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We investigate the differences and analogies between the equation of motion phonon method (EMPM) and
second Tamm-Dancoff and random-phase approximations (STDA and SRPA) paying special attention to the
problem of spurious center-of-mass (c.m.) admixtures. In order to compare them on an equal footing, we perform
self-consistent calculations of the multipole strength distributions in selected doubly magic nuclei within a
space including up to two-particle–two-hole (2p-2h) basis states using the unitary correlation operator method
two-body intrinsic Hamiltonian and we explore the tools each approach supplies for removing the spurious
c.m. admixtures. We find that the EMPM and STDA yield exactly the same results when the same intrinsic
Hamiltonian is used and the coupling of the Hartree-Fock state with the 2p-2h space is neglected, but, unlike
STDA and SRPA, the EMPM offers the possibility to completely remove c.m. admixtures.
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I. INTRODUCTION

The random phase approximation (RPA) has become the
canonical approach to study the collective response of nuclei
to external probes [1,2]. It provides a satisfactory description
of the gross features of collective modes, such as their centroid
energy and total strength, and as a linear-response theory it is
generally preferred over the simpler Tamm-Dancoff approxi-
mation (TDA). However, in order to describe more detailed
properties, like fragmentation and damping of giant reso-
nances (GR) beyond the Landau mechanism, it is necessary to
go beyond the harmonic approximation underlying the RPA
method and couple the particle-hole (p-h) states building up
the RPA phonons to more complex configurations.

The earliest extensions were achieved within the particle-
vibration coupling (PVC) [3] and quasiparticle-phonon mod-
els (QPM) [4]. The QPM adopts a separable interaction to
generate quasiparticle RPA (QRPA) phonons and couples
them to two and, in some cases, three RPA phonon configura-
tions to describe low- and high-energy collective modes [5].

In its first formulation [6], the PVC had a phenomenolog-
ical character and was focused mainly on the fragmentation
and damping of GR. It was then linked to energy density
functional (EDF) theories and reformulated microscopically
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through the use of Skyrme interactions [7]. The same con-
nection was established within the Green function (GF)
framework based on the time blocking approximation (TBA)
where the PVC emerges from nonrelativistic [8] and rela-
tivistic [9–11] EDF. Density dependent effective interactions
derived from non-relativistic EDF, like Skyrme and Gogny,
were also used in second RPA (SRPA) [12,13].

The SRPA, which also has a long history [14], is the most
straightforward RPA extension. It solves directly the eigen-
value problem in a space spanned by p-h plus 2p-2h basis
states. An example is provided by the calculations [15,16]
performed by using a potential obtained through the unitary
correlation operator method (UCOM) [17]. An even sim-
pler approach is the second Tamm-Dancoff approximation
(STDA) which is obtained from SRPA if the correlated ground
state is replaced by the Hartree-Fock (HF) vacuum from the
beginning, which in practice means that only the forward p-h
and 2p-2h amplitudes are retained.

The RPA extensions based on the phenomenological EDF
theories have to deal with a double counting problem. By go-
ing beyond the mean-field approximation, correlations already
present in the ground state may be induced since the parame-
ters of the EDF are determined so as to reproduce the ground
state properties within HF. In order to avoid such a redundancy
it is necessary either to redetermine the parameters or to adopt
the so-called subtraction method proposed by Tselayev within
the GFTBA [18,19] and used also within the SRPA [12].

2469-9985/2023/107(1)/014305(13) 014305-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7708-6290
https://orcid.org/0000-0002-7119-6667
https://orcid.org/0000-0003-3901-3186
https://orcid.org/0000-0003-0253-915X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.014305&domain=pdf&date_stamp=2023-01-12
https://doi.org/10.1103/PhysRevC.107.014305


F. KNAPP et al. PHYSICAL REVIEW C 107, 014305 (2023)

Another direct approach to the nuclear response is provided
by the equation of motion phonon method (EMPM) [20,21].
In its upgraded formulation [22], the TDA phonons are the
basic constituents of an orthonormal basis of n-phonon (n =
2, 3, 4, . . .) states generated from solving iteratively a set of
equations of motion in each n-phonon subspace. These states
together with the HF state (n = 0) and the TDA phonons
(n = 1) are adopted to solve the full eigenvalue problem.
The method was also formulated in the quasiparticle language
suitable for open shell nuclei [23] and in the p(h)-phonon
scheme for the study of odd-nuclei [24–29].

