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How to renormalize coupled cluster theory
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Coupled cluster theory is an attractive tool to solve the quantum many-body problem because its singles and
doubles (CCSD) approximation is computationally affordable and yields about 90% of the correlation energy.
Capturing the remaining 10%, e.g., via including triples, is numerically expensive. Here, we assume that short-
range three-body correlations dominate and—following Lepage (arXiv:nucl-th/9706029)—that their effects can
be included within CCSD by renormalizing the three-body contact interaction. We renormalize this contact in
190 and obtain systematically improved CCSD results for 240, 23*Ne, *“*3Ca, ®Ni, *°Zr, and '®Sn.
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Introduction. In the past two decades computations of
atomic nuclei based on Hamiltonians from effective field the-
ories of quantum chromodynamics have advanced from the
lightest nuclei to 2*®Pb [1-12]. This progress is based on ideas
and insights from effective field theory [13—15] and the renor-
malization group [16-18], and on computational solutions of
the nuclear many-body problem that are systematically im-
provable and scale polynomially with increasing mass number
[19-25].

Let us take coupled-cluster theory [21,26-37] as an ex-
ample. Here, one expresses the ground state as /) = e |¢),
where the reference |¢) is an A-fermion product state and
T=T1+T,+---+ Ty is a cluster operator consisting of
one-particle-one-hole (1p-1h) up to Ap-Ah excitations. Its
workhorse, the coupled cluster singles and doubles (CCSD)
approximation, truncates T = T; + T5 and provides us with an
attractive compromise between accuracy and computational
cost. In the Hartree-Fock basis, CCSD yields about 90% of
the correlation energy (i.e., the difference between the exact
energy and the expectation value (¢|H |¢) of the Hamiltonian
H in the reference), while costing an effort that scales as
A2u* for a single-particle basis consisting of A occupied and u
unoccupied orbitals.

The inclusion of triples excitations, i.e. T =Ty + T, + Tz,
typically yields about 98-99 % of the correlation energy,
and similar statements apply to quantum chemistry [38,39].
It is not well understood why triples account for about 10%
of the CCSD correlation energy [40], but size extensivity
makes this fraction essentially independent of mass number.
However, including triples excitations increases the cost to
A3, which is significant because A = O(10) to O(100)
and u > A.

To avoid this problem, several triples approximations have
been introduced over the years, see, e.g., Refs. [41-48]. These
approaches reduce the computing (and sometimes also stor-
age) demands by expressing the triples amplitudes in terms of
known quantities or by including only a subset of diagrams in
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their computation. They all aim at computing the energy gain
from triples excitations included in the wave function.

Here, we propose a different path that focuses on shift-
ing the effects of triples excitations from the wave function
to the Hamiltonian. This approach seems particularly attrac-
tive in nuclear physics where one deals with Hamiltonians
containing two- and three-nucleon interactions. These are
resolution-scale dependent [16,17,49-52], i.e., they depend on
an arbitrarily chosen dividing scale (i.e., the high-momentum
cutoff A) that separates resolved long-range physics from
unresolved (and unknown) short-range stuff. However, low-
energy observables are resolution-scale independent and the
change of the resolution (or renormalization) scale can be
viewed as a similarity transformation [17]. Such transforma-
tions shift physics from the Hamiltonian to the wave function
(and vice versa). We mention several examples. Lepage [1]
showed how the removal (“integrating out”) of short-range
physics involving momenta larger than a given cutoff A can
be compensated by renormalization using a short-range inter-
action of physical range 1/A or smaller. This is beautifully
demonstrated in similarity renormalization group transfor-
mations of light nuclei [50,53,54], in the resolution-scale
dependent interpretations of electron-nucleon scattering ex-
periments [55-61], and in the computation of the B decay
of '%Sn with interactions and two-body currents from chiral
effective field theory [62].

