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Simple corrections in theoretical models of atomic masses and nuclear charge radii
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We study the systematic deviations of the theoretical results (the Hartree-Fock-Bogoliubov, the relativistic
mean field, the Duflo-Zuker, and Weizsäker-Skyrme models) and experimental values of atomic masses, one-
nucleon separation energies, and nuclear charge radii. Strong correlations of these deviations, which has not
been discerned hitherto, are highlighted, and are applied to improve the agreement of theoretical models with
experimental experimental data. Substantial refinements of the consistency between theoretical models and
experimental databases are achieved with additionally only one parameter which reflects the correlation reported
in this Letter. The root mean square deviation values of these theoretical models in comparison with experimental
databases are about 100–300 keV for atomic masses, 120–350 keV for one-nucleon separation energies, and
0.008–0.017 fm for nuclear charge radii, for nuclei with proton number Z larger than 28.
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Atomic masses (or equivalently binding energies) and nu-
clear charge radii are fundamental quantities of atomic nuclei,
and are important in both traditional nuclear physics and
nuclear astrophysics. There have been tremendous theoreti-
cal efforts to address these issues [1], and here we mention
the Duflo-Zuker (DZ) model [2], the Skyrme-Hartree-Fock
Bogoliubov (SHFB) theory [3], the relativistic mean field
(RMF) model [4], the WS4 models [5], and the finite-range
droplet model (FRDM)[6], and so on. There are also local and
regional mass formulas [7], such as the Garvey-Kelson (G-K)
mass relations [8,9], the neutron-proton interaction relation
[10], and mass formulas between mirror nuclei [11].

In recent years, a few statistical approaches, including the
radial basis functions (RBF) [12–15] and Bayesian neural
networks (BNN) [16,17] were used to reduce the root-mean-
squared deviations (RMSD) of theoretical atomic masses
and charge radii from experimental data. Although these
statistical approaches are interesting and potentially useful,
there are actually numerous parameters to be optimized. It is
therefore interesting to investigate whether or not substantial
improvements of agreement between theoretical calculated
results and experimental data are possible, with very simple
modifications.

There have been a number of efforts towards simple
corrections on theoretical results of atomic mass and/or re-
lated quantities in the last decade. It was reported [18] that
there are clearly odd-even staggerings of symmetry energy
extracted from experimental data, which reveals systematic
deviations of theoretical models from the AME databases.
In Refs. [19,20], simple corrections were considered to com-
pensate the systematic deviations of theoretical models in
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comparison with experimental data. However, improvements
therein are small, with typically 10–20 keV for atomic masses.
Very recently it was shown [21] that correlations of deviations
between neutron-proton interactions given by empirical for-
mulas and those extracted from experimental data for given
nucleus and its specific neighboring nucleus, in major shells
to the northwest of the doubly closed 208Pb nucleus, are very
strong, and are very useful to improve the agreement between
theoretical results (e.g., atomic masses, Qα , proton separation
energy) with experimental database, for nuclei with proton
number Z larger than 28.

The purpose of this Letter is to report that substan-
tial improvements can be realized with considering specific
correlation of deviations between calculated quantities and
experimental databases with only one parameter related to
the correlation. Our approach is exemplified by a number
of popular theoretical models (here the HFB, the RMF, the
DZ, and the WS4 + RBF, the relativistic continuum Hartree-
Bogoliubov (RCHB), and the WS∗ models), for atomic
masses, one-nucleon separation energies, and nuclear charge
radii. We begin our discussion by denoting the deviation be-
tween theoretically calculated atomic mass and experimental
result for given nucleus with neutron number N and proton
number Z , using DM (N, Z ), defined as follows:

DM (N, Z ) = Mexp(N, Z ) − M th(N, Z ), (1)

where Mexp(N, Z ) corresponds to experimental value, and
M th(N, Z ) corresponds to theoretical result. Similarly, we de-
note deviation between theoretical results and experimental
data, by using DSn (N, Z ) for one-neutron separation energy,
DSp (N, Z ) for one-proton separation energy, and DR(N, Z ) for
nuclear charge radius.