The EMPM does not rely on any approximation except for
the truncation of the configuration space and the number of
phonons. Therefore, we should expect that, within a space in-
cluding up to the two-phonon subspace, it should yield exactly
the same results one obtains in STDA. This check represents
the preliminary goal of the present work.

In order to make a consistent comparison between the three
different approaches, we neglect the coupling between HF and
two-phonon states in the EMPM, as it is the case in STDA.
Such a coupling is implicit in RPA and SRPA since the Hamil-
tonian matrix is constructed by assuming that basis states are
built on top of the correlated ground state. However, only
excitation properties are calculated by construction, while the
unperturbed HF wave function is used in the actual evaluation
of the matrix elements.

The scope of our study is wider. We intend to put on display
analogies and differences between the three formalisms and
to investigate if and how their specific features impact on
their performances. To this purpose, we will adopt the same
states using the unitary correlation method (UCOM) two-body
Hamiltonian throughout this work to determine the multipole
response in some selected doubly magic nuclei.

We will pay special attention to the problem of the center
of mass (c.m.) which may become critical once we go be-
yond the mean-field approximation. In fact, we know that the
decoupling between intrinsic and c.m. motion is achieved in
RPA if a HF basis in a complete or large enough p-h space
is adopted [30], while in SRPA this is generally not true in
spite of Thouless’s theorem [30,31], because the stability con-
dition is violated [32]. Recently, the c.m. contamination of the
dipole spectrum was studied in extended RPA models based
on the time blocking approximation (TBA) [33]. In TDA, the
decoupling is obtained by exploiting the Gram-Schmidt or-
thogonalization method [34]. In the EMPM the c.m. spurious
admixtures can be removed from the whole multiphonon basis
under no constraint and for any single-particle (s.p.) basis by
a method which exploits the singular value decomposition
(SVD) [35,36]. The comparison between the three approaches
will enable us to establish the role of the c.m. motion on
the different multipole responses and how important is the
removal of such a motion.

II. SHORT OUTLINE OF THE METHODS

A. STDA and SRPA

The SRPA eigenvalue equations are( A B
−B∗ −A∗

)(Xν

Yν

)
= ων

(Xν

Yν

)
.

Here,

A =
(

A11 A12

A21 A22

)
, B =

(
B11 0

0 0

)

and

Xν =
(

X (1)
ν

X (2)
ν

)
, Yν =

(
Y (1)

ν

Y (2)
ν

)
,

where the labels 1 and 2 refer to the p-h and the 2p-2h sub-
spaces and X and Y are the forward and backward amplitudes.
Concerning the submatrices, A11 = {〈i|H | j〉} (i = ph, j =
p′h′) is just the TDA Hamiltonian matrix, A22 = {〈i j|H |kl〉}
are the matrix elements of the Hamiltonian in the 2p-2h sub-
space, A12 = {〈i|H | jk〉} provides the p-h to 2p-2h coupling,
and B11 = {〈0|H |i j〉} is the RPA coupling to the ground state.
The other nondiagonal blocks vanish (B12 = B21 = B22 = 0)
because they are evaluated using the HF vacuum instead of the
correlated ground state and with only a two-body Hamiltonian
[31,37]. The solution of the above equations yields the eigen-
values ων = Eν − E0, where E0 is the ground-state energy, Eν

are energies of the eigenstates

|�ν〉 = (O(1)
ν + O(2)

ν

)|0〉, (1)

where

O(1)
ν =

∑
i

[
X (1)

ν (i)q†
1(i) − Y (1)

ν (i)q1(i)
]

O(2)
ν =

∑
i j

[
X (2)

ν (i j)q†
2(i j) − Y (2)

ν (i j)q2(i j)
]
. (2)

Here, q†
1(q1) and q†

2(q2) create (destroy) p-h (i) and 2p-2h (i j)
states, respectively.

