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Bayesian estimation of the low-energy constants up to fourth order
in the nucleon-nucleon sector of chiral effective field theory
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We use Bayesian methods and Hamiltonian Monte Carlo (HMC) sampling to infer the posterior probability
density function (PDF) for the low-energy constants (LECs) up to next-to-next-to-next-to-leading order (N3LO)
in a chiral effective field theory (χEFT) description of the nucleon-nucleon interaction. In a first step, we
condition the inference on neutron-proton and proton-proton scattering data and account for uncorrelated χEFT
truncation errors. We demonstrate how to successfully sample the 31-dimensional space of LECs at N3LO
using a revised HMC inference protocol. In a second step we extend the analysis by means of importance
sampling and an empirical determination of the neutron-neutron scattering length to infer the posterior PDF for
the leading charge-dependent contact LEC in the 1S0 neutron-neutron interaction channel. While doing so we
account for the χEFT truncation error via a conjugate prior. We use the resulting posterior PDF to sample the
posterior predictive distributions for the effective range parameters in the 1S0 wave as well as the strengths of
charge-symmetry breaking and charge-independence breaking. We conclude that empirical point-estimate results
of isospin breaking in the 1S0 channel are consistent with the PDFs obtained in our Bayesian analysis and that,
when accounting for χEFT truncation errors, one must go to next-to-next-to-leading order to confidently detect
isospin breaking effects.
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I. INTRODUCTION

In chiral effective field theory (χEFT) [1–4] the nuclear
interaction is parametrized in terms of low-energy constants
(LECs) that capture unresolved physics and must be deter-
mined from data. The number of LECs grows with the order of
the chiral expansion, and the parameter estimation becomes a
challenging inference problem that is directly connected with
the precision of the theory. Moreover, in χEFT the long-range
pion-nucleon (πN) interaction appears as a subprocess of the
nuclear interaction. We can therefore constrain the long-range
part of the nuclear interaction rather well using measured
πN scattering data [5], albeit less so in the delta-full sector
of χEFT [6]. In a Bayesian context, this knowledge can be
straightforwardly accounted for as a prior when learning more
about the nuclear interaction from new data, as demonstrated
in, e.g., Refs. [7,8]. In fact, Bayesian inference methods al-
low us to account for any prior beliefs about χEFT, most
importantly its truncation error [9]. This highlights some of
the central synergies of χEFT and Bayesian methods. In this
paper, we focus on two challenges tied to a Bayesian analysis

*isak.svensson@chalmers.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

of the nucleon-nucleon (NN) interaction: (i) How to reliably
sample the high-dimensional Bayesian posterior probability
density functions (PDFs) of the LECs up to next-to-next-to-
next-to-leading order (N3LO) in χEFT, and (ii) how to extend
these posterior PDFs, here inferred from neutron-proton (np)
and proton-proton (pp) scattering data, to account for the
uncertainty in the isospin breaking (IB) and leading neutron-
neutron (nn) short-range LEC acting in the 1S0 partial wave.
Throughout the paper we will often use the short-hand labels
posterior and prior to indicate posterior and prior PDFs, re-
spectively.

Sampling a high-dimensional PDF poses a significant chal-
lenge in any Bayesian analysis. In a previous paper [8] we
explicitly demonstrated the efficiency and manageable dimen-
sional scaling of the Hamiltonian Monte Carlo (HMC) [10]
algorithm applied to χEFT up to next-to-next-to-leading order
(NNLO). HMC exploits the geometry of the parameter space
and Hamiltonian dynamics to draw virtually independent
Markov chain Monte Carlo (MCMC) samples concentrated
to the bulk of the probability mass. In this paper, we revise
our HMC protocol to sample the LEC posterior at the next
chiral order, i.e., N3LO, where we encounter a significantly
more challenging inferential problem in 31 dimensions, one
per LEC.

Furthermore, the fundamental effect of IB leads to slight
differences in the strong interaction between neutrons, pro-
tons, and between protons and neutrons. It originates from
differences in the masses and electromagnetic charges of the
up- and down-quarks [11] and is expected to be weaker in
the irreducible interaction between three nucleons [12,13].
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Although weak, the IB of the strong nuclear interaction plays
an important role in ab initio, and mean-field, analyses of infi-
nite nuclear matter and finite nuclei, in particular towards the
drip lines with pronounced proton-to-neutron ratios (see, e.g.,
Refs. [14–23]). It is therefore important to quantify the uncer-
tainties pertaining to the LECs governing the strengths of the
IB effects. Unfortunately, inferences conditioned solely on the
world database of NN scattering data [24,25], which does not
contain nn cross sections, leaves the posterior of LECs acting
(only) in the nn isospin channel unconstrained. To handle
this, a point estimate of the leading charge-dependent LEC
in the nn channel is typically obtained using the empirical
value for the corresponding scattering length, primarily in the
1S0 partial wave. This latter quantity parametrizes the total
nn cross section in the limit of zero scattering energy and its
value is estimated from data on hadronic reactions that involve
two neutrons in the initial and/or final state [26]. A future
prospect is to employ results from realistic lattice quantum
chromodynamics to directly infer the values of the LECs [27].

In χEFT, isospin is an exact symmetry at leading order
(LO) [28]. At next-to-leading order (NLO), one introduces
realistic charged-to-neutral pion mass splittings in the one-
pion exchange potential (OPEP). The ≈3% mass splitting
of the rather light pions induces IB in the S waves and
beyond. We also have charge-dependent and nonderivative
LECs in the 1S0 partial wave. Higher-order IB effects can
be accounted for systematically by introducing, e.g., charge-
dependent πN LECs, (charged) pion-photon interactions, and
charge-dependent LECs in partial waves with nonzero angular
momentum. However, many of those IB effects are estimated
to be negligible compared to the OPEP mass splitting and
nonderivative S-wave LECs [2–4]. Indeed, the leading IB
πN LECs were recently [29] inferred using NN scattering
data and fifth-order χEFT, i.e., N4LO, and found to exhibit
no significant charge dependence. In fact, higher-order IB
effects are often neglected in quantitative chiral interactions
[30–34].

In this paper, we employ NN interactions from χEFT up
to N3LO in Weinberg power counting as defined in Ref. [3],
and with the IB effects due to pion mass-splitting in the OPEP
and charge-dependent leading S-wave contacts. We use non-
local regulators in relative momenta p according to f (p) =
exp(−p2n/�2n) with a cutoff � = 450 MeV and n = 3. Two-
pion exchanges are spectral-function regulated [35,36] with a
cutoff of 700 MeV. At N3LO, to complete the subleading two-
pion exchange, we include all two-loop diagrams with some
of them evaluated using numerical integration. To remedy the
on-shell redundancy [32,37] in the S-wave contact potential
at N3LO we set the contact fourth-order contact LECs D̂1S0

,
D̂3S1

, and D̂3S1−3D1
(in the notation of Ref. [3]) to zero. For

describing pp and np low-energy scattering data we append
the standard electromagnetic interactions up to second order
in the fine-structure constant as outlined in, e.g., Ref. [38], at
all chiral orders.