This motivates us to think about short-range correlations
in the coupled-cluster state |1/). The CCSD approximation in-
troduces two-body correlations, and this in particular includes
short-range two-body correlations. Thus, the CCSD wave
function is accurate when two particles come close to each
other, but still further apart than the distance 1/A. (Here, we
assume that the single-particle basis is sufficiently large and
exhibits an ultraviolet cutoff Ayy = A [63].) However, the
CCSD approximation becomes inaccurate if three (or more)
particles are close. The inclusion of triples excitations would
remedy this shortcoming. Lepage [1] taught us that one deals
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with this problem by adding a short-range three-body interac-
tion with a suitably chosen strength such that it renormalizes
CCSD. In other words, the CCSD approximation removes (or
excludes) short-range physics in the three-body sector from
the wave function. This then requires the renormalization of
the Hamiltonian via a short-range three-body potential.

To see this, we consider the coupled-cluster energy

E = (¢|6_T‘_T2_T3H6+T‘+T2+T3|¢)
= (ple 1T (e " HeM)e R g) 6]

in the singles, doubles, and triples approximation. Here, we
shifted the 75 correlations from the wave function to the
Hamiltonian. Let us now assume that the main effects of
triples 73 consist of short-ranged three-body correlations.
Then, following Ref. [1],

e BHe ~ H + V3. )

Here, V5 denotes a three-body contact. The relation (2) is not
an operator identity (the right-hand side is Hermitian, while
the left-hand side is not) but rather a low-energy (or long
wavelength) approximation.! Systematic corrections consist
of derivatives acting on the contact, see Ref. [1]. These enter
as subleading three-nucleon forces in chiral [65] and pion-less
effective field theories [66].

We present these arguments in more detail: Bedaque
et al. [67] presented scattering equations for three bosons,>
where the physics of the two-body subsystem was kept
renormalization-group invariant (by employing observables
such as the two-body scattering length or the two-body bound-
state energy). In those equations, a momentum cutoff for
the three-body Jacobi momentum (2p; — p; — p»)/3 enters,
and the variation of this momentum cutoff requires a three-
body contact for proper renormalization. Let us assume that
coupled-cluster theory is applied in a momentum-space basis,
and that one starts to reduce the cutoff in the triples excitations
only. Based on Refs. [67,68] a three-body contact must then be
adjusted to keep renormalization group invariance. Removing
the triples excitations entirely (i.e., lowering the cutoff to the
Fermi momentum) does not change this picture at leading
order. Our understanding of effective field theories and the
renormalization group also implies that higher precision (e.g.,
agreement with triples results also for excited states in the
nucleus considered for renormalization, or agreement with
triples results for ground states of other nuclei) can be ob-
tained by including higher-order three-body contacts [1]. In
what follows, we will limit ourselves to the leading contact.

We note here that the extension of Lepage’s argument
from two- to three-body systems becomes also clear when
using hyperspherical coordinates. Then, a three-body col-
lision is clearly short ranged as the hyper-radius becomes
small, and this physics—when integrated out by lacking wave
function correlations—must be included by renormalizing a

'For a formal renormalization of coupled-cluster theory in the
frame work of quantum field theory see, e.g., Ref. [64].

2This applies also to nucleons as three nucleons can be in an s-wave
state that is antisymmetric in spin and isospin.

TABLEI. Employed interactions are 1.8/2.0(EM) from Ref. [52]
(labelled as A) and ANNLOgo(394) from Ref. [71] (labelled as B).
Their renormalized versions only differ by the modified three-body
contact cg from the originals.

Interaction Name CE

A 1.8/2.0(EM) —0.12 [52]
A renorm. —0.0665

B ANNLOGo(394) —0.002 [71]
B renorm. 0.11

hyperspherical contact. This corresponds then to a three-body
contact in single-particle coordinates.

We see now why this renormalization is particularly attrac-
tive in nuclear physics. Here, a three-body contact already
appears at leading order in pion-less effective field theory
[68] and at a next-to-leading (next-to-next-to-leading) order
in chiral effective field with (without) delta isobars [13,69].
Thus, restricting the computational solution of the nuclear
many-body problem to CCSD simply requires one to renor-
malize the strength of that contact.