If we put B11 = 0 (no ground state correlations), we obtain
the STDA equations

AXν = ωνXν (3)

whose eigenstates are simply of the form

|�ν〉 =
⎡
⎣∑

i

X (1)
ν (i)q†

1(i) +
∑

i j

X (2)
ν (i j)q†

2(i j)

⎤
⎦|0〉. (4)

B. EMPM

The EMPM goes through three steps. We first map the p-h
configurations into a TDA phonon basis

{|ph〉} → {|λ〉} = {O†
λ|0〉}. (5)

Starting from the TDA one-phonon states |α1〉 = |λ〉, we
generate iteratively an orthonormal basis of n-phonon (n =
2, 3 . . .) correlated states |αn〉 through various steps. As-
suming known the (n − 1)-phonon basis states |αn−1〉, we
construct n-phonon states

|i〉 = |λαn−1〉 = O†
λ|αn−1〉. (6)

From this redundant set we extract a basis of linearly in-
dependent (but not orthogonal) states through the Cholesky
decomposition method and formulate, in the basis so obtained,
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the generalized eigenvalue equation within the n-phonon sub-
space ∑

jk

(A(n)
ik − E (n)δik

)D(n)
k j C(n)

j = 0. (7)

In Eq. (7)

D(n)
i j = 〈i | j〉 (8)

is the overlap or metric matrix and

A(n)
i j = Eiδi j + V (n)

i j , (9)

where Ei is the unperturbed energy of the n-phonon state (6).
The formulas giving the overlap matrix D and the phonon-
phonon interaction V can be found, for instance, in Ref. [38].

The solution of Eq. (7) yields an orthonormal basis of states

|αn〉 =
∑

λα(n−1)

Cαn
λα(n−1)

|λα(n−1)〉 (10)

within the n-phonon subspace. The iteration of the procedure
up to an arbitrary n produces a set of states which, added to
HF (|0〉) and TDA ({|α1〉} = {|λ〉}), form an orthonormal basis
{|αn〉} (n = 0, 1, 2, 3, ...) with energies Eαn , spanning the full
multiphonon space.

In such a space, we solve the final eigenvalue equations∑
αnβn′

((Eαn − Eν )δαnβn′ + Vαnβn′ )Cν
βn′ = 0, (11)

where Vαnβn′ = 0 for n′ = n. The formulas giving Vαnβn′
(n′ �= n) can be found in Ref. [36]. The resulting eigenvectors
(with corresponding energies Eν)

|�ν〉 =
∑
n,αn

Cν
αn

|αn〉, (12)

including the ground state |�0〉, are fully correlated. In order
to make a comparison with the other two approaches we
consider a space including up to two phonons and neglect the
coupling between the HF vacuum and the two-phonon states
(〈α2|H |0〉 = 0). As already pointed in the introduction, such
a coupling is absent in STDA, while it is implicit in SRPA
excited states. Under this assumption, the excited states have
the structure

|�ν〉 =
∑

λ

Cν
λ |λ〉 +

∑
λ1λ2

Cν
λ1λ2

|λ1λ2〉, (13)

where we made use of Eq. (10).

C. Comparative analysis

We have seen already that SRPA turns into STDA if one ne-
glects the ground state correlations which in SRPA are treated
in the quasiboson approximation. Within the p-h + 2p-2h
space, the EMPM wave functions (13) can assume the struc-
ture of the STDA states (4) by expressing the TDA phonons
λ in terms of the p-h configurations. Since there is a one to
one correspondence between p-h and TDA states, the EMPM
is completely equivalent to STDA. We will demonstrate it on
many numerical examples in the next section.

