectivity. This trend is similarly seen
with each interaction. The strength of the B(E2) transitions
with the ab initio interactions is somewhat different from the
experimental data. This is due to the fact that the B(E2) is
a long-range operator and the OLS unitary transformation
only renormalizes the short-range part of the interaction and
short-range operators, while long-range operators are weakly
renormalized. Thus, larger model space sizes are required to
obtain converged results for the B(E2) transition. Another
way to obtain convergence of E2 observables is mentioned
in Refs. [74,75].
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TABLE II. The electromagnetic properties of 10–14C isotopes obtained with the NCSM, utilizing four interactions: (i) CDB2K, (ii) INOY,
(iii) N3LO, and (iv) N2LOopt are presented. NCSM calculations are performed at the optimal frequency and largest model space identified in
the previous section. The g.s. energy, quadrupole moment, magnetic moment, B(E2) and B(M1) are shown in MeV, barn, μN , e2 fm4, and μ2

N ,
respectively. These are compared with experimental values (where possible). Experimental data are taken from Refs. [72,73].

10C Expt. CDB2K (14 MeV) INOY (18 MeV) N3LO (12 MeV) N2LOopt (22 MeV)

Eg.s.(0+) −60.320 −51.685 −58.697 −50.250 −49.836
Q(2+) NA −0.017 −0.026 −0.010 −0.031
μ(2+) NA 1.348 1.058 1.439 1.038
B(E2; 2+

1 → 0+
1 ) 12.157(1919) 6.891 4.469 8.987 4.861

B(M1; 1+
1 → 0+

1 ) NA 0.558 0.705 0.501 0.502
11C Expt. CDB2K (14 MeV) INOY (20 MeV) N3LO (12 MeV) N2LOopt (24 MeV)

Eg.s.(3/2−) −73.441 −63.871 −71.931 −62.941 −57.084
Qg.s.(3/2−) 0.0333(2) 0.020 0.022 0.018 0.023
μg.s.(3/2−) −0.964(1) −0.863 −0.638 −0.995 −0.634
μ(1/2−

1 ) NA 0.905 0.890 0.904 0.861
B(E2;7/2−

1 → 3/2−
1 ) NA 5.980 3.940 7.080 4.487

B(M1;3/2−
1 → 1/2−

1 ) 0.340(27) 0.754 0.458 0.867 0.505
B(M1;5/2−

1 → 3/2−
1 ) NA 0.204 0.352 0.138 0.304

12C Expt. CDB2K (14 MeV) INOY (20 MeV) N3LO (12 MeV) N2LOopt (24 MeV)

Eg.s.(0+) −92.162 −83.164 −93.473 −81.725 −75.276
Q(2+) 0.06(3) 0.051 0.040 0.056 0.044
μ(2+) NA 1.026 1.039 1.024 1.034
B(E2;2+

1 → 0+
1 ) 7.59(42) 5.942 3.644 7.277 4.354

B(M1;1+
1 → 0+

1 ) 0.0145(21) 0.005 0.010 0.005 0.007
13C Expt. CDB2K (14MeV) INOY (20MeV) N3LO (12MeV) N2LOopt (24MeV)

Eg.s.(1/2−) −97.108 −87.308 −99.831 −85.905 −78.058
μg.s.(1/2−) 0.702369(4) 0.881 0.691 0.933 0.738
Q(3/2−

1 ) NA 0.032 0.023 0.036 0.026
μ(3/2−

1 ) NA −0.874 −0.674 −0.934 −0.737
B(E2;5/2−

1 → 1/2−
1 ) 5.629(363) 4.812 2.959 5.824 3.544

B(M1;3/2−
1 → 1/2−

1 ) 0.698(72) 1.174 0.872 1.257 0.949
14C Expt. CDB2K (14MeV) INOY (20MeV) N3LO (12MeV) N2LOopt (22MeV)

Eg.s.(0+) −105.284 −97.753 −111.239 −96.129 −86.229
Q(2+) NA 0.042 0.031 0.048 0.037
μ(2+) NA 2.397 2.550 2.346 2.454
B(E2;2+

1 → 0+
1 ) 3.608(602) 4.396 2.673 5.473 3.529

B(M1;1+
1 → 0+

1 ) 0.394(89) 0.9167 1.215 0.792 1.078

Similarly we have calculated the reduced magnetic-dipole
transition strength B(M1; 1+

1 → 0+
1 ) for the even nuclei. Ex-

perimental data exists only for 12,14C, thus, the B(M1; 1+
1 →

0+
1 ) transitions are predicted in the NCSM for 10C. In 12C,

the situation is under control with calculations providing a
reasonable degree of agreement with one another and with
the experimental value. However, in the case of 14C we see a
significant variance in the calculations, all of which drastically
overpredict the transition strength.

