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Nucleon-nucleon short-ranged correlations, β decay, and the unitarity of the CKM matrix
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The influence of nucleon-nucleon short-ranged correlations (SRC) on nuclear superallowed β decay is
examined. The need for this is driven by the observed depletion of spectroscopic strength obtained in studies of
(e, e′) and (d, 3He) reactions on a wide variety of nuclei. We show that the influence of SRC is model dependent,
but may be very substantial. The 46V nucleus is used as an example. The resulting impact on studies of the
unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element is discussed.
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The dominant contribution to the unitarity test of the
standard model (SM) Cabibbo-Kobayashi-Maskawa (CKM)
matrix comes from the up-down quark matrix element Vud .
The value of Vud has been extracted by Hardy and Towner
(HT) [1–10] with the highest precision from 0+ → 0+ decays
from nuclei ranging from 10C to 74Rb. The remarkably consis-
tent nature of the values of Vud obtained from many different
decays has led to a very small uncertainty. Their latest paper
[10] states

Vud = 0.97373 ± 0.00031. (1)

Despite the considerable success of the HT approach, the
crucial importance of the process in testing the standard model
has long mandated that the theory behind the analysis be
continually reexamined, an especially urgent process now
because a more recent evaluation [11] of an electroweak ra-
diative correction claims a 4 standard deviation violation of
unitarity. Our focus is on the isospin-breaking correction δC .
A variation of this quantity, �δC , would cause a change in Vud

given by

�
(
V 2

ud

)
V 2

ud

≈ �δC . (2)

Consider the result δC = 0.960(63)% for the 0 f7/2 orbital of
42Ti [10]. A 20% change, for example, in that number is about
0.2% and Vud would be changed by half that, 10−3, a number
that is 3.5 times the uncertainty quoted in Eq. (1). The Particle
Data Group [12] find a similar central value of Vud , but a
smaller uncertainty of ±0.00014. In that case, the 20% change
in δC would be almost 8 times the uncertainty.

The purpose of this Letter is to argue that the influence
of short-ranged correlations between nucleons, unaccounted
for by Towner and Hardy [6] (TH), may cause changes in
the values of δC , which are large on the scale of the desired
accuracy. This means that depending on future theoretical and
experimental work, either the uncertainty in the value of Vud

is significantly larger than that of Eq. (1) or that the value is
itself changed significantly.

Superallowed β decays are generated by the isospin opera-
tor τ obeying the usual commutation relations. The theoretical
formalism of TH is based on using a weak interaction operator
different than τ, which does not obey these commutation rules
[13,14]. The operator of TH was designed to reduce the size of
the necessary small shell-model space. Corrections to the TH
formalism based on the collective isovector monopole state
were presented in [15,16]. Work on the effects of short-ranged
correlations appears in [17] that concludes, “we present a
new set of isospin-mixing corrections . . . , different from the
values of Towner and Hardy. A more advanced study of these
corrections should be performed.”

The TH restriction is motivated by a shell-model picture in
which radial excitations of energy 2h̄ω and higher above the
relevant orbitals can be neglected. This approach specifically
eliminates the influence of short-ranged nucleon-nucleon cor-
relations that involve nucleons in orbitals high above the
given shell-model space. This strong interaction effect re-
duces the probability that a decaying nucleon is in a valence
single-particle orbital and suggests that the magnitude of δC is
smaller than that of previous calculations.

An exact formalism for evaluating δC was presented in
[13,14]. The present effort presents an extension of that
formalism, focusing on the influence of short-ranged correla-
tions, now known to be important because of recent significant
experimental and theoretical work.

In the time since TH started their epic sequence of calcu-
lations, many new experimental and theoretical results have
obtained unambiguous evidence that nucleon-nucleon short-
ranged correlations do exist in an observable fashion [18–45].
The effects of short-ranged correlations between nucleons,
predicted long ago, have finally been measured and are sig-
nificant. Such correlations involve the excitations of nucleons
to intermediate states of high energy. Consequently, radial
excitations are now known to be important in nuclear physics.

