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Posterior predictive distributions of neutron-deuteron cross sections
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We quantify the posterior predictive distributions (PPDs) of elastic neutron-deuteron (nd) scattering cross
sections using nucleon-nucleon (NN) interactions from chiral effective field theory (χEFT) up to and including
next-to-next-to-next-to-leading order (N 3LO). These PPDs quantify the spread in nd predictions due to the
variability of the low-energy constants (LECs) inferred from NN scattering data. We use the wave-packet
continuum discretization method to solve the Alt-Grassberger-Sandhas form of the Faddeev equations for elastic
scattering. We draw 100 samples from the PPDs of nd cross sections up to 67 MeV in scattering energy, i.e., in
the energy region where the effects of three-nucleon forces are expected to be small. We find that the uncertainty
about NN LECs inferred from NN scattering data, when assuming uncorrelated errors, does not translate to
significant uncertainty in the low-energy nd continuum. Based on our estimates, the uncertainty of nd predictions
are dominated by the χEFT truncation error, at least below N 3LO. At this order, the 90% credible interval of the
PPD and the truncation error are comparable, although both are very small on an absolute scale.
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I. INTRODUCTION

Chiral effective field theory (χEFT) [1–3] promises a sys-
tematically improvable description of the nuclear interaction
grounded in the symmetries of low-energy quantum chro-
modynamics. Two-nucleon (NN) and three-nucleon (NNN)
interactions from χEFT are used extensively in modern
ab initio predictions of atomic nuclei and nuclear matter, see,
e.g., Refs. [4–6] for recent overviews. To make quantitative
predictions of the properties of nuclear systems, the numer-
ical values of the low-energy constants (LECs) that govern
the strengths of the pion-nucleon (πN) and nucleon-contact
couplings must first be inferred from low-energy data. For
this, the Bayesian approach to statistics [7] provides a natural
framework since it yields a (posterior) probability density
function (PDF) that quantifies our uncertainty about the val-
ues of the LECs. Propagating this uncertainty when making
theoretical predictions amounts to averaging the distribution
of predictive samples over the LEC posterior PDF. The result
of this is called a posterior predictive distribution (PPD). This
type of distribution sits at the center of the scientific process
whereby we try to predict future data based on previous data
and theory.

There are existing efforts to quantify Bayesian PPDs for
various nuclear observables, e.g., NN scattering cross sec-
tions [8] and scattering lengths [9], few-nucleon [10] and
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many-nucleon [11–13] energies, radii, and decays, as well as
nuclear mass models [14,15]. These probability distributions
quantify our degree of belief, and facilitate a meaningful com-
parison with experimental data. For example, the PPD finds
use in model checking [7], such as posterior predictive checks.
There one simulates data, using a fitted model, and compares
to observed data. The simulated data corresponds to draws
from the PPD and it should look roughly like the observed
data if the model did indeed contain all relevant physics and
there has been a sufficient amount of calibration data.

In this work, we sample the PPDs of selected neutron-
deuteron (nd) scattering cross sections arising from the
variability of the LEC posterior when conditioned on NN
scattering data. We use χEFT descriptions of the NN in-
teraction at all orders up to next-to-next-to-next-to-leading
order (N 3LO) in Weinberg power counting. To the best of
our knowledge there exists only frequentist statistical analyses
encompassing a subset of nucleon-deuteron (Nd) scatter-
ing cross sections and scattering lengths [16–18], for which
various estimates for dispersion have been quantified. Our
analysis is rooted in Bayesian methodology and therefore
provides probability densities for the predicted observables of
interest. As such, the results of this work facilitates a quantita-
tive measure of the predictive power in the low-energy NNN
continuum using χEFT interactions carefully calibrated using
NN scattering data. This work is part of an ongoing effort
towards a full Bayesian analysis of χEFT conditioned also on
experimental data in the Nd continuum [19].

To sample the PPDs of elastic nd-scattering cross sections,
we repeatedly solve the Alt-Grassberger-Sandhas [20] (AGS)
form of the Faddeev equations using the wave-packet contin-
uum discretization (WPCD) method [19,21]. This method is
parallelizable with respect to the scattering energy, denoted
with ELab, in the laboratory frame of reference. Therefore, it
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is particularly suitable for sampling PPDs across a range of
ELab values. Still, the collection of samples from the PPDs
is limited by the number of times we can solve the AGS
equation. For this reason, we currently neglect NNN forces
(3NFs) and focus our analysis on cross sections and polar-
ization observables with ELab � 67 MeV, for which NN-only
models typically perform well [16,22–24]. The low-energy
vector analyzing power, Ay(n), is a possible exception to this
statement and we therefore place a special focus on the anal-
ysis of this polarization observable.