Within this χEFT framework, we perform a Bayesian
study of the NN interaction, up to N3LO, conditioned on NN
scattering data and subsequently extend the LEC posterior
using an empirical value for the 1S0 nn scattering length ann

exp.
This allows us to quantify the uncertainties of the IB effects

due to the short-range LECs in χEFT. In the process of doing
so, we also give an example of the flexibility of the Bayesian
framework to straightforwardly expand existing results by
introducing new parameters and conditioning on new data. We
also test the robustness of a commonly employed model [9,37]
for estimating truncation errors in χEFT.

This paper is organized as follows. In Sec. II, we outline
the statistical model upon which we base all inferences and
demonstrate how to draw samples from the posterior PDFs
and analyze the consistency of our inferences. In Sec. III,
we draw samples from the posterior predictive distributions
(PPDs) for scattering lengths and effective ranges in the 1S0

partial wave. We summarize our findings in Sec. IV.

II. STATISTICAL METHOD

In this section we explain our method for inferring the joint
posterior PDFs for all the LECs in the NN sector of χEFT up
to N3LO. After the specification of the prior and likelihood,
our inference is performed in two stages. In a first step, we ap-
ply the HMC algorithm from Ref. [8] to quantify the posterior
PDFs for the NN LECs in the np and pp sectors conditioned
on np and pp scattering data. The posteriors presented in this
paper account for an uncorrelated χEFT error model condi-
tioned on the order-by-order convergence pattern up to N3LO.
In a second step, we marginalize-in the nn non-derivative LEC
C̃nn

1S0 and condition the inference on a single datum: The nn
scattering length in the 1S0 partial wave, ann

exp = −18.9 ± 0.4
fm [26,39]. We note that this is one of the currently accepted
values for this scattering length and that there are conflicting
experimental values for which the experimental uncertainties
are not fully understood. However, we do not account for
this additional level of uncertainty. See, e.g., Ref. [40] for a
summary of the present status on this topic and the proposal
of a novel method to measure the nn scattering length. In this
paper we only operate with empirical scattering lengths and
effective ranges for which electromagnetic (EM) effects have
been removed by the originators of those values. Similarly,
our theoretical predictions for effective range parameters do
not include any EM effects either. We do however include EM
effects when we compute scattering cross sections during the
HMC sampling.

A. Finding an expression for the joint posterior

Using the notation pr(A|B) for the conditional probability
that proposition A is true given B, the posterior PDF of interest
pr(�α|D, I ) can, according to Bayes’ theorem, be evaluated as

pr(�α|D, I ) ∝ pr(D|�α, I ) × pr(�α|I ), (1)

i.e., as a product of the data likelihood pr(D|�α, I ) times the
prior PDF pr(�α|I ). Here, �α denotes the vector of LECs to be
inferred, D is employed data, and I encompasses all other
assumptions and given information. The given information
includes, for example, the chiral order, the regulator cutoff,
masses, etc., and we make assumptions about the truncation
error, data selection, and so on. Throughout this paper, we
omit the overall normalization factor pr(D|I ) as it does not
play a central role in parameter estimation.
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In a first step we use the np and pp scattering data Dnp,pp

contained in the Granada database [24,25]. In doing so we
obtained posteriors for the πN and contact NN LECs, ex-
cluding the C̃nn

1S0 LEC. To simplify the notation we often
denote this latter, explicitly charge-dependent, nn LEC as αnn

while all other LECs are collectively denoted �αnp,pp. In this
notation, the main objective in this paper is to extract the
joint posterior pr(�α|D, I ) of �α ≡ (αnn, �αnp,pp) conditional on
D = (ann

exp, Dnp,pp).
Using the product rule of probabilities we can write

pr(�α|D, I ) ≡ pr
(
αnn, �αnp,pp

∣∣ann
exp, Dnp,pp, I

)
pr

(
αnn

∣∣�αnp,pp, ann
exp, Dnp,pp, I

) × pr
(
�αnp,pp

∣∣ann
exp, Dnp,pp, I

)
= pr

(
αnn

∣∣�αnp,pp, ann
exp, I

) × pr(�αnp,pp|Dnp,pp, I ), (2)

where we have assumed conditional independence in the final
equality. Thus far, no strong assumptions have been made
regarding the relation between αnn and �αnp,pp, and the analysis
is quite general.

We use HMC to sample pr(�αnp,pp|Dnp,pp, I ), and the strat-
egy that we employ for this is explained in Ref. [8]. In brief,
we employ order-by-order differences up to N3LO, omitting
the LO results, to estimate the variance of the (uncorrelated)
χEFT truncation error for describing scattering data. We place
a multivariate Gaussian prior on the subleading πN LECs at
NNLO and N3LO using the results from a Roy-Steiner analy-
sis of πN scattering amplitudes [6]. Furthermore, we place a
rather weak prior on the NN contact LECs at all orders using
an uncorrelated Gaussian PDF with zero mean and standard
deviation of 5 × 104 GeV−(k+2) for the LECs belonging to the
k = 0, 2, 4 (LO, NLO, N3LO) contact Lagrangian as defined
in Weinberg power counting. The full prior factorizes into in-
dependent NN and πN PDFs since we assume no correlation
between these sectors. In Sec. II B 1 we present further details
about the sampling and how we revised the sampling protocol
to reach N3LO. In the remainder of this section we assume
that pr(�αnp,pp|Dnp,pp, I ) is known to us.

Next, we extend this posterior by incorporating αnn. Using
Bayes’ theorem, we rewrite the first factor in the final row of
(2) according to

pr
(
αnn

∣∣�αnp,pp, ann
exp, I

) ∝ pr
(
ann

exp

∣∣αnn, �αnp,pp, I
)

× pr(αnn|I ), (3)

where we again used that the prior for αnn is condi-
tionally independent of �αnp,pp. To evaluate the likelihood
pr(ann

exp|αnn, �αnp,pp, I ) we numerically compute the scattering
length at the specified chiral order in χEFT and given values
for (αnn, �αnp,pp). Equation (2) for the sought posterior PDF of
the LECs thus becomes

pr(�α|D, I ) ∝ pr
(
ann

exp

∣∣αnn, �αnp,pp, I
)

× pr(αnn|I ) × pr(�αnp,pp|Dnp,pp, I ). (4)

One could certainly argue, using previous knowledge of
IB, that we are in the right to place a narrow prior for αnn

based on the marginal PDFs for C̃np
1S0 and C̃ pp

1S0. However, to
avoid building in such expectations on IB we selected a rather
weak, and normally distributed, prior according to

pr(αnn|I ) = N (
0, ᾱ2

nn

)
(5)

of width ᾱnn = 5 ×104 GeV−2.