Spectroscopic factors, essentially the occupation probabil-
ity of a single-particle, shell-model orbital, play an important
role in what follows. As reviewed in Ref. [21], electron scat-
tering experiments typically observe only about 60–70% of
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the expected number of protons. This depletion of the spectro-
scopic factor was observed over a wide range of the periodic
table at relatively low-momentum transfer for both valence
nucleon knockout using the (e, e′ p) reaction [46] and stripping
using the (d,3 He) reaction [47]. See, also, the (e, e′) work
of Ref. [48]. The missing strength of 30–40% implies the
existence of collective effects (long-range correlations) and
short-range correlations in nuclei. Substantial theoretical anal-
yses [49–54] used detailed many-body evaluations to find that
including the effects of both long- and short-range correla-
tions must be included to reproduce the results of experiments
that measure spectroscopic factors.

Reference [30] made a quantitative effort to analyze the
separate long- (LRC) and short-range (SRC) contributions to
the quenching of the spectroscopic factors. Their result is that
the SRC contribution amounts to 22% ± 8% and the LRC
contribution to δ = 14% ± 10%. This is in accordance with
expectations [18–21,29] and with the results of [40,49–52,55].
In the following, we argue that in analogy with the (e, e′ p) and
(d,3 He) reactions, the superallowed β decay measurements
are impacted by the short-ranged correlations that reduce the
spectroscopic strength by about 20%.

It is well known that that short-range physics, at low en-
ergy, can be embedded into effective operators. The standard
shell model has been doing this for more than 70 years through
fitting phenomenological interactions, effective charges, and
empirical quenching gA. It successfully reproduces a large
body of experimental data. However, recent work shows that it
is possible to understand the quenching of gA by using modern
techniques such as the in-medium similarity renormalization
group, as explained, for example, in Ref. [56]. This is nec-
essary to understand other processes such as neutrinoless
double-β decay. The problem here is that modern techniques
have not yet been applied to the analysis of superallowed β

decays. The work of TH is no longer consistent with modern
nuclear theory, yet is still used to limit the effects of possible
nonstandard model interactions.

Therefore, we reexamine the calculations of superallowed
β decay rates with an eye toward including the effects of
short-ranged correlations absent in the TH formalism. Doing
this precisely requires separating the long-range correlations
inherent in the shell model of TH from the missing short-
range correlations. This challenging task leads to the goal of
first providing a plausibility argument, rather than a detailed
evaluation. We rely on simple arguments, starting from the
basics.

The shell model is the starting point for nuclear physics. In
its simplest form, the nucleons are in single-particle orbitals
and the β decay matrix element is simply an overlap between
neutron and proton wave functions. If the Hamiltonian com-
mutes with all components of the isospin operator, the spatial
overlap will be unity. But the noncommuting interactions,
such as Coulomb interaction and the nucleon mass difference,
cause the overlap to be less than unity. This leads to a nonzero
value of the isospin correction known as δC .

There must be a further modification of the value of the ma-
trix element because there is no fundamental single-nucleon,
mean-field potential in the nucleus. The mean field that binds
the orbitals is only a first approximation to nuclear binding.

The mean field arises from the average of two- (or more-)
body interactions, but residual two- (or more-) nucleon ef-
fects must remain. There are residual interactions that cause
long-range correlations, such as particle-vibration coupling
and those that cause the short-ranged correlations mentioned
above.

The fundamental theory for the Fermi interaction of proton
β decay involves the isospin operator τ+ and the Fermi matrix
element is then given by MF = 〈 f |τ+|i〉, |i〉 and | f 〉 the exact
initial and final eigenstates of the full Hamiltonian H = H0 +
VC , with energy Ei and E f , respectively, and VC denotes the
sum of all interactions that do not commute with the vector
isospin operator.

Here we extend the formalism of Refs. [13,14] by first de-
veloping an effective β-decay one-body operator that includes
the dominant isospin-violating effects and then evaluating
its matrix element in a strongly correlated system. Consider
single-particle proton p and neutron n orbitals denoted by
|v, p〉 and |v, n〉, in which the index v denotes the space-spin
quantum numbers. These are eigenstate of a Hamiltonian,
h = h0 + UC (p), with a Coulomb potential, UC (p) that acts
only on protons. The eigenkets of h0 are denoted with rounded
brackets and those of h with the usual Dirac notation. Then,
using Wigner-Brillouin perturbation theory in UC , one has

|v, p〉 = √
ZC |v, p) + 1

Ev − �vh0�v

�vUC |v, p〉, (3)

with ZC = 1 − 〈v, p|UC
1

(Ev−�vh0�v )2 UC |v, p〉 and
[v, (n, p)|�v = 0 with |v, n〉 = |v, n].