In addition to the inherent uncertainty of inferred LEC
values, there are also other sources of theoretical uncertainty.
The model discrepancy due to the omission of higher chiral
orders is an obvious one. Neglecting this uncertainty can
lead to biased and overconfident inferences and predictions
[25]. Fortunately, χEFT is designed to be an order-by-order
improvable description of the nuclear interaction, and as such
the theory itself provides valuable information about the mag-
nitude of the truncation error [26]. Indeed, there exists several
efforts to quantify the truncation error in effective field theory
predictions of nuclear systems, see, e.g., Refs. [8,10,27–32].
Although our focus is to quantify the PPDs of nd scattering
observables due to variability in the NN LECs, we will also
contrast our findings with estimates of the truncation error.

In Sec. II we define the general structure of the PPDs
we sample in this work. In Sec. III we present the essential
elements of the WPCD method we use to produce elastic nd
cross sections. In Sec. IV we present the strategy for sampling
the PPDs, with particular focus on achieving computational
speedup, and the results of the sampling. We also compare the
degree-of-belief intervals of the PPDs with some of the other
components of the total error budget; the χEFT truncation
error in particular. We end with a summary and outlook in
Sec. V.

II. SETTING UP THE POSTERIOR
PREDICTIVE DISTRIBUTION

The PPD is a PDF pr(y|D, M, I ) for a quantity y as
predicted by a model M. This distribution quantifies the
uncertainty about y given previous data D and any other as-
sumptions or information I . Here, we focus on the uncertainty
of the numerical values of the LECs, denoted �α, present in the
underlying χEFT NN interaction. As such, we must marginal-
ize over the LECs by evaluating the following integral:

pr(y|D, M, I ) =
∫

�

pr(y|�α, D, M, I )pr(�α|D, M, I ) d �α

∝
∫

�

y(�α)pr(�α|D, M, I ) d �α. (1)

In the second line we introduced a shorthand y(�α) for a deter-
ministic model prediction given numerical values for �α from
some parameter domain �. We also used that y is condition-
ally independent of D. The proportionality indicates that we
are only interested in the width and shape of the PPD, and not
the overall normalization constant.

We will refer to the χEFT description of the NN interac-
tion at a chiral order ν as a model, and denote this as Mν . The

chiral orders are defined according to Weinberg power count-
ing with ν = 0, 2, 3, 4, and as is common, we refer to them to
as leading order (LO), next-to-leading order (NLO), next-to-
next-to-leading order (N2LO), and N 3LO, respectively. The
values of �α depend on the chiral order ν, but to simplify
notation we do not index �α by ν.

The PPD is a probabilistic generalization of the familiar
point-estimate value y� = y(�α�), obtained by evaluating the
model Mν at some preferred parameter value �α�, such as a
local parameter optimum. We will in some cases resort to
evaluating the PPD at the maximum a posteriori (MAP) value
of the LEC posterior

�α� ≡ argmax
�α

pr(�α|D, Mν, I ). (2)

Note that the PPD does not necessarily attain its maximum for
�α�. Indeed, the evaluation of y(�α), through the AGS equation,
is neither linear nor monotonic.

Evaluating the integral in Eq. (1) requires knowledge about
the PDF, pr(�α|D, Mν, I ). We utilize the available LEC poste-
riors up to and including N3LO published in Ref. [9]. These
posteriors were sampled using Hamiltonian Monte Carlo
(HMC) while accounting for uncorrelated χEFT truncation
errors, and were conditioned on the Granada database [33,34]
of NN scattering cross sections for scattering energies ELab �
290 MeV. The leading neutron-neutron (nn) isospin-breaking
LEC was inferred using an empirical value for the nn scatter-
ing length in the 1S0 partial-wave channel. We note that other
methods accounting for correlated χEFT truncation errors
exist, see, e.g., Ref. [35], which may change the inferred, and
rather narrow, distributions of LEC values we use here.