We develop the likelihood in (4) by relating a theoretically
computed value ann

th of the nn scattering length to the experi-
mental result via a stochastic model:

ann
exp = ann

th + δann
exp + δann

th . (6)

This relation introduces the experimental error δann
exp and the

χEFT error δann
th , which we assume is dominated by the

truncation of the χEFT series. Equation (6) implies that
other errors—such as numerical errors—are negligible. The
assumption that δann

exp and δann
th are independent and normally

distributed random variables leads to a Gaussian likelihood
for the scattering length,

pr
(
ann

exp|αnn, �αnp,pp, I
) ∝ exp

(
−

(
ann

exp − ann
th

)2

2
(
σ 2

exp + σ 2
th

))
, (7)

where σ 2
exp and σ 2

th denote the variances of the experimental
and theoretical errors, respectively. We use σexp = 0.4 fm
[26,40,41] as the experimental error.

To model the truncation error, we use the procedure from
Refs. [9,37,42]. We therefore assume that we can express the
order-by-order predictions for ann

th as the sum

ann
th = aref

k∑
i=0

ciQ
i, (8)

where k is the chiral order, i.e., k = 0 is LO and k =
2, 3, 4, . . . corresponds to NLO, NNLO, N3LO, aref is a di-
mensionful reference value for the scattering length, ci are
dimensionless χEFT expansion coefficients, and the χEFT
expansion parameter is assumed to be given by Q = mπ/�b,
which is reasonable for a quantity defined in the zero-
momentum limit and analyzed in a pionful theory. To simplify
notation, we omit explicit reference to the k dependence of
ann

th . We employ a breakdown scale �b = 600 MeV in accor-
dance with the first analysis we performed in [8]. Assuming
that the expansion coefficients ci (between and within chiral
orders) are independent and normally distributed yields the
following form for the truncation error:

pr
(
δann

th

∣∣c̄2, Q, aref, I
) = N (

0, σ 2
th

)
, (9)

where c̄2 is the variance that characterizes the magnitude of
the χEFT expansion coefficients for the scattering length and
effective range. One can show [9,37] that

σ 2
th = c̄2a2

ref
Q2(k+1)

1 − Q2
. (10)
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For the analysis of the scattering length, we place a (con-
jugate) inverse-gamma (IG) prior c̄2, leading to a marginal
posterior for c̄2 which also follows an IG distribution but
with updated values for the parameters [43]. Marginalization
of the variance leads to a Student’s t distribution [44] for the
truncation error (see Appendix A). Thus, we have that the IG
prior for c̄2, with initial parameters α0 and β0,

pr(c̄2|I ) = IG(α0, β0) ∝ 1

c̄2(α0+1)
exp

(
−β0

c̄2

)
, (11)

is updated by a set of observed expansion coefficients �c ac-
cording to

pr(c̄2|�c, I ) = IG(α, β ) ∝ 1

c̄2(α+1)
exp

(
− β

c̄2

)
(12)

with

α = α0 + nc

2
,

β = β0 + �c 2

2
, (13)

where nc is the length of the vector �c. In practice, we
are of course rather limited in the amount of data that we
have available to infer αnn and learn about the correspond-
ing χEFT error for ann

th . To that end we here exploit the
order-by-order convergence pattern of app

th and anp
th to learn

about the χEFT truncation error in ann
th . As will be further

discussed in Sec. II B, we consider the NNLO-N3LO shift
of app

th to be an outlier and therefore omit this from the
order-by-order data used to learn about the magnitude of the
EFT truncation error. In detail, we have nc = 5 expansion
coefficients for informing the marginal posterior for c̄2; these
are calculated (see, e.g., Ref. [8]) from the LO-NLO, NLO-
NNLO shifts of anp

th and app
th , and the NNLO-N3LO shift

of anp
th , all evaluated at the maximum a posteriori (MAP)

locations for the PDF pr(�αnp,pp|Dnp,pp, I ); see Sec. II B for
details. However, with our priors, we find that the inference
does not change dramatically if we include the NNLO-
N3LO shift of app

th . This is described further in Sec. III and
Appendix D.

We choose (α0, β0) = (1.0, 12.0), which yields the prior
and resulting marginal posterior shown in Fig. 1. Our prior
is predicated on our previous experience of these expan-
sion coefficients, albeit for NN scattering data: We see it as
unlikely that c̄2 < 4, but otherwise acknowledge our igno-
rance of the size of the truncation error. The mode of the
prior, given by β0/(α0 + 1), is located at c̄2 = 6. Exposure
to data �c shifts the bulk of the PDF towards larger trunca-
tion errors, with the mode of the marginal posterior falling
at c̄2 = 11.5.

To account for the marginal PDF on the χEFT truncation
error, the posterior in (4) is expanded, viz.,

pr(�α|�c, D, I ) =
∫

pr(�α, c̄2|�c, D, I ) dc̄2, (14)

where we now explicitly indicate that the posterior is condi-
tional on �c. In slightly more detail, the joint posterior of �α

0 20 40 60 80
c̄2

pr
(c̄

2
|·)

pr(c̄2|I)

pr(c̄2|�c, I)

FIG. 1. The prior pr(c̄2|I ) (dashed line) for c̄2 and the result-
ing marginal posterior pr(c̄2|�c, I ) (solid line). The latter is obtained
from allowing the order-by-order predictions of anp

th and app
th to flow

through the prior via the observed expansion coefficients �c. The
individual (squared) elements of �c are shown as vertical lines, with
black (orange) representing np (pp) elements. The center dot in the
y-axis label pr(c̄2|·) acts as a placeholder for “I” and “�c, I”.

and c̄2,

pr(�α, c̄2|�c, D, I ) ∝ pr
(
ann

exp

∣∣αnn, �αnp,pp, c̄2, I
) × pr(αnn|I )

× pr(�αnp,pp|Dnp,pp, I ) × pr(c̄2|�c, I ),
(15)

conditioned on scattering data, scattering lengths, and order-
by-order information, is the object of interest that we end up
evaluating numerically. Concluding this section we list possi-
ble extensions to our analysis that we leave for future work:
(1) Incorporating a finite correlation length between the χEFT
expansion coefficients as function of energy, (2) allowing for
LEC variability, ci = ci(αnn), (3) modifying the χEFT ex-
pansion parameter Q to a slightly greater value mπ/500 MeV
[7,8] or, better yet, (4) account for the uncertainty in Q by
using an accompanying prior that ensures smooth matching to
external (soft) momenta > mπ in χEFT.