We note finally, that the lack of three-body forces in quan-
tum chemistry probably makes the proposed renormalization
scheme much less attractive in that field. Furthermore, three
electrons can not interact via a three-body contact and this
would require one to employ several contacts with quadratic
gradients [66] for the renormalization.

Renormalization of the three-body contact. We employ the
nuclear Hamiltonian

H =T + Vuny + Vi - 3

Here, T7;, denotes the intrinsic kinetic energy (i.e., the to-
tal kinetic energy minus that of the center of mass), Vyny
the nucleon-nucleon interaction, and Vyyy the three-nucleon
potential. The coupled-cluster computations start from the
Hartree-Fock basis, and the Hamiltonian is normal-ordered
with respect to the Hartree-Fock reference state. Following the
normal-ordered two-body approximation [7,70], we neglect
the residual three-body interaction.

We employ two interactions, namely, 1.8/2.0(EM) from
Ref. [52] (labelled as interaction A) and ANNLOGo(394)
from Ref. [71] (labelled as B). Interaction A has a cutoff of
1.8 and 2.0 fm~! in the two-body and three-body potential,
respectively, while interaction B has a cutoff of 394 MeV in all
potentials. Both interactions yield accurate binding energies
for medium-mass nuclei. We renormalize their three-body
contact ¢ in '°0, requiring that CCSD computations of the
ground-state energies with the renormalized interactions agree
(to four significant digits) with triples results using the original
interactions. For the triples computations we use A-CCSD(T)
[48] for interaction A and CCSDT-1 for interaction B (taken
from Ref. [71]). In our computations we use a model space
consisting of 15 harmonic oscillator shells with a frequency
hiw = 16 MeV. Table I shows the renormalized values of cg
and compares them with the original ones. The renormal-
ized values appear to be natural in size, see, e.g., Ref. [72].
The Hartree-Fock energy [73] for symmetric nuclear matter
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TABLE II. Binding energies (in MeV) for selected nuclei com-
puted with CCSD using the renormalized interactions and compared
to triples results [A-CCSD(T) for interaction A and CCSDT-1 for
interaction B] using the original interactions. Experimental values
are shown in the last column.

Interaction and method

A renorm. A B renorm. B
CCSD  A-CCSD(T) CCSD  CCSDT-1  Exp.
150 127.8 127.8 127.5 1275 127.62
%0 166 165 169 169 168.96
0Ca 346 347 341 346 342.05
Ca 420 419 419 420 416.00
8Nj 642 638 636 639 641.55
Nz¢ 798 795 777 782 783.90
1008y 842 836 816 818 825.30

is (V3) = —3Acpp?A/(16f*A ), where Acg is the change
in cg, p =0.16 fm ™3 the saturation density, f; = 92.4 MeV
the pion-decay constant, and A, = 700 MeV the spectral-
function regulator. This yields —0.32A and —0.66A MeV for
interactions A and B, respectively. These simple estimates are
about a factor 1.5 larger than what we find below.

We perform CCSD computations of other nuclei with the
properly renormalized interactions. Results are shown in Ta-
ble II. The CCSD results with the renormalized interactions
are very close to the triples results, with the largest deviation
(in *°Ca for interaction B) being less than 2%. This demon-
strates that triples indeed account mainly for short-ranged
three-body correlations, and that the proposed renormaliza-
tion is effective.

To check that improvements from the renormalization are
systematic, we take the triples values from Table II as bench-
marks and compute the absolute differences (with respect to
the benchmark) of the energy per particle for Hartree-Fock
and for CCSD using the original interactions A and B. We
also compute the absolute differences of the CCSD energy
per particle using the renormalized interactions. The results
are shown in Fig. 1 for interaction A (B) as full (hollow)
markers, using black circles and blue squares for Hartree-Fock
and CCSD, respectively, with the original interactions, and red
diamonds for CCSD with the renormalized interactions. For
the original interactions, CCSD gives an order-of-magnitude
improvement in accuracy over Hartree-Fock. The CCSD
computations with the renormalized interactions improve the
accuracy by another order of magnitude. This shows that the
renormalization indeed yields a systematic improvement. The
nucleus *°Ca is a bit an outlier for interaction B; however, the
improvement in accuracy is still about a factor of four also
here.