The HMC algorithm is particularly well suited for
sampling high-dimensional PDFs and yields virtually un-
correlated draws from pr(�α|D, Mν ). A detailed analysis [8]
suggests that the HMC chains we employ in this work to
represent the LEC posteriors are sufficiently converged at all
orders, unimodal, and rather concentrated in parameter space.
As such, we have in-depth knowledge of the location of the
posterior mass, which helps tremendously when evaluating
the integral in Eq. (1).

III. WAVE-PACKET CONTINUUM DISCRETIZATION

In this section we summarize the WPCD method [21] for
solving the AGS equation in momentum space. Our results are
based on the implementation “Tic-tac,” presented in Ref. [19]
and available under an open-source license in Ref. [36]. The
AGS equation for nd scattering, without 3NFs, can be written
as

Û = P̂Ĝ−1
0 + P̂t̂1Ĝ0Û , (3)

where Û is the transition matrix between asymptotic scatter-
ing states, Ĝ0 ≡ 1

E−ĥ0±iε
is the resolvent of the free NNN

Hamiltonian ĥ0, E is the total energy, t̂1 denotes the scatter-
ing T matrix for the pair system (23) as written in standard
odd-man-out notation, and P̂ ≡ 2P̂123 where P̂123 is the
permutation matrix acting on partially antisymmetric NNN
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states.1 The large dimensionality of the NNN Hilbert space
makes it challenging to apply matrix-inversion-type methods
to solve Eq. (3). Instead, one usually resorts to expanding
the AGS equation in a Neumann series that is subsequently
resummed using a Padé approximant [37] to handle the diver-
gence originating from the integral kernel Ĝ0v̂1 with Weinberg
eigenvalues [38] outside the unit circle.

It is well understood how to obtain converged solutions for
U in a standard plane-wave basis, see, e.g., Ref. [39]. In this
basis, Û is obtained for a specific value of the on-shell energy
E , and the resolvent Ĝ0 and NN T matrix t̂1 depend explicitly
on E . This dependency inflicts several complications such as
moving singularities in the resolvent operator, and a require-
ment for antisymmetrizing NN T matrices at many energies
when evaluating the AGS integral kernel, which is typically
handled using splines [40].

In this work, we use the WPCD method [21] for solving the
AGS equation. This is one of many bound-state approaches
[41] for describing scattering processes. In WPCD, we dis-
cretize the continuum using a wave-packet basis. Doing so
simplifies the numerical analysis of the AGS equation. First,
one can derive a closed-form expression of the channel resol-
vent, treating the associated singularities analytically. Second,
the P matrix has no need for splining. Third, it factorizes the
on-shell energy dependence out of the matrix multiplications
associated with the terms of the Neumann series expansion,
providing significant speedup of the most time-consuming
parts of the numerical solution.

As a downside, the WPCD method entails large matrix di-
mensionalities compared with the plane-wave representation.
However, scattering amplitudes can be calculated at multiple
scattering energies with minor extra computational cost per
energy. This makes WPCD particularly suitable for sampling
Bayesian PPDs across ranges of energies. In fact, we find
that calculating scattering amplitudes at multiple scattering
energies only doubles the computational cost compared to
computing the amplitude at a single energy [19]

We define a wave packet |x〉 as a finite integral of contin-
uum states |p〉, e.g., plane-wave states, within a momentum
bin D ≡ [p, p + 	p],

|x〉 ≡ 1√
N

∫
D

f (p′)|p′〉 p′ d p′, (4)

where f (p) is a weighting function and N is the normaliza-
tion constant. The weighting function determines where the
eigenvalue for |x〉 of the free Hamiltonian and momentum
operators lie within the bin [21]. An A-body wave packet can
be straightforwardly defined using wave-packet discretization
for each Jacobi coordinate. A NNN wave packet is given by
|X 〉 ≡ |x〉 ⊗ |x̄〉, where |x〉 corresponds to the pair-system p
momentum and |x̄〉 corresponds to the spectator q momentum.