The single-particle superallowed β-decay matrix element,
Msp ≡ (v, n|τ+|v, p〉, is given by the overlap (v|v〉,

Msp = √
ZC, (4)

with the proton to neutron matrix element of τ+ evaluated as
unity. Evaluating

√
ZC to second order in UC leads to

Msp ≈ 1 − 1

2

(
v|UC

1

(Ev − �vh0�v )2
�vUC |v

)
, (5)

with the second term as the isospin correction. This result
repeats the well-known results that the electromagnetic cor-
rections are of second order [13,14,57,58]. The dominant
isospin correction of TH is twice the second term.

Next we turn to nuclear superallowed β decay. It is useful
to define the one-body Coulomb-correction operator that ap-
pears in Eq. (5) as ÔC (v) ≡ UC

1
(Ev−�vh0�v )2 �vUC . Consider,

as a first step, a simplified situation in which the initial nu-
cleus i consisting of a proton in a valence orbital v outside
an isospin-0 core state of A nucleons β decays to a neutron
outside the same state, f . Then, the p → n matrix of τ+ is
still unity and is not mentioned below. The core of the state
f is taken to be the same as that of the state i, so that their
overlap does not influence the β-decay matrix element. This
is an accurate treatment because the only isospin-violating in-
fluence on the wave function is caused by the external valence
proton, a negligible O(1/A) effect.

Then the largest Coulomb correction is obtained by taking
the matrix element δC (v) of the operator ÔC (v). In coordinate
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space and suppressing spin indices, this quantity is given by

δC0(v) =
∫

d3rd3r′φ∗
v (r)OC (r, r′)φv (r′). (6)

The simple single-particle state leading to Eq. (6) is only a
first, mean-field approximation to the nuclear wave function.
This is because the valence proton (neutron) undergoes strong
interactions with the core nucleons that involve both long-
and short-ranged correlations. Focusing on short-ranged, two-
nucleon aspects, we need to compute the two-nucleon wave
function given by

|v, α〉 =
√

ZS (v, α)|v, α) + Q
G

e
|v, α), (7)

with α being one of the occupied orbitals of the T =
0 core state. Here, G1 is the antisymmetrized [59] reac-
tion matrix operator that sums ladder diagrams involving
two-nucleon interactions. The factor ZS insures the normal-
ization, e represents an energy denominator, and iterations
of the potential that correct the state |i0) are included in the
schematic factor Q G

e . The Hermitian projection operator Q
obeys Q|v, α) = 0. and is constructed to exclude the long-
ranged correlations so that only the short-ranged correlations
are included in the correction that we study. Equation (7)
includes only the leading-order term in the linked-cluster ex-
pansion of Refs. [59–63]. Defining an operator 
 ≡ Q G

e , one
has ZS (v, α) = 1 − (v, α|
†
|v, α). Then,

δC (v) = ZS (v)[v|ÔC (v)|v] +
∑

α

({v, α|
√

ZS (v, α)[ÔC (v)


+ 
†ÔC (v)] + 
†ÔC (v)
|v, α}), (8)

with ZS (v) ≡ 1 − ∑
α (v, α|
†
|v, α) ≡ 1 − κ (v). This is

the occupation probability, known always to be <1.
In this first analysis of the effect of SRC on superallowed

β-decay, we rely on the existing literature that indicates that
ZS (v) ≈ 0.8 for many states v, although with dependence
on the specific state, nucleus, and interactions. This number
comes from many experimental measurements and theoretical
calculations cited above. To be specific, consider the case of
a single proton in a 0 f7/2 state outside an inert core of charge
Z = 22, schematically representing the calculation for 46V. A
search of the literature finds a review [40] for ZS (0 f7/2) reveals
a value of κ (0 f7/2) = 0.14 for that state in 55Ni. This is for
a Hamiltonian with “mild short-range repulsion effects.” The
original paper [64] shows that κ (0 f7/2) = 0.05, obtained by
including 10 harmonic oscillator shells. However, the shell-
model space of TH is just 2 h̄ω. Thus, 0.14 is used here as
a reasonable number to motivate an estimate. This value is
consistent with the results of the independent phenomenolog-
ical analysis of [30]. In the following, we use κ = 1 − ZS to
simplify the notation.

Next we turn to an evaluation of the matrix element
[v|ÔC (v)|v] that provides a proof of the validity of Eq. (6).
Our numerical results and Hartree-Fock calculations [65]

1For two-nucleon interactions, G is the two-nucleon T matrix eval-
uated at negative energy and modified by Pauli blocking effects.

show that the valence radial wave function is very well ap-
proximated by that of a three-dimensional harmonic oscillator.
We therefore use harmonic-oscillator single-particle wave
functions with the parameters of [65]. The overlap between
the realistic wave functions of [65] is about 0.998.