With respect to both STDA and SRPA, the EMPM adopts
a correlated basis which can be safely truncated. Moreover, it

allows naturally the extension of the calculations beyond 2p-
2h in spaces including three-phonon and, even, four-phonon
states and yields an explicitly correlated ground state without
resorting to any approximation apart from a space truncation.

The EMPM has the disadvantage that it has to deal with
a redundant basis which renders the procedure more in-
volved. On the other hand, just the use of such a basis
allows a complete and exact elimination of the spurious ad-
mixtures induced by the c.m. motion for any single-particle
basis. In fact, we can first generate a basis of c.m. free
TDA states orthogonal to the c.m. spurious state |λc.m.〉
by applying the Gram-Schmidt orthogonalization to the p-h
configurations [34]. The SVD allows us to extend the or-
thogonalization procedure to all n-phonon subspace [35]. For
n = 2, for instance, we distinguish the set of spurious states
{|ic.m.〉} = {|λλc.m.〉, |λc.m.λc.m.〉} from the other two-phonon
states {| j〉} = {|λλ′〉}.

The SVD method decomposes the rectangular overlap ma-
trix

D j,ic.m.
= 〈ic.m. | j〉 (14)

into two mutually orthogonal diagonal blocks defining two
subspaces. One is spanned by the c.m. free basis {|α〉}, the
other by the c.m. spurious states {|αc.m.〉}. The two subspaces
are mutually orthogonal

〈αc.m. | α〉 = 0. (15)

The procedure can be extended to any n-phonon subspace
(n = 3, 4, . . .).

We will investigate how the differences between the three
approaches and, especially, the different treatment of the c.m.
motion have a quantitative impact on the nuclear multipole
responses. To our knowledge, only in RPA are the physical
excited states automatically decoupled from the spurious c.m.
motion.

III. NUMERICAL IMPLEMENTATION AND RESULTS

We adopt an intrinsic Hamiltonian of the form

H = Tint + V =
∑
i< j

( p2
i j

2Am
+ Vi j

)
, (16)

where pi j = pi − p j and m is the nucleon mass, for both
protons and neutrons. We adopt the UCOM potential [17]
to generate a HF basis from a HO model space truncated
in the major oscillator quantum number Nmax = 6 and the
oscillator length b = 1.7 fm. Being derived from Argonne
V18 [39], UCOM can be considered a realistic two-body po-
tential which avoids the double-counting problems affecting
entirely phenomenological potentials [18,19]. We include in
the construction of S(TDA), S(RPA) matrices all the HF single
particle, 1p-1h, and 2p-2h basis states allowed by the HO
space. Correspondingly, all the TDA phonons to build the
two-phonon basis are used in EMPM.

We will compute the strength functions of the electric
multipole operators whose general form is

M(E ; λμ) =
∑

k

ekr (λ+n)
k Yλμ(k̂), (17)
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FIG. 1. E1 (a) and E2 (b) responses of 40Ca evaluated in RPA with the intrinsic two-body kinetic energy operator Tint (“intrinsic”) and
with the effective one-body kinetic energy operator T (1)

int (“effective”).

where, unless specified otherwise, we use the bare charges,
ek = e for protons and ek = 0 for neutrons, while n is speci-
fied below depending on the multipole case.

The strength function is given

S(Eλ, ω) =
∑

ν

B(Eλ,�0 → �ν )δ(ω − ων ), (18)

where ων = Eν − E0 and

B(Eλ,�0 → �ν ) = |〈�λ‖M(Eλ)‖0〉|2 (19)

is the reduced transition probability. We will replace the δ

function with a Lorentzian

δ(ω − ων ) → 1

2π




(ω − ων )2 + 
2/4
(20)

of width 
 = 0.5 MeV for presentation purposes.
The choice of the intrinsic Hamiltonian, Eq. (16), specifi-

cally, of the intrinsic two-body operator for the kinetic energy,
is relevant in what follows. To some extent, the c.m. kinetic
energy can be subtracted by employing the same form as
the total kinetic-energy operator, which is a single-particle
operator, but with a correction to the nucleon mass,