For 11C, we have performed calculation of the quadrupole
moment of the g.s., and the magnetic moments of the g.s. and
first-excited state. For the g.s. quadrupole moment Q(3/2−

1 ),
we find that the NCSM calculations are generally consistent
with one another across all interactions. Looking at the mag-
netic moment μg.s.(3/2−

1 ), we find that the sign is correctly
reproduced for each interaction, however, the NCSM results
with the CDB2K and N3LO interactions are close to the ex-

perimental value. The NCSM result of B(M1; 3/2−
1 → 1/2−

1 )
corresponding to INOY and N2LOopt are in a reasonable
agreement with the experimental data. It is worth noting that
B(M1; 5/2−

1 → 3/2−
1 ) transition strength is predicted in the

NCSM for 11C and have yet to be experimentally observed.
Moving on to 13C, we have computed the magnetic moment
of the g.s. and first-excited state, as well as the quadrupole
moment for the first-excited state. For the g.s. magnetic mo-
ment μg.s.(1/2−

1 ), we see the NCSM description are in good
agreement with the experimental data. We have also computed
the B(E2; 5/2−

1 → 1/2−
1 ) and B(M1; 3/2−

1 → 1/2−
1 ) transi-

tion strengths.

VI. POINT-PROTON RADII

In addition, we have investigated the point-proton radii rp

for the carbon isotopes, the results of which are tabulated
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TABLE III. Point-proton radii for 10–14C obtained from the
NCSM, utilizing three interactions: (i) CDB2K, (ii) INOY, and (iii)
N3LO. The point-proton radii are shown in fm. NCSM calculations
are performed at the optimal frequency and largest model space
identified in the previous section. Experimental data are taken from
Ref. [45].

rp Expt. CDB2K INOY N3LO

10C NA 2.38 2.18 2.50
11C NA 2.29 2.04 2.41
12C 2.35(6) 2.25 2.01 2.37
13C 2.33(13) 2.23 1.96 2.34
14C 2.27(6) 2.19 1.94 2.31

(using the optimal frequency and largest Nmax model space)
in Table III. The results are shown alongside the experimental
values [45]. Comparing with experiment where possible, it
seems that the INOY interaction is incapable of producing
radii. On the other hand, the CDB2K and N3LO interactions
produce more realistic results, with the CDB2K radii being
smaller by about 4% and the N3LO giving more accurate
description with a deviation from experiment ranging from
0.4% to 1.8%.

It is generally quite challenging for ab initio methods to
reliably predict the point-proton radii of nuclei. The radii
are highly sensitive to the interaction between nucleons and
to long-range features of the wave function. In Fig. 8, we
present NCSM calculations of rp for 12C using the INOY and
N3LO interactions, ranging the oscillator frequency from 10
to 28 MeV and the model spaces over Nmax = 2–8. Differ-
ent curves correspond to different Nmax calculations and the
experimental values are shown as solid horizontal lines. As
can be seen, the NCSM calculations of rp are extremely sen-
sitive to the NCSM parameters. As basis size increases from
2h̄� to 8h̄�, decrease of rp dependence on HO parameters
is observed. Arguably, the best results are obtained with the
N3LO interaction which tends to produce the flattest curve

at Nmax = 8 even compared with CDB2K calculations (not
shown), indicating a greater independence with respect to the
HO frequency.

Radii curves with different Nmax basis spaces cross one
another at approximately the same frequency. As suggested
in Refs. [76,77], this crossing point is estimated to be the
converged point–proton radii. In our case, we consider the
intersection point of largest two Nmax curves as the converged
proton radii. From Fig. 8, the converged point–proton radii
for 12C is obtained as 2.11 and 2.34 fm for INOY and N3LO
interactions, respectively. We see that the N3LO interaction
predicts the radii of 12C to be quite close to experiment.
Similarly, rp calculated with N3LO for the other isotopes is
reasonably consistent with experiment. We also observe that
optimal frequency corresponding to converged point-proton
radii is smaller than that obtained from the g.s. energy minima.