Two comments are in order. First, changing the renormal-
ized cg value about 5-10% does not reduce the systematic
improvement. Thus, cg is not finely tuned (and could prob-
ably be also renormalized in a nucleus different from '°Q).
Second, performing the renormalization in “He does not yield
accurate results for heavier nuclei, because triples corrections
in “He are much smaller than the usual 10% of the corre-
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FIG. 1. Absolute difference of energies per nucleon with respect
to triples benchmarks as a function of nucleon number for '2*Q,
40.98Ca, "8Ni, *Zr, and 'Sn using Hartree-Fock (HF, black circles)
and CCSD (blue squares) for the interactions A (full markers) and B
(hollow markers) and for CCSD computations with the renormalized
interactions (red diamonds) where the three-body contact has ¢z as
labeled.

lation energy obtained for heavier nuclei. The renormalized
interaction B yields a binding energy of 29.63 MeV for “He.
Alternatively, we used a three-body contact with a higher
cutoff of 450 MeV and strength ¢ = 0.0425 for the renor-
malization of interaction B in '°Q. This yields a binding
energy of 29.41 MeV for “He (we checked that heavier nu-
clei such as >*Q and *°Ca are unchanged). We speculate that
it might be possible to reproduce binding energies for “He
and '°0 by optimizing the cutoff of the three-body counter
term.

We found that essentially the whole triples contributions
to the binding energies using the original interactions become
part of the Hartree-Fock energies when using the renormalized
interactions, i.e. the energy contributions from CCSD using
the original or the renormalized interactions are virtually the
same. This is shown in Fig. 2 for both interactions.

Power counting. The approach via renormalization makes
it clear how one would further improve these results, i.e., bring
the CCSD calculations with renormalized interactions closer
to the triples benchmarks [1]: The subleading corrections con-
sist of 13 three-body contact terms with two derivatives [66].
This would require one to adjust as many low-energy coeffi-
cients to data, and such an approach is beyond the scope of this
work. Thus, renormalization offers us a way to systematically
improve the results. The key question then concerns the power
counting, i.e., by how much would one expect the subleading
corrections to get closer to the triples benchmark?

The proposed renormalization scheme must break down
when triples correlations are not dominantly short ranged. In
CCSD, the three-body hypermomentum k3 is small because
we lack short-ranged three-body correlations. A derivative
three-body contact yields k3 and we have k3 < kyyp, Where
kiyp 1s the typical momentum (which could be of the scale
of the Fermi momentum). The derivative’s contribution fails
to be small (compared to the leading three-body contact) if
k3 & kiyp, i.e., for low-density nucleons without short-range
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FIG. 2. Energy contributions from Hartree-Fock (HF), triples,
and CCSD to the binding energy per nucleon, B/A, of various nu-
clei, computed with the original interactions A and B (three stacked
left bars in pairs of columns) and compared with Hartree-Fock and
CCSD energies from the renormalized interactions (two stacked right
bars in pairs of columns). For each nucleus the left and right pairs of
columns show the results for the interaction A and B, respectively.

three-body correlations. We therefore propose that the power
counting is in the ratio k3/kqyp. This ratio must be small for
nuclei, because the leading contact recovers so much of the
triples benchmarks.

The arguments proposed below would entail that the renor-
malization is less effective in low-density matter and dripline
nuclei. Using the renormalized interaction B, we also com-
puted neutron-rich neon isotopes and compared with the
triples results [74] of the original interaction. The calcula-
tions are based on an axially-symmetric Hartree-Fock state
and lack angular momentum projection. The results, shown
in Fig. 3, demonstrate that the renormalization significantly
and systematically improves the ground-state energies. For
the most neutron-rich isotopes, though, the accuracy is “only”
improved by a factor of about four. These reduced gains are
consistent with the arguments made for the power counting.
We see that the proposed renormalization is also useful for
open-shell nuclei.