T (1)
int =

(
1 − 1

A

) A∑
i=1

p2
i

2m
. (21)

This prescription is often used in RPA calculations based
on phenomenological functionals [40]. However, with such
choice, the formal conditions for the spurious state to appear
at zero energy are not met. Let us consider, for example, the
spurious c.m. motion operator Osp = 1

A

∑A
i=1 	ri, which con-

taminates the dipole channel. As pointed out also in Ref. [32]
for the total kinetic energy, T (1)

int does not commute with Osp,
so the total energy weighted sum rule does not vanish. As a
result, all RPA calculations employing T (1)

int produce a spurious
state at an energy of finite value (real or imaginary), regardless
of how large the p-h space is. By contrast, Tint does com-
mute with Osp and RPA implementations employing it can

produce a spurious state at practically zero energy (in terms
of the numerical precision of the overall implementation). As
a demonstration, we compare in Fig. 1 RPA results obtained
with Tint , i.e., by employing the Hamiltonian of Eq. (16), and
with T (1)

int , Eq. (21). Specifically, we show the RPA response
of 40Ca to the isoscalar dipole operator given by Eq. (17) with
λ = 1, n = 2, ep = en = e. Here, we use the c.m. uncorrected
form of the transitions operator in order to emphasize the
position and the strength of the spurious state.

In the case of Tint, even in such a small basis (Nmax = 6 or
60 p-h states) the spurious state occurs at 0.09 MeV. In the
case of T (1)

int , it appears at 0.86 MeV. The respective values in
a basis of Nmax = 10 are 0.006 and 0.322 MeV. All eigenstates
are affected by the choice of kinetic-energy operator and the
same holds in all channels as exemplified in the quadrupole
case, also shown in Fig. 1.

A. Nuclear response in 16O and 40Ca

1. Isovector electric dipole response

For the isovector electric dipole operator, n = 0 and λ = 1
in Eq. (17), we replace the bare charges with the effective ones
ek = (N/A)e for protons and ek = −(Z/A)e for neutrons in
order to minimize the impact of the c.m. coordinates. They
are obtained by referring the nucleonic coordinates to the c.m.
coordinate, 	rk → (	rk − 	Rc.m.). Such a replacement would be
unnecessary within the EMPM. In fact, after the SVD treat-
ment, we obtain the same strengths whether we use bare or
effective charges.

The behavior of E1 strength functions is very similar in
both 16O and 40Ca (Fig. 2). As shown in panels (a) and (d),
the use of the effective charges ensures the complete removal
of the c.m. admixtures in RPA and, to a very large extent,
in TDA. In the latter case, the residual impurity is removed
after the implementation of the Gram-Schmidt orthogonaliza-
tion procedure. Remarkably enough, TDA and RPA strength
functions are practically indistinguishable.
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FIG. 2. Isovector E1 strength functions in 16O and 40Ca in different approaches. The TDA strength is computed before (TDA) and after
the application of Gram-Schmidt c.m. orthogonalization procedure (TDA-CMO). In this and the following figures, a single line is drawn for
STDA and EMPM since they yield identical results. The arrows indicate states with significant spurious components which disappear if c.m.
SVD orthogonalization procedure (EMPM-CMO) is applied.

Panels (b) and (e) show that the STDA strength distribution
is identical to the one computed within the EMPM before
the implementation of the SVD. Both strengths are nearly
indistinguishable from the one obtained in SRPA.

The implementation of the SVD method has a visible effect
[panels (c) and (f)]. It identifies and removes three spurious
peaks, present in all approaches, one at negative energy and
two at high energy. However, it does not alter significantly the
overall profile of the strength, especially in the region of the
giant dipole resonance.