VII. NO-CORE SHELL-MODEL DENSITIES

In addition to the aforementioned properties, with the A-
nucleon eigenstates obtained in the NCSM it is possible to
compute various density quantities. In this section we present
calculations of the translation invariant nonlocal one-body
nuclear densities for the range of carbon isotopes, utilizing the
approach outlined in Refs. [78,79]. The translation invariant
nonlocal density, written in partial-wave components of K , l ,
and l ′, is then given by

ρ
f i
Kll ′ (�ξ, �ξ ′) = 1

Ĵ f

∑
(JiMiKk|Jf M f )[Y ∗

l (ξ̂ )Y ∗
l ′ (ξ̂ ′)](K )

k

× Rnl (ξ )Rn′l ′ (ξ
′) (−1)l1+l2+K+ j2+ 1

2 ĵ1 ĵ2K̂

×
{

j1 j2 K
l2 l1

1
2

}
(MK )−1

n1l1n2l2nln′l ′

×
[−1

K̂
SD〈Aλ f J f |

∣∣(a†
n1l1 j1

ãn2l2 j2

)(K )∣∣|AλiJi〉SD

]
,

(7)

FIG. 8. Point-proton radii computed within the NCSM utilizing the INOY and N3LO interactions for 12C, using a range of oscillator
frequencies from 10 to 28 MeV. The model space is varied over Nmax = 2–8. Experimental radii are taken from Ref. [45] and shown as a
horizontal line with error bars.
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FIG. 9. Translation invariant nonlocal g.s. neutron densities for 10,11,12C with an Nmax = 8 model space and 13,14C with an Nmax = 6 model
space, obtained within the NCSM. The l = l ′ = 0 partial-wave component is plotted. Densities were calculated using the CDB2K interaction
with an oscillator frequency of 14 MeV.

where the definition of the matrix MK is as in Ref. [78].
The density is written in terms of the radial HO func-
tions Rnl (ξ ), the spherical harmonics Yl (ξ̂ ) and the one–body
density-matrix elements obtained in a second-quantization
scheme. Due to the trivial antisymmetrization procedure,
the NCSM eigenstates are obtained in the HO SD basis

and are thus contaminated by g.s. c.m. motion. The rel-
ative coordinates ξ and ξ ′, which measure the nucleon
positions with respect to the c.m. coordinate �R, are then
employed to analytically remove the spurious c.m. motion
from the NCSM eigenstates, producing a translation invariant
quantity.
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FIG. 10. Translation invariant nonlocal g.s. neutron densities for 10,11,12C with an Nmax = 8 model space and 13,14C with an Nmax = 6 model
space, obtained within the NCSM. The l = l ′ = 1 partial-wave component is plotted. Densities were calculated using the CDB2K interaction
with an oscillator frequency of 14 MeV.

For density calculations involving the isotopes 10–12C,
the model space is set at Nmax = 8 while for the 13,14C
isotopes, the model space is set at Nmax = 6. All densities pre-
sented in this section have been computed using an oscillator
frequency of 14 MeV and the CDB2K interaction. We choose

to primarily present the neutron densities as the proton distri-
butions vary only slightly over the range of carbon isotopes.
In all figures, the angular components of the density have
been omitted and only the radial distributions are presented.
In Fig. 9, we present the translation invariant nonlocal neutron
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FIG. 11. Translation invariant local g.s. neutron (top) and proton
(bottom) densities for 10,11,12C computed with an Nmax = 8 model
space and 13,14C computed with an Nmax = 6 model space. The local
density partial-wave component shown is for zero transition momen-
tum (K = 0). Densities were calculated using the CDB2K interaction
with an oscillator frequency of 14 MeV.

densities for the carbon isotopes considered. The density itself
is computed as a series of partial waves, for which we show
the l = l ′ = 0 component because this is generally the domi-
nant partial-wave contribution. One can see that the profile of
the density is quite similar across all nuclei; the distribution
being maximal near ξ = ξ ′ = 0 and rapidly tapering off with
increasing ξ and ξ ′. However, the density does vary substan-
tially in magnitude for the even-odd nuclei, i.e., 11,13C, as
compared with the even-even systems of 10,12,14C. In fact, for
the even-even systems, the magnitude of the density remains
quite similar despite the increasing number of neutrons. In
Fig. 10, we present similar results, however this time for the
l = l ′ = 1 partial-wave component of the density distribution.
For this partial wave, the global maxima of magnitude of the
density distribution is no longer located at ξ = ξ ′ = 0 and
the minima is located around ξ = ξ ′ ≈ 1.5 fm. Looking first
at the 10,12,14C isotopes, one notices that there is a signifi-
cant enhancement in the magnitude of this component with
increasing neutron number. Comparing with the isotopic be-

havior of the l = l ′ = 0 partial wave, which remained almost
unchanged with respect to the neutron number, the magnitude
of the l = l ′ = 1 component approximately triples going from
10C to 14C. Furthermore, the magnitudes of the 11,13C partial
waves, which are notably larger than in the 10,12C systems, are
more comparable to the results from 14C.