B. Evaluating posteriors

In this section we expound on our sampling of the posterior
for �αnp,pp using HMC and how we combine this posterior with
αnn to produce a joint posterior (15) for all LECs at a given
order. For clarity, we now make explicit that the inference of
�αnp,pp is conditional on a fixed variance c̄2

np,pp of the χEFT
expansion coefficients. A detailed account of how to ef-
ficiently sample pr(�αnp,pp|Dnp,pp, c̄2

np,pp, I ) using HMC was
given in Ref. [8]. Here, we will mainly remark on new de-
velopments and results. Our procedure for extracting the joint
posterior can be considered a two-step process:

(1) Sample the posterior pr(�αnp,pp|Dnp,pp, c̄2
np,pp, I ) using

HMC.
(2) Numerically evaluate the joint posterior

pr(�α, c̄2|D, �c, I ) in (15) using importance sampling.
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1. Step 1: Sampling pr(�αnp,pp|Dnp,pp, c̄2
np,pp, I) using HMC

We follow the steps laid out in Ref. [8], with two modifi-
cations. First, we consistently use all available chiral orders,
i.e., up to N3LO, to learn about the variance of the truncation
error. Second, we employ a new method for rapidly tuning
the parameters of the HMC algorithm such that we achieve
sufficiently high sampling efficiency to perform reliable sam-
pling at N3LO. This yields an N3LO posterior that passes all
imposed MCMC convergence tests.

Let us first focus on how we learn about the truncation
error. In our previous work [8] we limited ourselves to only
use information about the χEFT convergence pattern up to
the order at which we were sampling to estimate the variance
c̄2 of the truncation error, and we included the zeroth-order
coefficients �c0 in the estimation. We then concluded that this
procedure typically leads to an underestimation of the size of
the truncation error. Here, we follow our own advice and infer
the variance c̄2 from all orders available to us, and exclude
the rather uninformative and biasing zeroth-order coefficients.
We use the same grid of observables, laboratory energies,
and scattering angles, as in our previous work and arrive at
c̄np,pp = 4.1. This value is somewhat greater than the nomi-
nally expected natural scale of c̄ ≈ 1, yet nothing too alarming
and certainly in line with what we have observed before. As
discussed in Sec. II A, this is also the basis for us shifting
the prior for the χEFT truncation error for the effective range
towards slightly greater values.

The importance of tuning the HMC parameters, along with
various strategies for achieving efficient sampling, is detailed
in Ref. [8]. In particular, we stress the importance of a suitable
so-called mass matrix: a matrix that accounts for differences
in scale between parameters in the sampled PDF. Previously
we extracted a performant mass matrix by executing a short
preliminary sampling and inverting the covariance matrix of
the samples. Here, we instead optimize the LECs with respect
to the posterior, i.e., we solve for

�α	 = argmax�αnp,pp
pr

(
�αnp,pp

∣∣Dnp,pp, c̄2
np,pp, I

)
, (16)

and estimate the parameter covariance matrix at that optimum.
We use the BFGS optimization algorithm [45–48] which is
a so-called quasi-Newton method that relies on first-order
gradients to update approximations to the Hessian employed
in the Newton algorithm. We employ automatic differentiation
(AD) [38,49,50] to obtain the first-order gradients. In the
end, we find that the approximate Hessian at the optimum,
as found by the BFGS algorithm, makes for a suitable mass
matrix in our application. In our case we have access to
higher-order gradients via AD and could, in principle, obtain
�α	 using any expedient optimization method and compute an
exact-to-machine-precision Hessian. However, we find that
BFGS is sufficient for tuning the HMC sampler. Bypassing the
need for the ≈20 000 function evaluations required during a
preliminary HMC sampling is certainly a great improve-
ment, as the BFGS algorithm typically terminates after at
most a few hundred function evaluations. Better yet, the
optimization-based method is in our experience more reliable
and ultimately yields slightly higher performance in the sub-
sequent sampling of the posterior.

TABLE I. MAP predictions of np and pp scattering lengths (a)
and effective ranges (r) in units of fm. Empirical results are from
Ref. [3].

Order anp app rnp rpp

LO −24.428 −24.056 1.766 1.768
NLO −21.625 −18.476 2.497 2.585
NNLO −23.732 −17.797 2.681 2.814
N3LO −23.733 −16.544 2.693 2.867
Empirical −23.740(20) −17.3(4) 2.77(5) 2.85(4)

We gather N ≈ 10 000 samples in each of the ten chains
we run at each chiral order. We find integrated autocorrelation
times τ (τ NLO = 0.71, τ NNLO = 0.93, and τ N3LO = 3.33)
that reach a plateau within very few samples, thus indicat-
ing converged HMC chains. The τ value should not be too
great since it is inversely proportional to the effective sample
size that measures the number of independent samples in the
HMC chain. We note that the NLO and NNLO autocorrelation
times are similar to our previous results [8], achieved with
the more cumbersome method of preliminary samplings. We
should reiterate the concerns that always surround the topic
of convergence in MCMC. In real-world applications it is not
possible for us to declare a chain “converged”. This is because
we can never explore the entire parameter space in finite
time, and we can miss non-negligible (or even dominating)
probability regions. All we can do is to probe the MCMC
chains for signs of nonconvergence. This issue becomes pro-
gressively more pressing as the dimensionality and domain
of the parameter space grows, and is especially concerning
at N3LO in our case. With that said, we have searched the
parameter domains to the best of our abilities by initializing
the BFGS optimization, and the HMC algorithm, at multiple
locations and we did not find any signs of multimodality and
nonconvergence.

In Table I we predict the scattering lengths and effective
ranges for the np and pp isospin channels in the 1S0 partial
wave at the MAP points (16) of the LEC posteriors at dif-
ferent orders. Overall, the predictions are reasonably close
to the experimental, or rather the empirical, values [3]. This
builds confidence in our model inference. These point esti-
mates give a first indication of our model’s performance in the
low-energy limit. Overall, we observe convergence towards
empirical results as we move to higher chiral orders. A notable
exception is the N3LO prediction of the scattering length in
the pp isospin channel. It differs from the empirical result by
1.9 standard deviations, compared to just 1.2 standard devia-
tions for the NNLO prediction. Furthermore, the difference is
in the opposite direction. This is possibly caused by a lack of
informative data during the inference of the LECs.