2. Isoscalar dipole response

For the isoscalar dipole response we use the operator

MIS (E ; 1μ) = e
∑

k

(
r2

k − 5

3
〈r2〉

)
rkY1μ(k̂). (22)

The linear term is introduced in order to minimize the spuri-
ous contributions coming from the c.m. motion. The strength
function for 16O and for 40Ca is shown in Fig. 3. In analogy
with the case of the isovector E1 transitions, the TDA and
STDA isoscalar E1 strength distributions overlap to a very
large extent with the RPA and SRPA corresponding distribu-
tions, respectively. Despite the inclusion of the linear term in
Eq. (22), a spurious peak occurs at zero energy in RPA and,
especially, in TDA [panels (a) and (d)]. In TDA, it disappears
after the Gram-Schmidt orthogonalization. As we move to
STDA and SRPA [panels (b) and (e)], we observe that the
low-lying spurious peak remains and drops to negative energy.
The implementation of the SVD method not only eliminates
such a peak but reveals and eliminates two additional spurious
peaks. More in general, it shows that, if not eliminated, the
spuriousness spreads over fairly large energy intervals and

alters portions of the profile of the strength distribution [panels
(c) and (f)].

3. Monopole and quadrupole responses

From comparing Figs. 4 and 5 we observe that monopole
(n = 2 and λ = 0) in Eq. (17) and quadrupole (n = 0 and λ =
2) responses exhibit similar characteristics in 16O. We notice
a near overlap between TDA and RPA [panel (a)] as well as
between STDA and SRPA [panel (b)] strength distributions,
especially in the quadrupole case. Humps at zero energy ap-
pear in both STDA and SRPA. Such peaks are induced by the
c.m. motion through [1− ⊗ 1−]0+,2+

coupling of the spurious
state with itself. The c.m. spuriousness is not concentrated
only around zero energy but spreads over the whole energy
interval. It generates several spurious peaks, in addition to
the zero energy one, and contaminates other transitions. All
spurious peaks as well the contaminations of other transitions
are eliminated once the SVD method is implemented.

Figures 4 and 5 show that the features of the monopole
and quadrupole responses in 40Ca are very similar to those
observed in 16O. The only significant discordance is that in
40Ca, the zero energy spurious monopole and quadrupole
peaks appear in STDA but not in SRPA. The reason is that the
SRPA energy eigenvalues corresponding to these peaks are
imaginary. Implementation of the SVD method removes not
only the zero energy bumps but also all states with spurious
admixtures.

4. Octupole response

The TDA and RPA octupole [n = 0 and λ = 3 in Eq. (17)]
strength distributions overlap over a large interval at high
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FIG. 3. Isoscalar E1 strength functions in 16O and 40Ca.

energy but differ considerably from each other in the low
energy sector [Figs. 6(a) and 6(d)]. Both approaches yield a
strong low energy peak. However, the one obtained in RPA is
more than 5 MeV below in energy and disappears in SRPA
[Figs. 6(b) and 6(e)] because it is obtained at imaginary en-
ergy. In STDA (EMPM) such a low-lying peak is still present
even after the implementation of the SVD method [Figs. 6(c)
and 6(f)]. Therefore, it corresponds to a genuine physical
resonance. The c.m. affects the spectrum only at high energy,

above 20 MeV. SVD disposes of all spurious peaks as well as
of the residual contaminations.

B. Nuclear response in 48Ca

We examine 48Ca separately from 16O and 40Ca as a qual-
itatively different system. Specifically, it is not only isospin
asymmetric, but it also develops a low-lying quadrupole vi-
bration which can couple to other phonons and affect all
channels.
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FIG. 4. Monopole strength functions in 16O and 40Ca.
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FIG. 5. Quadrupole strength functions in 16O and 40Ca.

As shown in Fig. 7, the isovector E1 response is very simi-
lar in both TDA and RPA as well as in STDA and SRPA. The
c.m. induces a small peak in TDA and two weak transitions in
STDA and SRPA. Its overall impact on the response is modest
as shown in panel (c).