In the first row of Fig. 1, we plot DM (N, Z ) versus DM (N −
2, Z ) for neutron-rich nuclei, and DM (N, Z ) versus DM (N +
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FIG. 1. Correlations between DX (N, Z ) and DX (N ′, Z ′) of Eq. (2). Results of neutron-rich nuclei are plotted in red and those of proton-rich
are in black. (a1)–(d1): X corresponds to atomic mass, and Z ′ = Z , N ′ = N − 2 for neutron-rich nuclei, and N ′ = N + 2 for proton-rich
nuclei. (a2)–(d2): X corresponds to one-neutron separation energies of neutron-rich nuclei, Z ′ = Z , N ′ = N − 2. (a3)–(d3): X corresponds to
one-proton separation energies of proton-rich nuclei, Z ′ = Z , N ′ = N + 2. In the first three rows, we exemplify the correlations by using four
models, the HFB31 [3], DZ [2], RMF [22], WS4 + RBF [5]. (a4)–(d4): X corresponds to nuclear charge radii, Z ′ = Z , N ′ = N − 1 (Z ′ = Z ,
N ′ = N + 1) for neutron-rich (proton-rich) nuclei. Because there are not theoretical databases of nuclear charge radii for the DZ and the
WS4 + RBF models, we take the RCHB [23] and the WS∗ [24] models instead. In this Letter we restrict our discussions to nuclei with proton
numbers Z > 28.

2, Z ) for proton rich nuclei. Similarly, in the second row and
third rows of Fig. 1, we plot DSp (N, Z ) versus DSp (N + 2, Z )
and DSn (N, Z ) versus DSn (N, Z + 2); in the fourth row, we plot
DR(N, Z ) versus DR(N − 1, Z ) for neutron-rich nuclei and
DR(N + 1, Z ) versus DR(N, Z ) for proton-rich nuclei. One
sees that for all these quantities (atomic masses, one-nucleon
separation energies, and nuclear charge radii), our plots of
four popular models (the HFB, the RMF, the Duflo-Zuker,
and the WS4 + RBF models here) exhibit strong and linear
correlations. We therefore assume that

DX (N, Z ) = λDX (N ′, Z ′), (2)

where X denotes M, Sn, Sp, and R for atomic mass, one-
neutron separation energy, one-proton separation energy, and
nuclear charge radius, λ is the optimized coefficient. N ′ =
N − 2 (N + 2) and Z ′ = Z for DM with neutron-rich (proton-
rich) nuclei, N ′ = N + 2 and Z ′ = Z for for DSp , N ′ = N and
Z ′ = Z + 2 for DSn , and N ′ = N − 1 (N + 1) and Z ′ = Z for
DR with neutron-rich (proton-rich) nuclei.

In Table I we present the Pearson correlation coefficient,
the optimal value of λ of Eq. (2), for atomic masses, separation
energies, and nuclear charge radii. One sees that the linear
correlation Pearson coefficient is typically 0.6 to 0.9, which
corresponds to strong correlation.
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TABLE I. Summary of correlations between DX (N, Z ) and DX (N ′, Z ′) of the same theoretical models in Fig. 1. X corresponds to atomic
masses M, one-nucleon separation energies Sn and Sp, nuclear charge radii R. λX corresponds to the optimal linear coefficient in Eq. (2), and
rX is the corresponding Pearson coefficient. σX and σ

pred
X correspond to the RMSD of theoretical models for physical quantity X with respect

to experimental database, without and with the corrections introduced in this paper, respectively. The RMSD values for atomic masses and
one-nucleon separation energies are in unit of keV, and those for nuclear charge radii are in unit of fm.

model type λM rM σM σ
pred
M λS rS σS σ

pred
S λR rR σR σ

pred
R

HFB31 N 0.76 0.74 464 318 0.63 0.60 342 275 0.91 0.88 0.023 0.012
P 497 331 0.72 0.67 372 276 0.026 0.012

DZ N 0.78 0.67 400 305 0.75 0.70 260 186
P 313 226 0.85 0.78 248 155

RMF N 0.97 0.93 1840 843 0.78 0.81 592 342 0.91 0.88 0.026 0.017
P 2535 737 0.92 0.89 789 346 0.038 0.014

WS4+RBF N 0.75 0.75 150 104 0.84 0.84 229 123
P 155 101 0.91 0.86 236 121

RCHB N 1.02 0.96 0.040 0.011
P 0.033 0.008

WS∗ N 0.94 0.91 0.018 0.010
P 0.023 0.008

We improve theoretical results of these physical quantities
by considering these correlations. Let us denote quantities of
our calculated results of quantity X [i.e., with consideration
the correlations exhibited in Eq. (2)] with “pred” superscript,
and the results of X given by theoretical models (such as the
HFB31 model and others adopted in this paper) with “th”
superscript. From Eq. (2), we readily have

X pred(N, Z ) = X th(N, Z ) + λDX (N ′, Z ′).