The eigenstates of the NN Hamiltonian ĥ1 in a (plane-
wave) wave-packet basis can be used to approximate scatter-
ing NNN wave packets rather well. In this basis, it is also

1There is an erroneous extra term +1 in the definition of P̂ in
Ref. [19].

possible to evaluate the channel-resolvent Ĝ1 ≡ 1
E−ĥ1±iε

ana-

lytically. Furthermore, using that t̂1Ĝ0 ≡ v̂1Ĝ1 and Ĝ−1
0 = v̂1

(on-shell), we can rewrite Eq. (3) to obtain

Û = P̂v̂1 + P̂v̂1Ĝ1Û , (5)

where Û now depends on E only via Ĝ1. This is the starting
point for solving the AGS equation in the WPCD method.
Here, as in Ref. [19], we use an equal number of wave packets,
NWP, to discretize the p and q continua, yielding matrices in
Eq. (5) that scale in size as O(N4

WP). We find that the runtime
of the code follows this quartic scaling with NWP quite closely.
Note, however, that the calculations at N 3LO are ∼10% more
costly since the Padé resummation of the Neumann series
typically requires more terms to converge.

IV. EVALUATING POSTERIOR PREDICTIVE
DISTRIBUTIONS

We sample the PPD of a scattering observable by evalu-
ating Eq. (1) numerically. This is done by computing the nd
scattering observable of interest for a finite set of LEC values
drawn from the posterior PDF, pr(�α|D, Mν ). In practice, we
use the Markov chains obtained in Ref. [9].

For every sample that we draw from the PPD we must
solve the AGS equation. Fortunately, with the WPCD method
we get access to all scattering cross sections at all angles
and energies without any significant computational overhead.
Also, since the permutation operator P̂ does not depend
on the LECs, we only have to compute this once and reuse
it throughout the sampling process. However, we have to
setup the Neumann series for every new sample, and this is
the most time-consuming part.

In all calculations done here, we use a spin-angular basis of
NNN partially antisymmetric partial-waves with total angular
momentum J � 17/2, using both parities, and using NN
total angular momentum J � 3. We also explicitly account
for the charge dependence of the strong NN interaction in the
1S0 channel. This state space provides sufficiently converged
U -matrix elements for ELab � 100 MeV when using the chiral
potentials defined in Ref. [8,9]. Note that our study is limited
to ELab � 67 MeV due to the omission of 3NFs. It has been
shown that, at low scattering energies, the scattering ampli-
tudes are likely dominated by NN forces [16,22–24].

We discuss our general strategy to quantify the PPD in
Sec. IV A, present results for the PPDs of the differential nd
cross section in Sec. IV B, relate this to estimates of the χEFT
truncation errors in Sec. IV C, and discuss spin-polarization
observables, focusing on Ay(n), in Sec. IV D.

A. Trading wave packets for computational speedup

In the limit NWP → ∞, the WPCD results converge to-
wards the results from an exact calculation, e.g., a continuous
plane-wave solution [39] of Eq. (5). However, the computa-
tional cost increases quartically with NWP, and larger values
for NWP will significantly increase the PPD sampling cost.
Balancing cost and accuracy, we found it sufficient to draw
N = 100 samples from each PPD that we study, since we are
quantifying univariate distributions. Also, we noticed that the
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FIG. 1. Trace plot of the differential cross section PPD at N2LO,
for ELab = 12 MeV and θc.m. = 120 degrees, using 100 samples from
the HMC chain of samples from the LEC posterior at this order.

shapes and widths of the PPDs studied here did not change
visibly when varying NWP, and as such we could limit our-
selves to NWP � 75 and extrapolate to larger values. This will
be discussed in the next section.

At present, using NWP = 75, it takes roughly 12 node-hours
(384 core-hours2) to compute all necessary scattering ampli-
tudes at ≈50 scattering energies below 100 MeV for a single
configuration of values for the LECs at a specific chiral order
ν. This translates to roughly 150 k core-hours to compute all
scattering amplitudes for 100 different LEC values at four
chiral orders. The same calculation with NWP = 150 would
be 16 times more expensive and cost roughly 2.5 M core-
hours. To monitor the reduced method accuracy at NWP = 75,
we repeat the PPD sampling, with copies of the same LEC
samples, at every chiral order with NWP = 30 and 50. We also
use a restricted set of 10 posterior samples with NWP = 100.
In addition, we evaluate the PPD at the MAP value �α� of
the LEC PDF using NWP = 30, 50, 75, 100, and 150. The
NWP = 75, 150 MAP predictions will be used for extrapola-
tion in the next section.