More pronounced is its effect on the isoscalar E1 strength
function (Fig. 8). The c.m. motion generates several peaks and
contaminates several transitions. All these impurities disap-
pear after the SVD treatment.

TDA and RPA as well as STDA and SRPA have a similar
E3 response at high energy (Fig. 9). At low energy, instead,

important deviations are observed. The RPA low-energy peak
is shifted by about 5 MeV with respect to TDA. In SRPA it
is further shifted with respect to STDA. The SVD method
removes a low-energy hump predicted by both STDA and
SRPA and washes the residual spurious admixtures, which
distort the spectrum in both the low- and high-energy part.

The quadrupole (Fig. 10) and monopole (Fig. 11) re-
sponses are similar in the high energy sector but behave
differently at low energy. Both TDA and RPA yield two E2
low-energy peaks, while the monopole spectra are flat. A
spurious monopole peak at zero energy appears in STDA
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FIG. 6. E3 strength functions in 16O and 40Ca.
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FIG. 7. Isovector E1 strength functions in 48Ca.

(EMPM) but not in SRPA, again because of the imaginary
nature of the corresponding energy eigenvalue. The discrep-
ancy is solved once such a spurious excitation is removed
through the SVD method. Three low energy quadrupole peaks
are generated in STDA (EMPM) and two in SRPA. Two of the
three peaks survive even after the implementation of SVD.
They are genuine physical states.

However, the excitation energy of one of the two peaks is
negative, in both STDA and SRPA, implying that the excited
2+ state lies below the HF state. Such an anomaly indicates
that, at least for the potential adopted here, it is not appropriate
to consider the unperturbed HF as ground state, a tacit as-
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FIG. 8. Isoscalar E1 strength functions in 48Ca.

1

10

100

1000

10000 RPA
TDA

ω [MeV]

S(
E3

)[
e

2 fm
6 M

eV
-1

]

48Ca (a)

1

10

100

1000

10000 SRPA
STDA/EMPM

(b)

0 10 20 30 40 50 60 70 80 90 100
1

10

100

1000

10000 STDA/EMPM
EMPM-CMO

(c)

FIG. 9. E3 strength functions in 48Ca.

sumption made in RPA, SRPA, and STDA. We need to replace
HF with a correlated ground state, but such a replacement
would require the inclusion of 3p-3h, or three-phonon basis
states. Such a task is beyond the scope of the present work.

C. Running sum

It is useful to analyze the nuclear response from the per-
spective offered by the running sum. Since RPA and SRPA
fulfill the energy weighted sum rule (EWSR) [1,41], it is
meaningful to refer the different sums to the RPA sum in order
to determine to what extent they deviate from the EWSR.

0.1

1

10

100

1000 RPA
TDA

ω [MeV]

S(
E2

)[
e

2 fm
4 M

eV
-1

]

48Ca (a)

0.1

1

10

100

1000 SRPA
STDA/EMPM

(b)

0 10 20 30 40 50 60 70 80

0.1

1

10

100

1000 STDA/EMPM
EMPM-CMO

(c)

FIG. 10. Quadrupole strength function in 48Ca.
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FIG. 11. Monopole strength function in 48Ca.

Several interesting aspects emerge from examining the plots
shown in Figs. 12–17. In all nuclei under investigations the
running sums of all transitions, determined in TDA and
STDA/EMPM follow closely, from below, the one evaluated
in RPA and account almost entirely (from 90% to 95%) for
the RPA EWSR. The only exception is the isovector E1,
which overestimates the RPA sum by 10%. We can infer from
these results that, in TDA and STDA/EMPM, the EWSR is
underestimated in the isoscalar (attractive) channels and over-
estimated in the isovector (repulsive) channel, consistently
with the schematic model [42]. This is what one should have
expected since TDA and STDA/EMPM fulfill the nonenergy
weighted sum rule (NEWSR). Indeed, we have checked that
this is the case in our calculation.