In Fig. 11, we present a comparison of the local neutron
(top plot) and proton (bottom plot) densities for all of the stud-
ied carbon isotopes. Note that the local density distribution is
expressed in terms of the nonlocal form as

ρ
f i
K (�ξ ) =

∑
ll ′

ρ
f i
Kll ′ (�ξ, �ξ ′)|ξ=ξ ′ . (8)

The normalization of the local proton and neutron densities
is to the proton number Z and neutron number N , respec-
tively. For the local densities, we present the partial waves
corresponding to zero transitions momentum (K = 0), and
in this case, we integrate the angular component analytically
since the Y 0

0 (ξ̂ ) spherical harmonic trivially reduces to 1√
4π

.

The angular factor of
√

4π is included in all figures with the
local density. Looking at the neutron densities for the various
carbon isotopes, we see the following: (i) 10,11C appear to be
maximal at ξ = 0 and only decay, although 11C extends sub-
stantially further; (ii) 12–14C reach their maximal value at some
nonzero ξ , in fact, the displacement increases with increasing
neutron number. This is naturally explained in terms of the
partial wave components of the nonlocal density shown in
Figs. 9 and 10, as those nuclei which have larger contributions
from the l = l ′ = 1 partial wave should see a more extended
local density. As discussed prior, both 11,13C have significant
l = l ′ = 1 partial waves, as do 12,14C, so the greater extent and
magnitude of the local densities compared with 10C is sensi-
ble. Referring now to the local proton densities, as expected,
we find that they do not significantly differ in structure across
the range of carbon isotopes.

Lastly, in Fig. 12, we present Nmax convergence plots ob-
tained with the local densities. First looking at 10,11,12C, it
is straightforward to see the emerging convergence trend,
with increasing Nmax model spaces providing more refined
corrections to the density distribution. In these systems, the
differences between the Nmax = 6 and Nmax = 8 distributions
are almost negligible. In fact, the curves are exactly over-
lapping in the cases of 11,12C. Let us now consider the
convergence plots of 13,14C, where the densities have only
been obtained up to Nmax = 6. For these systems, the differ-
ence between Nmax = 4 and Nmax = 6 is minutely larger than
in the cases of the other nuclei. However, it is still reason-
able to expect that, based on the convergence trends seen in
the lighter carbon isotopes, the Nmax = 6 density distribution
would be in good agreement with the Nmax = 8 distribution.
Hence, it is safe to assume that these results are well con-
verged in the NCSM.

VIII. CONCLUSIONS

In this work, we have presented a systematic study of
10–14C utilizing the ab initio NCSM approach. We applied
four NN interactions in the calculations, namely, the CDB2K,
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FIG. 12. Translation invariant local g.s. neutron densities for 10,11,12C computed with Nmax = 0–8 models spaces and 13,14C computed
with Nmax = 0–6 model spaces. The local density partial-wave component shown is for zero transition momentum (K = 0). Densities were
calculated using the CDB2K interaction with an oscillator frequency of 14 MeV.

INOY, N3LO, and N2LOopt, and comparison of NCSM results
using these interactions have been carried out to deter-
mine best-suited interaction. Low-lying energy spectra are
investigated in the basis size of up to 10h̄� for 10C and
8h̄� for 11–14C. The triple-alpha structure of the 0+

2 state
in 12C is obtained at high excitation energy even in the

Nmax = 8 basis space calculation. It is expected that conver-
gence of this state would be obtained at larger Nmax. The
energy of both the T = 0 and T = 1 1+ states of 12C from
ab initio calculations are consistent with experiment. Re-
garding the energy of the g.s. and some excited states, we
generally find that the INOY interaction provides the best
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description of the energies. This confirms that inclusion of a
short range nonlocality in the NN interaction, fitted to repro-
duce properties of the bound three nucleon system (3H and
3He) [56–58], does explain some of the many nucleon force
effects.

We have calculated electromagnetic properties and com-
pared these calculations with the available experimental data.
Ab initio NCSM results are consistent with experimental data
except for B(E2) value of 10C. To understand the sensitivity
of the point-proton radii with respect to the Nmax parame-
ters, we have shown the dependence with respect to h̄� and
Nmax for 12C using INOY and N3LO interactions. The N3LO
interaction adequately describes the radii of carbon isotopes
when compared with experiment. It is also worth noting
that the optimal frequency for determining the point-proton

radii is smaller than the optimal frequency of the many–body
calculation. Lastly, for the first time, we have reported the
translation invariant one–body nuclear densities for 10–14C and
their behavior with respect to Nmax.
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