We had little cost-related reason to restrict calculations
to ELab � 67 MeV. Instead, we computed the on-shell U
matrices at all wave-packet NN Hamiltonian eigenenergies
below ELab = 100 MeV, which was roughly two thirds of the
wave-packet basis size. Between these energies we perform
linear interpolation of the U -matrix elements to virtually any
ELab < 100 MeV. Consequently, we obtained 100 samples
from the PPD of any elastic scattering cross section at every
order up to, and including, N 3LO. Of course, with the neglect
of 3NFs, we consider our predictions above ELab = 67 MeV
to be incomplete and have therefore been omitted from the
present study. Nonetheless, they allowed us to check on the
width and shape of PPDs all the way to ELab = 100 MeV.

Although the HMC chains of LEC posterior samples are
virtually uncorrelated, this does not imply that ensuing sam-
ples from the nd cross section PPD are equally uncorrelated.
Unfortunately, a chain of 100 samples is typically too short
to quantify, e.g., an integrated autocorrelation time or reliably

2Using two Intel Xeon Gold 6130 CPUs per node, amounting to 32
cores per node.
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FIG. 2. The differential nd cross section at ELab = 12 MeV com-
puted using the MAP values for the LECs at chiral orders from
LO to N 3LO. The dotted, dash-dotted, dashed, and solid lines at
each order show the results obtained from the WPCD methods with
NWP = 50, 75, 100, and 150, respectively.

determine the autocorrelation itself. Nevertheless, an inspec-
tion of the trace plots of the PPD samples, as shown in Fig. 1,
does not indicate any hints of strong correlation between sam-
ples. In the event of observing strongly correlated samples,
the information content of the PPD chain, as measured by its
effective sample size, will drop inversely to the integrated au-
tocorrelation time and we would have to increase the number
of samples accordingly [8].

B. Differential cross section

The convergence of the differential elastic nd cross sec-
tion at ELab = 12 MeV with respect to NWP is shown in
Fig. 2. Clearly, with NWP ≈ 100, the results begin to stabi-
lize, at least for subleading orders. The somewhat reduced
convergence rate for the LO results might be caused by the
rather coarse wave-packet representation of the NN potential
for low relative momenta [42]. To remedy this one should
either redistribute the discretization boundaries to improve the
coverage of the lower momentum region, or simply increase
NWP if possible. Since we detect a sufficient convergence at
subleading orders, we opt for keeping the discretization mesh
the same throughout all calculations and at all chiral orders.
Note that the LO minimum is shifted compared to subleading
orders, reflecting our overall finding that the LO interaction
lacks relevant physics to model nd scattering observables.

Next, we study the convergence of the PPD with respect
to NWP. In Fig. 3 we show a histogram of 100 samples of the
PPD of the nd differential cross section at ELab = 12 MeV
and θc.m. = 120 degrees at N2LO using NWP = 30, 50, and
75, as well as 10 samples at NWP = 100 and the location
of the MAP prediction using NWP = 150. The PPDs based
on NWP = 30, 50, and 75 are very similar in terms of shape
and width. In fact, for all observables that we study in this
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FIG. 3. The PPDs of the differential nd cross section at θc.m. =
120 degrees and ELab = 12 MeV using the N2LO NN interaction.
The three different distributions shown are, from left to right, for
NWP = 100, 75, 50, and 30, with N = 10, 100, 100, and 100 sam-
ples, respectively. For comparison, we also indicate with vertical
lines the locations of the cross section for the MAP LEC point
obtained in a WPCD calculation based on NWP = 150, 100, 75, 50,
and 30. The means of the distributions coincide almost with the MAP
predictions.

work,3 the width and shape of the PPD remains approxi-
mately constant as we vary NWP, and the main effect is a
shift of the entire distribution. Therefore, we shift the mean
of the samples obtained with NWP = 75 using the difference
between the MAP predictions obtained with NWP = 75 and
NWP = 150. This makes a comparison with experimental data
more meaningful.

We did not detect a robust exponential or power-law
convergence pattern with respect to NWP and leave further
analysis of the NWP convergence and the WPCD method un-
certainty to future work. As such, there might be additional
corrections to the PPDs when using NWP > 150 that we do
not account for. However, assuming that the widths and shapes
of the PPDs remain unchanged, our main conclusions in this
work will not be affected.

After shifting the differential cross section obtained with
NWP = 75 to NWP = 150 we obtain the result shown in
Fig. 4. At all chiral orders and energies we study, the PPD
is rather narrow. At LO, the PPD width is comparable to
the experimental uncertainty, while at subleading orders the
experimental uncertainty is typically greater than the width of
the PPD.