Also the STDA/EMPM and the SRPA integrated strengths
evolve closely. Their smooth evolution reflects the fragmen-
tation of the strengths induced by the coupling to 2p-2h
configurations. The STDA/EMPM running sum tends exactly
to the TDA energy weighted sum. Analogously, in SRPA and
RPA, the energy weighted sum coincides in most nuclei and
for most multipolarities.
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FIG. 13. E0 and E2 energy weighted running sums in 16O and 40Ca.
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FIG. 15. Isovector and isoscalar E1 energy weighted running sums in 48Ca.

There are some exceptions. In 40Ca, the SRPA underesti-
mates appreciably the RPA E3 EWS. The simple reason is
that the lowest level which was supposed to carry a large E3
strength is imaginary. Another peculiarity of SRPA, which
was discussed in Ref. [32], is that the RPA E2 EWS is pre-
served only if we include in the running sum the negative
energy 2+ level and its strength.

A final remark concerns the effect of the center of mass.
The EWS of all multipolarity remains unaltered whether we
remove or not the c.m. motion. Due to this invariance, the
conservation of the EWS can provide valuable guidance in
any beyond mean-field extension.

IV. CONCLUSION

From the present survey we can draw some clearcut con-
clusions. The differences between TDA and RPA as well as
between STDA and SRPA responses are marginal, except for
the octupole transitions where the RPA low-lying octupole
peak is shifted considerably downward with respect to TDA.
In going from RPA to SRPA, such a peak is pushed further
down in energy and can disappear completely if the cor-
responding eigenvalue becomes imaginary. This instability
casts a shadow on the reliability of approaches which are
meant to go beyond RPA. SRPA then remains applicable
primarily on higher-lying collective modes, i.e., giant res-
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FIG. 16. E0 and E2 energy weighted running sums in 48Ca.
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onances. The TDA and STDA spectra do not exhibit any
anomaly.

In RPA, it is possible to remove almost completely the
low-lying spurious isovector E1 peak thanks to the adoption
of a HF basis combined with the subtraction of the c.m. coor-
dinates from the dipole operator. In TDA, the Gram-Schmidt
orthogonalization procedure eliminates any spurious admix-
tures from both isoscalar and isovector responses.

In going to STDA and SRPA, however, the c.m. motion
affects all multipoles. Its spuriousness spreads over the entire
spectrum of each multipole thereby inducing non-negligible
distortions of the isoscalar E1, E2, and E3 strength functions.
Only the isovector E1 response is marginally affected.

STDA and SRPA do not offer any obvious recipe for re-
moving these distortions, while in the EMPM the joint use of
Gram-Schmidt and SVD pins down and removes completely
and exactly the spurious admixtures from all multipole re-
sponses. In principle, the same orthogonalization procedure
can be used in STDA and SRPA, but this would require the
construction of c.m. spurious states in 2p-2h basis.

The EMPM is exactly identical to STDA within the space
encompassing 1p-1h plus 2p-2h configuration under the sim-
plifying assumption of neglecting the coupling between the
HF and the 2p-2p basis states. However, the anomaly of the
48Ca spectrum, where the 2+ falls below the HF ground state,
ratifies the failure of STDA and SRPA in describing the spec-
troscopy of some nuclei, at least for the potential adopted here.
The EMPM shows how to remove this anomaly. One should
refer the levels to a fully correlated ground state by taking
into account the HF to 2p-2h coupling jointly with enlarging
the configuration space so as to include the 3p-3h basis, as it
was done in [35]. In other words, one should move to full shell
model or to the EMPM.

The EMPM is more general than STDA and is exactly
identical to shell model within a given configuration space.
With respect to shell model, it is more involved but offers
significant advantages. It allows for truncations of the multi-
phonon basis even if a large space including very high energy
configurations is adopted. These are accounted for by the TDA
phonons building up the n-phonon states. It is suitable for
investigating low energy spectra as in shell model but also the
high energy responses as in RPA or SRPA. Last, but not least,
the intrinsic motion is decoupled completely and exactly from
the c.m. motion for any s.p. basis and under no restrictions.
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