Specifically, we have

Mpred(N, Z ) = M th(N, Z ) + λMDM (N − 2, Z ) (3)

for neutron-rich nuclei, and

Mpred(N, Z ) = M th(N, Z ) + λMDM (N + 2, Z ) (4)

for proton-rich nuclei. Similarly, we have

Spred
n (N, Z ) = Sth

n (N, Z ) + λSDSn (N, Z + 2) (5)

for neutron-rich nuclei, and

Spred
p (N, Z ) = Sth

p (N, Z ) + λSDSp (N + 2, Z ) (6)

for proton-rich nuclei; and

Rpred(N, Z ) = Rth(N, Z ) + λRDR(N − 1, Z ) (7)

for neutron-rich nuclei, and

Rpred(N, Z ) = Rth(N, Z ) + λRDR(N + 1, Z ) (8)

for proton rich nuclei. We evaluate the RMSD deviations
of such calculated results from corresponding experimental
results, and denote the RMSD values without and with these
corrections of the above formulas by using σ and σ pred, re-
spectively. Such σ and σ pred are tabulated in Table I, where
one sees clearly the substantial improvements with consid-
ering the correlation of Eq. (2). We note that for the new
databases after our correction in Table I, the Pearson corre-
lation coefficient between D(N ± 2, Z ) and D(N, Z ) becomes
−0.03, 0.15, 0.23, and −0.10 for the HFB, DZ, RMF, and

WS4 + RBF models, respectively. It is noted that the correla-
tion is said to be strong, medium, weak, and null, respectively,
if the Pearson coefficient is 0.6–0.8, 0.4–0.6, 0.2–0.4, 0.0–0.2,
respectively. This means that either the correlation does not
exist or is very weak, after our corrections. In successive
extrapolation process, for those whose experimental data are
not accessible and thus relevant DM are unknown, we take
corresponding λD(1)

M as the surrogates of DM , where D(1)
M is

the DM used in the one-step-earlier extrapolation. We take
the AME2012 database [26] and the WS4 + RBF database
[5] to investigate how many successive extrapolations are
practically useful if DM is not available. We define �σ (k) =
σ − σ pred(k), where σ is the theoretical RMSD of a given
quantity calculated in Ref. [5] in comparison with experimen-
tal database of Ref. [25], and σ pred(k) is the RMSD value of
the same quantity predicted based on Ref. [5] but with cor-
rections introduced in this paper, in the kth step extrapolation.
�σ (k) represents the magnitude of our correction: �σM (k)
correspond to mass, �σSn (k) and �σSn (k) correspond to one-
neutron and one-proton separation energy, respectively, and
�σR(k) corresponds to nuclear charge radius. Without details
we note that, according to our numerical experiments, �σ (k)
decreases with k, and �σ (k) is very small for M, �σSn , and
�σSp with k � 8; for nuclear charge radius, the correction of
proton-rich nuclei is below 0.005 fm for with k � 10, and that
of neutron-rich nuclei is negligible for k � 8. Such pattern is
also seen in the Pearson correlation coefficients r of D values:
according to our numerical experiments, the values of r for
masses and one-nucleon separation energies decrease from
∼0.8 to ∼0.5 when k increases from 2 to 6, in contrast to
the r value for nuclear charge radius, for which r is reduced to
∼0.5 for k � 10. This sets the applicability of the correction
introduced in this paper.

Now let us investigate the predictive power of extrapolation
by using our approach. This is exemplified by numerical ex-
periments of extrapolations from the AME2012 database [26]
to the AME2020 database [25] for atomic masses and one-
nucleon separation energies, and from the CR2013 database
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TABLE II. The RMSD values of extrapolated results with the corrections introduced in this Letter (denoted by σ extra
X ) and without

the corrections (denoted by σX ). Here, types “P” and “N” means proton-rich and neutron-rich cases, respectively. We exclude a very few
“anomalies” of Hg isotopes which involve of the shape coexistence when we evaluate σ extra

R or those of which the number k of successive
extrapolations is larger than ten for nuclear charge radii. The RMSD values for Atomic masses and one-nucleon separation energies are in unit
of keV, and those for nuclear charge radii are in unit of fm.

model type σM σ extra
M σS σ extra

S σR σ extra
R

HFB31 N 601 465 516 476 0.021 0.016
HFB31 P 689 594 453 404 0.034 0.024
DZ N 730 459 255 179
DZ P 419 306 268 204
RMF N 1189 646 419 214 0.018 0.014
RMF P 5245 1256 984 350 0.025 0.014
WS4+RBF N 230 163 221 149
WS4+RBF P 260 220 283 224
RCHB N 0.020 0.017
RCHB P 0.030 0.010
WS∗ N 0.010 0.009
WS∗ P 0.017 0.010