2. Step 2: Evaluating the joint posterior

Equipped with an MCMC chain to represent
pr(�αnp,pp|Dnp,pp, c̄2

np,pp, I ), we proceed to evaluate the
posterior pr(�α, c̄2|D, �c, I ) in Eq. (15). Due to the expected
weakness of IB effects in our χEFT we can be fairly certain
that the posterior probability mass of the latter PDF will not
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TABLE II. MAP predictions of few-nucleon ground-state energies E (in MeV) and point-proton radii R (in fm) for nuclei with mass
number A = 2, 3, 4 obtained using the Jacobi no-core shell-model [53] in a harmonic oscillator basis with frequency 22 MeV/h̄ in model
spaces with 251, 41, and 21 oscillator shells, respectively. Note that these predictions are not including a three-nucleon (NNN) interaction. For
2H we also list the D-state probability (PD) in % and the electric quadrupole moment (Q) in units of eb. The experimental and empirical values
are the same as in Ref. [38].

Chiral order E (2H) R(2H) PD(2H) Q(2H) E (3H) R(3H) E (3He) R(3He) E (4He) R(4He)

LO −0.855 2.854 5.347 0.411 −7.214 1.510 −6.327 1.598 −28.781 1.201
NLO −1.810 2.105 3.052 0.282 −8.311 1.544 −7.559 1.700 −30.233 1.342
NNLO (NN only) −2.165 1.982 3.212 0.267 −8.570 1.565 −7.791 1.745 −29.873 1.376
N3LO (NN only) −2.268 1.978 3.476 0.278 −7.560 1.715 −6.829 1.918 −24.272 1.570
Experiment and empirical −2.225 1.976(1) 0.270(11) −8.428 1.587(41) −7.718 1.766(5) −28.30 1.455(6)

be very far from the one of the former. We take advantage
of this expectation and proceed by using the principles of
sampling/importance sampling [51], where we first define a
sampling distribution

g(�α, c̄2) ≡ pr
(
�αnp,pp|Dnp,pp, c̄2

np,pp, I
)

× pr(c̄2|�c, I ) × π (αnn), (17)

with π (αnn) a simple, bounded uniform distribution. Since
the likelihood for the single nn scattering length poses no
significant computational challenge, for each chiral order we
first explore the αnn space to identify an interval of values
encompassing the bulk of the probability mass. These inter-
vals are (in units of 104 GeV−2) C̃nn

1S0 ∈ [−0.1495,−0.1445]
at NLO, C̃nn

1S0 ∈ [−0.1535,−0.1510] at NNLO, and C̃nn
1S0 ∈

[−0.132,−0.125] at N3LO. We then sample the full posterior
(15) using the following procedure:

(1) Pick a sample (�αi, c̄2
i ) from the sampling distri-

bution (17). In practice, we go through the entire
MCMC chain of �αnp,pp sequentially since we know
[8] that these are independent and random samples
from pr(�αnp,pp|Dnp,pp, c̄2

np,pp, I ). For each �αnp,pp sam-
ple we draw a sample of c̄2 from its marginal posterior
pr(c̄2|�c, I ), see Eq. (12), and a sample of αnn from
π (αnn).

(2) Evaluate the ratio ωi = pr(�αi, c̄2
i |D, �c, I )/g(�αi, c̄2

i ).
Due to the form of our sampling distribution (17) and
the factorization of the joint posterior (15), this ratio is
simply the product of the Gaussian likelihood for the
scattering length (7) and the prior for αnn (5).

Once we have the lists of samples (�αi, c̄2
i ) we compute the nor-

malized (importance) weights qi = ωi/
∑

j ω j . This provides
us with a weighted chain of (�α, c̄2) values distributed as the
target posterior pr(�α, c̄2|D, �c, I ) (15). The method described
here is simple to apply but may not work well in all cases, e.g.,
if the marginal posterior of αnn is relatively unknown and/or
defined for a high-dimensional parameter domain. We have
validated our results obtained using importance sampling by
approximating pr(�αnp,pp|Dnp,pp, c̄2

np,pp, I ) with a multivariate
normal distribution and directly sampling the full distribution
(15) using HMC. Multivariate normal approximations to all
posteriors are provided in the Supplemental Material [52].

We report bivariate and univariate marginals of the joint
LEC posteriors in Appendix B. In Table II we make point-
estimate predictions for selected few-nucleon ground-state
observables using the MAP point of the joint posteriors. This
is a first check of the model inference, and the results are
reasonable. We note that the N3LO predictions deviate more
from experiment than NNLO. However, we do not incorpo-
rate NNN interactions in this analysis and for that reason
we also refrain from estimating χEFT truncation errors for
the results presented in Table II. On the other hand, we per-
form a full analysis of the NN effective range expansion in
Sec. III.

Apart from the inclusion of C̃nn
1S0 and c̄, the NLO and

NNLO posteriors are overall similar to their counterparts in
Ref. [8]. The differences that do occur arise prior to the
inclusion of C̃nn

1S0 as a result of different characterizations of
the χEFT truncation error. The correlation patterns are nearly
identical, and the majority of the marginal posteriors overlap
at the 68% level. However, some parameters in higher partial
waves have somewhat shifted values. For example, in Ref. [8]
we reported C3P2 = −0.162(1) × 104 GeV−4 at NLO, while
Fig. 5 reveals that C3P2 = −0.175(2) × 104 GeV−4.

The posteriors presented here are confined to rather small
volumes in parameter space and, as expected, the marginal
posteriors for the C̃1S0 LEC acting in the different isospin
channels are similar to each other. The marginal posterior
for C̃nn

1S0 is roughly twice as wide as those for C̃np
1S0 and C̃ pp

1S0.
This can largely be attributed to the vastly more abundant np
and pp scattering data. The posteriors pick up correlations
between C̃nn

1S0 and C̃np
1S0, C̃ pp

1S0. At N3LO, C̃nn
1S0 shows stronger

correlations with other LECs than at NLO and NNLO. The
fourth-order contact LECs, D, are sensitive to high momentum
observables and therefore less constrained by the data. We
find that several of the D LECs return the prior if we do
not condition the posterior on data in the Tlab ∈ [40.5, 290]
MeV region. Furthermore, the posteriors indicate that some
D LECs are notably unnatural; for instance, we have D1S0 =
−29.1(3) × 104 GeV−6, which is of particular interest in this
case as it acts in the same partial wave as—and is strongly
correlated with—our explicitly isospin breaking LECs. The
inference of this LEC, then, is influential on our predictions of
1S0 scattering lengths and may explain the stark difference be-
tween the N3LO predictions for anp and app in Table I. There
are precedents for large values of D1S0; see, e.g., Ref. [54].
Unlike earlier works, we also find rather unnaturally sized

014001-6



BAYESIAN ESTIMATION OF THE LOW-ENERGY … PHYSICAL REVIEW C 107, 014001 (2023)

FIG. 2. Prior and posterior PDFs for the πN LECs c1, c3, c4, in
units of GeV−1. The posteriors were obtained using HMC. The inner
(outer) ellipses enclose approximately 39% (86%) of the probability
mass. Black lines indicate the prior as provided by the Roy-Steiner
analysis [6]. Blue lines indicate the posterior conditioned on low-
energy scattering data only, i.e., with Tlab up to 40.5 MeV. Red
lines indicate the posterior conditioned on scattering data up to Tlab

= 290 MeV.