The nuclear Coulomb potential arises from the convolution
of Zα/(|r − r′|) with the charge density ρC (r′). If we take the
latter to be a constant within r � RC , the one-body Coulomb
potential takes the form used by TH. The value of RC is chosen
to match the Coulomb potential obtained with a Fermi shape
using RA = 1.1A1/3 fm and a = 0.54 fm. Our estimate takes
the state |v) to be in the single-particle orbit with radial quan-
tum number n = 0 and angular momentum l = 3 appropriate
for the state appearing in the first line of Table I for 46V of
Ref. [6]. The matrix element of UC between the valence state
and the state with n, l is (0l|Uc|nl ) so that, using Eq. (6), we
find

δC0(l ) =
∑
n>0

|(0l|Uc|nl )|2
4n2ω2

. (9)

Using this yields δC0 = 0.267%, in agreement with the result
in Table I for 46V in Ref. [6].

At this stage, the result is that the leading Coulomb correc-
tion of TH is multiplied by the factor ZS , potentially a very
substantial reduction in terms of present accuracy require-
ments.

Now we turn towards the remaining terms of Eq. (8). First
note that the operator 
 contains the projection operator Q
that projects away from the initial state. The mean-field state
|vα) is changed by the action of QG to one in which one or
mainly both nucleons are above the Fermi sea. Then the one-
body operator ÔC (v) cannot connect the intermediate state to
the mean-field state. Thus the terms of Eq. (8) that are linear
in the operator 
 vanish and one has

δC (v) = ZS (v)[v|ÔC (v)|v] +
∑

α

[v, α|
†ÔC (v)
|v, α].

(10)

Next we estimate the matrix elements of 
†ÔC (v)
, the
second-order terms. This is implemented here by modeling
the operator 
 using the Jastrow correlation [62,63,66–73]
approximation to the nuclear wave function. The most impor-
tant and best-measured SRC involve two nucleons, in which
the correlated wave function ψ (2) is related to the mean-field
approximation φ(2) with ψ (2) = (1 + f )φ(2). In the present
situation, one of the nucleons is the decaying proton in orbital
v and the other is any nucleon in the occupied orbital α,
so φ(2) represents the product state |vα). The correlations
(including Pauli) are represented by a function f (s), in which
s is the separation distance. A schematic notation, in which
various quantum numbers of the two-nucleon wave function
are not explicitly specified, simplifies the presentation. Then,
the operator 
 and f (s) are related by f (s) = 〈s|
|φ(2)〉
[62,63]. The function f (s) is meant to represent only the short-
ranged correlations, as mandated by the proper construction
of the operator Q. The operator 
 acts only in two-nucleon
states allowed by the Pauli principle. A first-principles calcu-
lation would explicitly state angular momentum and isospin
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quantum numbers L,J,S,T dependence of the functions f .
Indeed, several partial-wave contributions enter in the com-
putation of κ = ∑

v κ (v)/A [74].
The nuclear force is repulsive at small separations and

attractive at large separations. This means that in all existing
models, f is negative for small values of s, rises to 0 or slightly
above as values of s increase towards the region of attraction,
and then falls to within 1 fm or so [69,73,75–79]. The details
of f (s) are model dependent, but the previous sentence holds.
The function f (s) is substantial only for small values of s.

Next we use the short-ranged nature of f (s) to compute
the second-order terms of Eq. (10). Defining that term as
�δC0(v), and evaluating in coordinate-space leads to the fol-
lowing expression:

�δC0(v) =
∫

d3rd3r′φv (r)I (r, r′)OC (r, r′)φv (r′), (11)

with

I (r, r′) ≡
∫

d3r2ρ(r2) f (|r − r2|) f (|r′ − r2|). (12)

An examination of the integrals shows that �δC0(v) > 0,

and tends to compensate for the reduction caused by us-
ing Z (v) < 1. A simple general analysis that focuses on the
short-distance repulsion is used. Let us first suppose that
the short-ranged correlations are captured by using f (s) =
−λg(s), with 0 < λ � 1 and g(0) = 1, and g(s) is vanishing
for values of s larger than a reasonable range, r0, of order 1 fm
or less. This form is a reasonable and flexible representation
of the short-distance properties of all of the models [69,76–
82] that allows us to study the model dependence. The values
of λ and the function g(s) are chosen to reproduce the value
of κ via

κ = ρ0λ
2
∫

d3s g2(s), (13)

where ρ0 is the density of nuclear matter ≈0.167 fm3. Our
philosophy is to take the value of κ as determined by ex-
perimentally measured spectroscopic factors and independent
theory.