[27] to the CR2021 database [28] for nuclear charge radii.
Our predicted atomic mass is obtained by using Eq. (3) or
(4), depending on the nucleus neutron-rich or proton-rich.
Corresponding to Eqs. (3) and (4), the statistical uncertainty
of our predicted atomic mass, denoted by dM equals

dpred
M (N, Z ) =

√
(σ pred )2 + λ2d2

exp(N − 2, Z ) (9)

for neutron-rich nuclei, and

dpred
M (N, Z ) =

√
(σ pred )2 + λ2d2

exp(N + 2, Z ), (10)

for proton-rich nuclei. Here, σ
pred
M is the RMSD of predicted

results with the correlation correction, and λ is the optimal
correlation coefficient in Eq. (2); dexp(N − 2, Z ) and dexp(N +
2, Z ) are uncertainties of experimental data of M(N − 2, Z )
and M(N + 2, Z ) in the AME2012 database [26]. The
statistical uncertainties of one-nucleon separation energies
and nuclear charge radii, dS and dR, are obtained in the same
way.

A comparison between our extrapolated results (those not
accessible in an earlier database, namely, here the AME2012
for atomic masses and one-nucleon separation energies, or
the CR2013 database, but accessible in the latest database,
namely, the AME2020 or the CR2021 database) by using
Eqs. (3)–(8), with respect to latest experimental data, is sum-
marized in Fig. 2. We tabulate the RMSD of these extrapolated
results, denoted by σ extra

X in Table II, with a comparison of the
RMSD for the same set of nuclei without the correction in
this paper, denoted by σX . From Fig. 2 and Table II, one sees
immediately that the extrapolated results with the corrections
introduced in this Letter are superior to those without these
corrections.

It is interesting to discuss the mechanism of our correction,
as the improvement in this paper is empirical. One plausible
reason for this correction is related to the treatment of pair-
ing effect in Ref. [5] (and other theoretical models taken in

this paper) might be not very sound, as the odd-even effect
of deviations between the theoretical database of Ref. [26]
and the AME2020 database is clearly seen [19], where an
empirical and global correction was assumed with the im-
provement of the agreement between theoretical results and
experimental data very modest (only ∼12 keV for atomic
masses, and ∼30 keV for one-nucleon separation energies).
In this paper the correction magnitude with local correlation
is superior (�σ ∼ 50 keV for atomic masses, and ∼100 keV
for one-nucleon-separation energies, refer to Table I) for the
WS4 + BRF model; the magnitude of improvement is even
larger for the RMF model, for which the improvement of
atomic masses is about 1 MeV, and 250 keV for one-nucleon
separation energies.

The predictive power of our simple correction encourages
us to present refined results of earlier models. Here, we start
from the WS4 + RBF model for atomic mass and one-nucleon
separation energy, and the WS∗ model for nuclear charge
radii. Our predicted results are presented as a supplemental
material of this Letter [29], where the steps of our suc-
cessive extrapolations are within k � 6 for atomic masses
and one-nucleon separation energies, and k � 9 for nuclear
charge radii.

To summarize, in this Letter we report an interesting
correlation of deviations between theoretical models and ex-
perimental databases, defined by DX (N, Z ) = X exp(N, Z ) −
X th(N, Z ), where X (N, Z ) corresponds to atomic mass,
one-nucleon separation energy, or nuclear charge radii.
Consideration such correlations with only one parameter
is found to improve substantially the consistency be-
tween theoretical calculations and experimental databases.
Therefore the correction reported in this Letter is very
suggestive to future studies for varieties of theoretical
models.

The predictive power of our corrections is demonstrated by
numerical experiments of extrapolation from earlier databases
to the latest databases. For the WS4 + RBF model, the RMSD
value of atomic masses with considering the correction in this
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FIG. 2. Comparison of our predicted atomic masses and one-nucleon separation energies (which are not accessible in the AME2012
database [26] but available in the AME2020 database [25]), and nuclear charge radii (which are not accessible in the CR2013 database [27] but
available in the latest 2021 version [28]), with latest databases, i.e., Refs. [25] and [28], versus neutron number N . Results with the corrections
introduced in this Letter are plotted in red and those without the corrections are in black. For nuclear charge radii, we exclude a very few
“anomalies” of Hg isotopes which involve of the shape coexistence.

Letter is reduced to about 100 keV; for the WS∗ model, the
RMSD value of nuclear charge radii is reduced to 0.008–0.010
fm (if a very few anomalies for Hg isotopes are excluded).
We enclose our predicted results of atomic masses and one-
nucleon separation energies based on the WS4 + RBF model
and the AME2020 database [25], and nuclear charge radii
based on the WS∗ model and the latest version of nu-

clear charge radii [28], as the Supplemental Material [29] of
this Letter.
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