MAP values for D3S1 = −32.2(3) × 104 GeV−6 and D3P1 =
−20.4(1) × 104 GeV−6, where the uncertainties denote 68%
credible intervals. At N3LO, the various C̃ and C parameters
are akin to their values inferred at NNLO, with the exception
of C3P1 which is both several times larger and has the oppo-
site sign, i.e., C3P1 = −0.956(5) × 104 GeV−4 at NNLO and
C3P1 = 6.13(1) × 104 GeV−4 at N3LO.

We have also investigated how the posteriors are affected
if we do not exclude the unexpectedly large NNLO-N3LO
shift in app

th from the estimation of the truncation error (see
Sec. II A). We find that the width of the marginal C̃nn

1S0 poste-
rior roughly doubles at NLO, widens by a small but noticeable
amount at NNLO, and is virtually unaffected at N3LO.
From this we draw the conclusion that the theoretical un-
certainty dominates at NLO, the theoretical and experimental
uncertainties are roughly equal at NNLO, and the experimen-
tal uncertainty dominates at N3LO.

We find nonoverlapping priors and posteriors for the πN
LECs at both NNLO and N3LO. This tension was previously
seen at NNLO in Ref. [8]. It turns out that if the posteriors
are conditioned on only a low-energy data set, Tlab ∈ [0, 40.5]
MeV, we return our priors from a Roy-Steiner analysis. This
is summarized for the NNLO case in Fig. 2. Although there
are significant deviations between the πN prior and posterior
when we condition on high-energy data, the discrepancies are
rather small on a naturalness scale. As such, the statistical
model we have set up to relate low-energy data and χEFT
at NNLO appears to preserve the long-range physics rather
well. Moreover, the credible intervals of the πN posterior
cannot be straightforwardly compared with the variance of the
prior determined in a Roy-Steiner analysis [5], for which it is
difficult to estimate the truncation uncertainty. At N3LO we

similarly find that conditioning on the energy-truncated data
set returns the prior for the πN LECs. The prior and posterior
at N3LO (conditioned on the full data set) are shown side
by side in Appendix B. It is peculiar that the marginal and
univariate posterior for the πN LEC c4 sits on top of the prior.

III. POSTERIOR PREDICTIVE DISTRIBUTIONS
OF 1S0 ISOSPIN BREAKING

Equipped with samples from the joint posterior PDFs of
the NN LECs up to N3LO we proceed to sampling the poste-
rior predictive distributions (PPDs) for the S-wave scattering
length a and effective range r defined by the effective range
expansion (ERE)

p cot δ(p) = −1

a
+ 1

2
r p2 + O(p4). (18)

Here, p is the relative momentum and δ(p) is the scattering
phase shift. The PPD is the PDF of unobserved values for a
and r conditioned on np and pp scattering data as well as the
empirical nn scattering length.

We quantify the PPD in all three isospin channels tz =
pp,np,nn of the 1S0 partial wave. The full PPDs are given by
the finite set of samples{

atz
th(�α) + δath

}
(19)

and {
rtz

th(�α) + δrth
}
, (20)

with (�α, c̄2) ∼ pr(�α, c̄2|D, �c, I ). Furthermore, the conjugacy
of the IG prior for the χEFT truncation error variance en-
ables a pointwise and closed-form evaluation of the associated
χEFT truncation errors δath and δrth; see Ref. [43] and Ap-
pendix A. As a result of our sampling procedure (see Sec. II B)
the sets in Eqs. (19) and (20) are composed of approximately
105 weighted samples. In the following we present results
based on an inference of c̄ where we excluded the NNLO-
N3LO shift of the app

th (see Table I). It turns out that this does
not impact any predictions beyond NLO; see Appendix D for
comparison.

The results at NLO, NNLO, and N3LO are shown in Fig. 3.
Clearly, our model is not fine-tuned to reproduce any of the
ERE parameters in Fig. 3 except ann, which therefore serves
as another model check, but all PPDs agree with the empirical
results within their uncertainties and the different distributions
at different orders overlap reasonably with each other. The
exception here is the N3LO prediction of app, that we also
omitted from the estimation of the χEFT truncation error. In
contrast, for anp, both NNLO and N3LO agree perfectly with
the rather precise empirical value. For the empirical values
of the pp ERE parameters, the error bands emerge predomi-
nantly from the model dependence in the analysis of scattering
data and removal of electromagnetic effects. The PPDs for the
effective ranges show a great deal of congruity. This implies
that the NN contact C1S0

that enters at NLO with a quadratic
momentum dependence is sensibly inferred. This contact is
missing at LO and the predictions of effective ranges at that
order are thus rather poor, as seen in Table I. Overall, one must
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−22.5 −20.0 −17.5 −15.0
ann (fm)

−26 −24 −22 −20 −18
anp (fm)

−20 −18 −16
app (fm)

2.00 2.25 2.50 2.75 3.00 3.25
rnn (fm)

2.00 2.25 2.50 2.75 3.00 3.25
rnp (fm)

2.00 2.25 2.50 2.75 3.00 3.25
rpp (fm)

FIG. 3. PPDs of scattering lengths and effective ranges at NLO (blue), NNLO (purple), and N3LO (red). Empirical results are shown as
black lines, with corresponding 1σ (2σ ) uncertainties as a dark (light) gray area. The empirical results are without electromagnetic effects and
gathered from Ref. [3], except for ann which we take from Ref. [26]. Note that the histograms have been scaled such that they have the same
peak height.

go beyond NNLO to achieve predictions that are more precise
than the corresponding empirical uncertainties.