For the 46V example used here, κ = 0.14. Then, using a
Gaussian form, g(s) = e−s2/2r2

0 , leads to r0 = 0.532/λ2 fm,
and using a square shape, g(s) = �(r0 − s), leads to r0 =
0.585/λ2 fm.

Now turn to the evaluation of I (r, r′). Note that because
of the short-ranged nature of the correlations, the integrand of
I (r, r′) is substantial only when both r and r′ are close to r2,

and therefore close to each other. Because r0 is much less than
the nuclear radius, we approximate as a three-dimensional δ

function via

g(s) = δ(s)
∫

d3sg(s). (14)

Numerical analysis shows that using this simplification pro-
vides an excellent approximation to the exact calculation. The
ratio

γ ≡
∫

d3s g(s)∫
d3s g2(s)

(15)

is an important parameter in the following treatment.

Using Eq. (14) and Eq. (13) to evaluate I (r, r′) leads to the
result

I (r, r′) ≈ γ 2

λ2

(
κ

ρ0

)2

ρ(r)δ(r − r′). (16)

Using this expression to compute �δC0(v) of Eq. (11) leads
to

δC (v) = ZS (v)δC0(v) + γ 2κ2

λ2ρ2
0

∫
d3rφ∗

v (r)

×OC (r, r′)φv (r′)ρ(r), (17)

showing that the second-order term tends to compensate for
the depletion caused by the factor ZS (v) < 1. Furthermore,
there is strong sensitivity to the value of γ κ/λ.

Next, use Eq. (16), to compute �δC0(v) of Eq. (11), which
is also the second term of Eq. (17). The 46V model and
parameters used to compute δC0 are again used. Then,

�δC0(v)=γ 2

λ

(
κ

ρ0

)2 2l+1

4π

∑
n=1

∫
r2drR2

0l (r)R2
nl (r)U 2

C (r)ρ(r)

4n2ω2

=γ 2

λ2

(
κ

ρ0

)2 2l + 1

4π
0.087δC 0, (18)

with numerical evaluation and the results of using Eq. (9). For
the case of interest (l = 3, κ = 0.14), we find

�δC0(v) = γ 2

λ2
0.034 δC0. (19)

The value of γ is determined by the shape of g(s). Using
a square shape yields γ 2 = 1 and using a Gaussian yields
γ 2 = 8. With the former (and λ = 1), one finds that �δC0(v)
is negligible, but with the latter, the correction is 0.27δC 0
and the effects of short-ranged correlations are to provide an
overall increase of about 13%. One may use a Fermi function,
g(s) = 1/[1 + exp(s − r0)/a]. In that case, varying the value
of a from small values to about 1.9 fm smoothly interpolates
the values of g2 between 1 and 8. For the specific example, one
obtains either an 11% decrease with γ 2 = 1 or a 13% increase
with γ 2 = 8. If the value of κ is taken to be 0.2 for stronger
short-range repulsion, this spread goes from a 20% decrease
to a 30% increase. More generally, the resulting electromag-
netic corrections to superallowed β decay can be increased
or decreased substantially by the influence of short-ranged
correlations.

Our considerations are limited to one state. The nuclear
dependence of δC is important, as established by TH. Roughly
speaking, our trend is very similar to theirs because the driving
effect is the increase of the Coulomb interaction with increas-
ing nuclear size. The cited theory and measurement references
on the A dependence of spectroscopic factors indicate that the
influence of SRC is likely to have little A dependence. Thus,
trends similar to that of TH are to be expected.

In summary, the key result is that computations of the
isospin correction are strongly sensitive to the effects of short-
ranged correlations. The detailed features of the short-ranged
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correlations determine whether the influence is an increase,
decrease, or no change. This is true despite the schematic
nature of the present calculations. The correct evaluation of
this effect can only be assessed precisely by doing detailed
calculations with different models that account for the exper-
imentally measured spectroscopic factors. This is important
because tests of the unitarity of the CKM matrix demand very
high accuracy. Doing more detailed state-of-the-art nuclear

calculations of superallowed β decay is a high priority for
nuclear theorists.
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