To quantify the width of the PPDs, we compute the 90%
highest posterior density interval (HPDI), normalize it to the
mean of the PPD, and average over θc.m.. This way, we find
that the average HPDI for the differential cross section at
ELab = 12 MeV is, 5.71%, 2.31%, 0.74%, and 0.52% at LO,
NLO, N2LO, and N 3LO, respectively. The decreasing val-
ues reflects the increasingly narrow LEC posterior densities
obtained at higher chiral orders [8,9]. Moving to higher scat-

3We study the differential cross section, dσ

d�
, the neutron vector

analyzing power, Ay(n), and the spherical tensor analyzing powers
iT11, T20, T21, and T22, at angles θc.m. = 60 and 120 degrees and
scattering energies ELab = 10 − 12, 35-36, and 65-67 MeV.
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FIG. 4. The PPD of the nd differential cross section at ELab =
12, 36, and 65 MeV at all orders up to N 3LO in the NN interaction.
The legends display the average 90% credible intervals (HPDI), see
text for details. The experimental data (markers) are retrieved from
the EXFOR database (at ELab = 12 and 36 MeV) and Ref. [43] (at
ELab = 64.5 MeV). Diamond (cyan) and circle (colorless) markers
represent nd and pd cross sections, respectively.

tering energies we find that the PPDs remain very narrow
still. Apart from LO, the average HPDI values are comparable
to frequentist estimates of dispersion quantified in Ref. [17],
where a similar increase in uncertainty was noted at higher
scattering energies.

Recently it was shown that N2LO potentials with 3NFs
yield an excellent description of differential cross section
data [24]. It was suggested in Ref. [44] that 3NFs are nec-
essary to reproduce the differential cross section minimum
in the vicinity of ELab = 65 MeV. Here, however, we see
similar reproduction of data at NLO and N2LO without 3NFs.
Going to N 3LO, the reproduction of experimental data dete-
riorates. As shown in Ref. [9], the 3H and 3He ground-state
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energies and radii at N 3LO are also markedly worse com-
pared to N2LO. This trend is a testament to the importance
of inferring LECs in the NN and NNN sectors of χEFT
simultaneously [45].

We conclude, based on the inference of NN LECs made
in Ref. [9], that the discrepancies between experimental low-
energy nd cross section data and theoretical predictions are
not due to the uncertainties stemming from the LEC variabil-
ity. Given the very narrow PDFs for the LECs, an opposite
finding would be a testament to a tremendous fine tuning of
scattering observables in the NNN continuum relative to the
NN continuum.

C. EFT truncation error

The truncation of the χEFT expansion used to describe the
nuclear interaction leads to a model discrepancy referred to as
an EFT truncation error. Following Ref. [26], we assume that
the theoretical prediction at chiral order ν for some observable
y can be written as

y(ν)(�α; �x) = yref(�x)
ν∑

k=0

ck (�α; �x)Qk (�x) , (6)

where �x denotes the kinematic variables ELab and θc.m. and
yref is a reference value for the observable in question. This
expression renders the expansion coefficients ck dimension-
less quantities, which we also expect to be of natural size, i.e.,
ck ∼ O(1). We assume a χEFT expansion parameter of the
form

Q = max

(
q

�b
,

mπ

�b

)
, (7)

and set the χEFT breakdown scale to �b = 600 MeV as in
Ref. [9] from where we also obtain the LEC posteriors. We set
the c.m. momentum, q, according to the kinetic energy, ELab,
of the incoming nucleon. The χEFT truncation error, δyν ,
is the expected magnitude of the sum of contributions from
terms beyond the order ν. Under the assumption of having
independent and normally distributed expansion coefficients,
ck , it is shown in, e.g., Ref. [35], that δyν is also normally
distributed and given by

δyν ∼ N
(

0, y2
ref

Q2(ν+1)

1 − Q2
c̄2

)
, (8)

where c̄2 denotes the variance of the expansion coefficients.
Thus, knowing c̄2 enables us to quantify the (variance of
the) χEFT truncation error. For this purpose, we follow the
procedure of, e.g., Ref. [8] and employ the root-mean-square
(RMS) value of order-by-order differences to estimate c̄2.
The order-by-order differences are computed from the mean
values of the PPDs at each order ν, thus averaging over a
possible LEC dependence.