We also computed the charge radius of 2°Ne and found
that the renormalized interaction yields about 1.8% less than
the original one [74]. This is consistent in size with what
is found for the renormalization group evolution of long-
ranged operators [75]. In contrast, magnetic moments and the
Gamow-Teller operator also contain significant short-range
contributions and the proposed renormalization would also
affect the corresponding one- and two-body currents [62,76].

We finally turn to symmetric nuclear matter and perform
the computations following Refs. [71,77], taking CCD(T) as
the benchmark. The calculations use A = 132 nucleons on
a momentum-space lattice (with ny,,x = 4) corresponding to
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FIG. 3. Absolute difference of energies per nucleon with respect
to CCSDT-1 as a function of nucleon number for 2**Ne nuclei
using Hartree-Fock (HF, black circles) and CCSD (blue squares) for
the interaction B and for CCSD computations with the renormalized
interaction where the three-body contact has been renormalized with
cg = 0.11 (red diamonds).

periodic boundary conditions in position space. We checked
that CCSDT-1 benchmarks are close to the less expensive
CCD(T) for A = 28. Figure 4 shows the absolute difference to
the triples benchmark of the energy per nucleon as a function
of the density p for Hartree-Fock and CCD with the interac-
tion B, and for CCD with the renormalized interaction B. We
see that CCD with the interaction renormalized in '°Q is very
accurate around saturation density. We note that the energy
difference changes sign there. Inspection also shows that the
Hartree-Fock energy for the renormalized interaction differs
from that of the original one by a contribution proportional
to p’. This explains the trend seen for neutron-rich neon
nuclei. Figure 4 also shows that the renormalization breaks
down at low densities (p ~ 0.06 fm™>) and high densities
(p ~ 0.24fm™3).

-
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FIG. 4. Absolute difference of energies per nucleon with respect
to CCD(T) as a function of density using Hartree-Fock (HF, black
circles) and CCD (blue squares) for the interaction B and for CCD
computations with the renormalized interaction where the three-body
contact has been renormalized with ¢z = 0.11 (red diamonds).
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Discussion and summary. We have seen that the extensive
energy contributions from nuclear three-nucleon correlations
can be captured in CCSD via a renormalization of the three-
body contact. Our results are based on (and consistent with)
the assumption that three-nucleon correlations are dominantly
short ranged. This suggests that arguments about the uni-
versality of short-range two-body correlations [57,60,61,63]
extend to three-nucleon correlations.

While we focused on the coupled-cluster theory, this
method is closely related to the in-medium similarity renor-
malization group (IMSRG) [18,24,25], Green’s function
approaches [19], and Gorkov methods [23]. Including three-
body correlations in the IMSRG [78] or in the trial wave
function of variational Monte Carlo is also a challenging task
[79,80]. This suggests that the renormalization proposed in
this paper could also be useful for these methods.

This paper also explains why triples correlations play a
smaller role in neutron matter [77] than in nuclear matter:
the Pauli principle prevents short-ranged three-neutron cor-
relations, and the leading renormalization comes from terms
where two derivatives act on a three-body contact. This would
require one to adjust several contact terms with derivatives,
thus making the proposed renormalization more complicated.

The proposed renormalization does not remove three-body
correlations but rather compensates for the lack of three-body
correlations in the employed computational method. Thus, the
renormalized Hamiltonian must not be solved with triples cor-
relations included. This is similar to nuclear density functional
theory where uncorrelated densities must be used. One might
consider to take the proposed renormalization to its extreme:
Hartree-Fock computations also exclude two-body correla-
tions. This suggests to employ Hamiltonians from effective
field theories with properly renormalized two- and three-body
contacts [81-84].

The proposed renormalization scheme significantly low-
ers the computational cost for nuclear binding energies and
thereby puts Hamiltonian-based mass table computations of
atomic nuclei [85] in closer reach of various ab initio meth-
ods. It also links correlations in many-body systems to the
renormalization group and thereby offers new ways to think
about their role.
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