To quantify the strength of IB effects, we convert the PPDs
for the ERE parameters in the 1S0 partial wave to standard
measures of the CIB and charge symmetry breaking (CSB),
where the latter amounts to a π rotation around the y axis in
isospace, i.e.,

�aCIB = 1
2

(
app

th + ann
th

) − anp
th , �aCSB = app

th − ann
th ,

�rCIB = 1
2

(
rpp

th + rnn
th

) − rnp
th , �rCSB = rpp

th − rnn
th . (21)

The PPDs for the CIB and CSB effects, including χEFT
errors, are summarized in Fig. 4. We first note that it is only
at NNLO and beyond that we can detect, with confidence,
the overall magnitudes of IB effects in the 1S0 partial wave.
Only CIB in the scattering length can be said to be different
from zero with any confidence at NLO. We also find that
our PPDs for CSB and CIB agree, within uncertainties, with
existing empirical data and a range of point estimates using
well-known chiral potentials at NNLO and N3LO. These
point estimates are all rather close to each other and fall

−2 0 2 4
ΔaCSB (fm)

0 2 4 6
ΔaCIB (fm)

Empirical
NNLOsat
Idaho N3LO
Δ-NNLOGO(394)

NLO
NNLO
N3LO

−0.4 −0.2 0.0 0.2 0.4
ΔrCSB (fm)

−0.4 −0.2 0.0 0.2 0.4
ΔrCIB (fm)

FIG. 4. CSB and CIB in the 1S0 scattering lengths and effective ranges; see (21). Colors and shadings as in Fig. 3. Empirical results
(ann from Ref. [26]; all others from Ref. [3]) are shown in black with gray error bands. Calculations using three widely used potentials are
also shown: NNLOsat [31], Idaho-N3LO[54], and �-NNLOGO(394) [55]. Note that the three latter potentials agree almost exactly regarding
�rCSB,CIB and are thus difficult to visually distinguish. Also note that the histograms have been scaled such that they have the same peak height.
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within the empirical uncertainties at all orders. The CSB and
CIB in the effective range is somewhat underestimated and
overestimated, respectively, compared to the empirical values.
The outlier N3LO result for app of course propagates to the
results for CIB and CSB and induces a comparatively large
isospin breaking at this order. Yet, the results are in line with
other chiral potentials.

IV. SUMMARY AND OUTLOOK

In this paper, we sampled high-dimensional posteriors up
to N3LO in χEFT and studied the effects of IB in the NN
sector. We used Bayesian inference, conditioned on np and pp
scattering data as well as the empirical value ann

exp for the 1S0

scattering length in the nn channel, to infer posterior PDFs
for the LECs at LO, NLO, NNLO, and N3LO. We split the
inference in two steps. First we employed HMC and condi-
tioned the LEC posteriors on np and pp scattering data and
accounted for uncorrelated χEFT truncation errors. A new
approach to tuning the mass matrix, based on posterior op-
timization, enabled us to extract a converged 31-dimensional
posterior also at N3LO. We find such advancements pivotal
for enabling robust MCMC sampling of the N3LO posterior.
In the next step of the inference, we included ann

exp and em-
ployed importance sampling to marginalize in the nn contact
LEC. For the variance of the truncation error in the ERE
parameters in the 1S0 partial wave we employed a conjugate
IG prior. In the end, we find that the resulting LEC posteriors
at NLO and NNLO match our previous [8] posteriors in the np
and pp isospin sectors and that the LEC C̃nn

1S0 is roughly twice
as broad but exhibits a correlation pattern similar to C̃np

1S0 and
C̃ pp

1S0.
Next, we sampled the PPDs for the ERE parameters and

found that our results are consistent with existing point esti-
mates using well-known chiral potentials, with the exception
of app at N3LO. This outlier might be traced back to insuffi-
cient information in the NN scattering data set we conditioned
the first part of the inference on. When accounting for χEFT
truncation errors, we find that one must go to NNLO to confi-
dently detect IB effects.

One way to improve a Bayesian analysis of the strong
interaction in the low-energy region of relevance to the ERE
might be to mix pionless EFT [4,56] and χEFT. Indeed, χEFT
harbors an intrinsic uncertainty due to the low-energy scale set
by mπ . Since the exact form of the χEFT expansion parameter
Q for scattering amplitudes is obscured by the nonperturba-
tive resummation in the Lippmann-Schwinger equation its
uncertainty pr(Q|I ) should be accounted for. It could then
be interesting to apply Bayesian mixture models to combine
pionless EFT and χEFT predictions.

When we condition the inference on low-energy NN
scattering data with Tlab ∈ [0, 40.5] MeV we return the Roy-
Steiner priors for the πN LECs at NNLO and N3LO. This
is in accordance with χEFT being a low-energy theory with
long-ranged physics governed by the πN interaction. When
conditioning the inference on all NN data up to the pion-
production threshold at 290 MeV, the marginal πN LEC
posteriors are significantly shifted with respect to the priors.
Still, the discrepancies are small on a naturalness scale.

Ab initio studies [55,57] indicate that the inclusion of the
� isobar yields more realistic predictions for bulk properties
of nuclei and nuclear matter. However, a Roy-Steiner prior
for the πN LECs with explicit � isobars is less precise [6].
As such, it will also become more important to employ ad-
ditional nuclear structure and reaction data in the inference
and employ error models that account for correlations be-
tween the χEFT expansion coefficients. Although it rapidly
becomes computationally challenging to evaluate likelihoods
encompassing nuclear data for increasing mass numbers, the
development of fast and accurate emulators [58–61] appears
to provide sufficient leverage. In particular, the present work
serves as an example how to sequentially incorporate multiple
sets of low-energy nuclear structure and reaction data in a
Bayesian framework to perform inference and quantify the
theoretical precision.
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APPENDIX A: THE APPEARANCE
OF THE STUDENT’S t DISTRIBUTION

We assume that the nc expansion coefficients �c =
(c1, . . . , cnc ) in (8) are independent and identically distributed,
and drawn from a normal distribution with variance c̄2:

pr(ci|c̄2) = N (0, c̄2). (A1)

We then place an inverse-gamma (IG) prior on c̄2, and conse-
quently get an (IG) posterior, (12), as well due to conjugacy
with respect to the normal distribution:

pr(c̄2|�c) = IG(α, β ), (A2)

where the parameters α (shape) and β (scale) have been up-
dated, via (13), by the exposure to �c. We will now show that
these assumptions result in a PPD for an unseen coefficient c+
given by a Student’s t distribution, i.e.,

pr(c+|�c) = tν (0, τ 2), (A3)

where ν and τ are the degrees of freedom and scale, re-
spectively, of the Student’s t distribution using a method of
derivation that can be applied in many other situations where
conjugate priors are employed.