We wish to compare the magnitude of the χEFT truncation
error with the theoretical error in y stemming from the uncer-
tainty about the numerical values of the LECs. Let us take the
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FIG. 5. Comparison of the PPD due to LEC variability and an
estimate of the normally distributed χEFT truncation error for the
differential cross section for NLO (green), N2LO (blue), and N 3LO
(red). The χEFT truncation is shown for two different variances; c̄ =
14.8 (solid line) and c̄ = 1 (dashed line). To set the absolute scale,
we included the experimental measurement (gray) from Ref. [46].

differential cross section at ELab = 12 MeV as an example and
inspect it closer. Limiting ourselves to this low value of ELab,
the effect of 3NFs are expected to be small [44]. Therefore, we
retain the expansion in Eq. (6) and use Eq. (8) to quantify the
χEFT truncation error. We set yref to the LO prediction. At this
scattering energy, we also have Q = mπ/�b ≈ 0.23. An RMS
estimate from the expansion coefficients at θc.m. = 30, 90,
and 150 degrees (omitting LO results due to their role in the
definition of yref) is based on nine values of ci from which we
infer c̄ = 14.8. This is a fairly unnatural value, which arises
from an oscillating convergence when including higher chiral
orders.

The PPDs due to the LEC variabilities and the χEFT trun-
cation errors are compared in Fig. 5. Clearly, the truncation
error (solid lines) is typically much greater than the error due
to the uncertain values of the NN LECs (histograms) up to and
including N2LO. Therefore, we find it unnecessary to account
for a possible LEC variability in the expansion coefficients in
Eq. (6). At N 3LO, the two errors are becoming comparable.
However, at this order, both of the errors are tiny, � 4%, on
an absolute scale. In fact, they are both smaller than typical
experimental errors, indicated as the gray area in Fig. 5. In ad-
dition to the RMS estimate of c̄2 we also show the truncation
error (dashed line) based on a naturalness assumption where
we set c̄2 = 1. In this limit, the two errors become comparable
for this observable already at NLO. Studying the truncation
error at several angles and energies for ELab � 65 MeV lead
us to similar conclusions regarding the order of magnitudes of
the two distributions.

At higher energies, we see in Fig, 4 that the predictions
at N 3LO deviates from the ones at NLO and N2LO. When
analyzing the truncation errors at ELab = 36 MeV, we obtain
c̄ = 65.1, which signals the presence of an unnaturally large
contribution in the χEFT expansion. We find that omitting
the shift between N2LO and N 3LO has a significant impact
and yields a more reasonable value of c̄ = 15.1. Doing the
same at ELab = 12 MeV yields c̄ = 11.3, i.e., a relatively
small change from when including the shift. The truncation
error is expected to increase with the on-shell energy, and
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thus it should become greater than the LEC uncertainty for
ELab > 12 MeV, but we leave a more detailed study for future
work.

D. Spin-polarization observables

There are many different possibilities to form observables
related to spin polarization in the initial and/or final states
of the Nd reactants [47]. The fine details of the angular
dependence of these observables can depend sensitively on
the spin structure of the NN and NNN interactions. A well-
known example is the low-energy vector analyzing power
Ay(n). This observable depends sensitively on the 3P partial
waves of the NN interaction [48,49]. There are indications
that it also depends sensitively on parts of the subleading 3NF
[24]. It has turned out to be very challenging to reproduce the
experimental data for this observable at laboratory scattering
energies ELab � 30 MeV [40,50].

Given the possibly fine-tuned nature of Ay(n), it is partic-
ularly interesting to quantify the PPD due to the variability
in the NN LECs of χEFT. In Fig. 6, we show the PPDs
for Ay(n) at NLO, N2LO, and N 3LO as well as the average
90% credibility intervals. At ELab = 10 MeV we do not repro-
duce the experimental data at any chiral order. We note that
the N 3LO calculation appears to improve the description of
the data at the polarization maximum. However, the low-angle
description is markedly worse compared to the result at N2LO.
For ELab ≈ 35–67 MeV it appears sufficient to use NN-only
forces at N2LO to describe presently available data.

It is clear that the variability due to the LECs in-
ferred from NN data does not give rise to any significant
uncertainty nor does it explain discrepancies between the-
ory and data. We refrain from quantifying the χEFT
truncation error for this observable since our calculation omits
3NFs, which may very well play a significant role in ex-
plaining the low-energy Ay(n) values. Nevertheless, a crude
estimate to account for the χEFT truncation error with miss-
ing 3NFs can be obtained by pulling out factors of Q in
Eq. (8), starting at N2LO [51]. We found that this procedure
induced rather large χEFT uncertainties that covered the ex-
perimental data at all orders.

As for the remaining spin-polarization observables, their
NN PPDs exhibit similar patterns and widths as presented
above for the differential cross section and Ay(n), i.e., the
vastly dominating source of uncertainty is the χEFT trunca-
tion error, at least below N 3LO.

V. SUMMARY AND OUTLOOK

We sampled the PPDs for the nd differential cross section
dσ/d� at ELab = 12, 36, and 65 MeV scattering energy,
and neutron analyzing power Ay(n) at ELab = 10, 35, and
67 MeV. The underlying samples from the LEC posterior
were obtained from a previous analysis of NN data [9]. The
HMC algorithm used in that analysis yields virtually uncor-
related samples, which we find most likely persists for the
elastic nd observables. The main conclusion from this work
is that the uncertainty about NN LECs, when conditioned on
NN scattering data and uncorrelated estimates of the χEFT
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FIG. 6. The PPD of the nd neutron analyzing power Ay(n) at
ELab = 10, 35, and 67 MeV up to N 3LO in the NN interaction.
The legends display the average 90% credible intervals (HPDI), see
text for details. The experimental data (markers) are retrieved from
the EXFOR database (at ELab = 10 and 66.6 MeV) and Ref. [52]
(at ELab = 35 MeV). Diamond (cyan) and circle (colorless) markers
represent nd and pd cross sections, respectively.

truncation errors, does not entail significant uncertainties in
the low-energy nd continuum. Although we only show results
for selected observables, we find them to be representative
of all elastic nd scattering observables, at least for ELab � 67
MeV.

When compared with estimates of the χEFT truncation
error, we find that the uncertainty stemming from the nu-
merical values of the NN LECs are negligible, at least up
to (and including) N2LO in Weinberg power counting. At
N 3LO, the width of the PPD and the credible interval of the
truncation error are starting to become comparable. However,
these uncertainties are very small and, in fact, are comparable
to typical experimental errors.
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In this work we have not quantified the errors due to having
a finite number of wave packets in the WPCD method. In-
stead, we extrapolated all results to NWP = 150 and relied on
the fact that the widths and shapes of all studied PPDs remain
the same when using fewer wave packets, i.e., NWP = 50
and 75. Future work should be dedicated to understanding
the scaling of the WPCD method error with respect to the
discretization of the continuum.

Throughout our analysis, the PPDs were conditioned on
NN scattering data. For the predicted differential cross sec-
tion, we find reasonable agreement with experimental Nd
scattering data. The same observation was made for many
polarization observables, not shown explicitly in this paper.
However, less accuracy is observed in the low-energy Ay(n)
analyzing power. A natural next step would therefore be to si-
multaneously infer the NN and NNN LECs from NN plus Nd
scattering data. This would shed more light on the necessity
of including 3NFs to explain this data.

The inference of LECs in χEFT is not restricted to use
only scattering observables. In fact, any low-energy nuclear
data can be utilized (and will be relevant given that it has a
high information content). On the other hand, the abundant
sets of experimentally measured NN [33,34], πN [53], and
Nd [23] scattering cross sections provide data where the-
oretical predictions do not rely on many-body interactions
beyond 3NFs. In addition, a scattering cross section can be
tied to a well-defined (external) momentum, providing a clear

interpretation of the soft scale entering the χEFT expansion
parameter Q and the associated truncation error. This identi-
fication of a soft scale is more ambiguous in bound states of
nuclear many-body systems.

A Bayesian analysis of LECs in χEFT conditioned on Nd
data requires efficient solutions to the AGS equations. In-
deed, traversing larger domains of the multidimensional LEC
parameter spaces would require orders of magnitude more
samples than what we employed in this work. Fortunately,
recent advances in model reduction methods [54], utilizing
singular value decomposition [55] and eigenvector contin-
uation [56–58] methods, show great promise in delivering
accurate and fast solutions to the Faddeev equations. Some of
these methods appear compatible with our existing implemen-
tation for solving the AGS equations with the WPCD method.
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