In general, the PPD pr(c+|�c) for a new datum c+ given
a parameter (or parameters) c̄2 and observed data �c can be
expressed as

pr(c+|�c) = pr(c+|c̄2, �c) × pr(c̄2|�c)

pr(c̄2|c+, �c)
, (A4)

which is easily verified using the product rule of probabilities.
We know that pr(c̄2|�c) = IG(α, β ), and pr(c̄2|c+, �c) is obvi-
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FIG. 5. The joint posterior pr(�α, c̄2|NLO, �c, D) conditioned on NN scattering data with Tlab ∈ [0, 290] MeV, the 1S0 nn scattering length,
and a conjugate prior for the χEFT truncation error of this quantity. The C̃ LEC values are given in units of 104 GeV−2, and C in units of
104 GeV−4.

ously also an inverse-gamma distribution with further updated
parameters (α+, β+)

α+ = α + 1

2
= α0 + nc

2
+ 1

2
,

β+ = β + c2
+
2

= β0 + �c 2

2
+ c2

+
2

. (A5)

Since c̄2 is given in pr(c+|c̄2, �c), this is just a normal distribu-
tion as in (A1). Hence

pr(c+|�c) = N (0, c̄2) × IG(α, β )

IG(α+, β+)
(A6)
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FIG. 6. The joint posterior pr(�α, c̄2|NNLO, �c, D) conditioned on NN scattering data with Tlab ∈ [0, 290] MeV, the 1S0 nn scattering length,
and a conjugate prior for the χEFT truncation error of this quantity. The C̃ LEC values are given in units of 104 GeV−2, C in units of 104 GeV−4,
and c in units of GeV−1.

and we obtain for the PPD

pr(c+|�c) = 1√
2π c̄2

exp

(
− c2

+
2c̄2

)

×
βα

�(α) × c̄2(−α−1) exp
(− β

c̄2

)
(β+ )α+
�(α+ ) × c̄2(−α+−1) exp

(− β+
c̄2

) . (A7)

This is can be written as

pr(c+|�c) = 1√
2π

βα�(α+)

β
α+
+ �(α)

. (A8)

Using (A5) we can rewrite this further as

pr(c+|�c) = 1√
2πβ

�
(
α + 1

2

)
�(α)

×
(

1 + c2
+

2β

)−α− 1
2

. (A9)

014001-11



SVENSSON, EKSTRÖM, AND FORSSÉN PHYSICAL REVIEW C 107, 014001 (2023)

FIG. 7. A subset of the joint posterior pr(�α, c̄2|N3LO, �c, D) con-
ditioned on NN scattering data with Tlab ∈ [0, 290] MeV, the 1S0 nn
scattering length, and a conjugate prior for the χEFT truncation error
of this quantity. The C̃ LEC values are given in units of 104 GeV−2,
C in units of 104 GeV−4, and D in units of 104 GeV−6.

This is the PDF for a Student’s t distribution with ν = 2α

degrees of freedom and scale τ = √
β/α, i.e.,

pr(c+|�c) = tν (0, τ 2) = t2α

(
0,

β

α

)
. (A10)

One can analogously show that the truncation error is given
by

pr(δath|�a) = t2α

(
0, a2

ref
Q2(k+1)

1 − Q2

β

α

)
, (A11)

where �a is a set of observations of a that can be transformed
into expansion coefficients �c, and α and β are given by (13).

APPENDIX B: LEC POSTERIORS

Figures 5 and 6 show corner plots, i.e., marginal uni- and
bi-variate PDFs, for the LEC posterior at NLO and NNLO,
respectively. A subset of the marginal posteriors at N3LO
is shown in Fig. 7 . The corner plot of the 31-dimensional
N3LO posterior is too large to print and we thus provide
it as Supplemental Material to this paper [52]. In Fig. 8

we show a comparison of the πN prior and posterior
at N3LO.

For convenience we list the LECs inferred at each order
here, sorted as they appear in the corner plots. The inferred
LECs at NLO are

�α = (
C̃nn

1S0, C̃np
1S0, C̃ pp

1S0, C̃3S1,C1S0,C3P0,

× C1P1,C3P1,C3S1,C3S1−3D1,C3P2
)
. (B1)

FIG. 8. Prior and posterior PDFs for the c and d πN LECs, in
units of GeV−1 (c) and GeV−2 (d). The posterior (red) was obtained
using HMC. The inner (outer) ellipses enclose approximately 39%
(86%) of the probability mass. Black lines indicate the prior as
provided by the Roy-Steiner analysis [6].

The inferred LECs at NNLO are

�α = (
c1, c3, c4, C̃nn

1S0, C̃np
1S0, C̃ pp

1S0, C̃3S1,C1S0,

× C3P0,C1P1,C3P1,C3S1,C3S1−3D1,C3P2
)
. (B2)

The inferred LECs at N3LO are

�α = (
c1, c2, c3, c4, d1 + d2, d3, d5, d14 − d15,

× C̃nn
1S0, C̃np

1S0, C̃ pp
1S0,C1S0, D1S0, C̃3S1,

× C3S1,C3S1−3D1, D3S1, D3S1−3D1, D3D1,

× C3P0, D3P0, D3P1,C3P1,C3P2, D3P2,

× D3P2−3F2,C1P1, D1P1, D1D2, D3D2, D3D3
)
. (B3)

APPENDIX C: MULTIVARIATE NORMAL
APPROXIMATIONS OF THE LEC POSTERIORS

The LEC posteriors presented in this paper are stored as
arrays of samples from which subsequent results are pro-
duced. The posteriors are, however, approximately Gaussian,
and we therefore provide multivariate normal approximations
for convenience. These approximations are available in text
format in the supplemental material [52]. The filenames reflect
the chiral order, and the contents are structured as follows:

(i) The first line shows the ordering of the LECs.
(ii) Then follows a vector �μ of corresponding mean val-

ues.
(iii) Finally, a covariance matrix �� encodes the uncertain-

ties.
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2.00 2.25 2.50 2.75 3.00 3.25
rpp (fm)

FIG. 9. PPDs of scattering lengths and effective ranges at NLO (blue), NNLO (purple), and N3LO (red) when including all np and pp
scattering lengths up to N3LO to infer c̄. Empirical results are shown as black lines, with corresponding 1σ (2σ ) uncertainties as a dark (light)
gray area. The empirical results are without electromagnetic effects and gathered from Ref. [3], except for ann which we take from Ref. [26].
Note that the histograms have been scaled such that they have the same peak height.

Put together, these quantities define a multivariate normal
distribution N (�μ, ��) that approximates the LEC posterior.

APPENDIX D: POSTERIOR PREDICTIVE
DISTRIBUTIONS: INCORPORATING THE cpp

4 DATA

For completeness, in Fig. 9 we show the PPDs for
the effective range expansion with an EFT truncation er-
ror informed also by the somewhat irregular NNLO-N3LO

shift in app; see Table I. This irregularity is however mod-
ulated by our prior expectations on c̄ and the convergence
of the EFT expansion. In the end, although the value for
c̄ increases some, we find that the experimental and theo-
retical errors are roughly equally sized at NNLO while the
theoretical (experimental) error dominates at NLO (N3LO),
as before. As a result, mainly the NLO predictions for
the scattering length is modified compared to the result
in Fig. 3.
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