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Implications of the isobar-run results for the chiral magnetic effect in heavy-ion collisions
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The chiral magnetic effect (CME) is a macroscopic transport phenomenon induced by a quantum anomaly
in the presence of chiral imbalance and an external magnetic field. Relativistic heavy ion collisions provide
the unique opportunity to look for CME in a non-Abelian plasma, where the chiral imbalance is created by
topological transitions similar to those occurring in the early universe. The isobar run at Relativistic Heavy
Ion Collider was proposed as a way to separate the possible CME signal driven by magnetic field from the
background. The first blind analysis results from this important experiment were recently released by the STAR
Collaboration. Under the pre-defined assumption of identical background in RuRu and ZrZr, the results are
inconsistent with the presence of CME, as well as with all existing theoretical models (whether including CME or
not). However the observed difference of backgrounds must be taken into account before any physical conclusion
is drawn. In this paper, we show that once the observed difference in hadron multiplicity and collective flow are
quantitatively taken into account, the STAR results could be consistent with a finite CME signal contribution of
about (6.8 ± 2.6)%.
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Introduction. The chiral magnetic effect (CME) is a macro-
scopic transport phenomenon induced by a quantum anomaly
in chiral matter. In the presence of an external magnetic field
B and a chiral imbalance, the CME amounts to the generation
of an electric current J along B:

J = σ5B, (1)

where σ5 is the chiral magnetic conductivity that is pro-
portional to the chiral chemical potential parametrizing
the chirality imbalance between the left- and right-handed
chiral fermions [1–3]. The CME has an impact on the
physics of high-density QCD matter [1–6], condensed mat-
ter physics [7–11], astrophysics [12–14], cosmology [15–17],
plasma physics [18–20], and quantum information [21,22];
for reviews, see, e.g., [23–31].

Relativistic heavy ion collisions provide a unique oppor-
tunity to create and study a quark-gluon plasma (QGP) at
a temperature of over a trillion degrees. In QGP, the fluctu-
ations of quark chirality imbalance are generated through the
topological fluctuations of gluon fields. Moreover, the QGP
produced in heavy ion collisions experiences an extremely
strong magnetic field [2] created mostly by the fast-moving
spectator protons. Thus the CME is expected to occur in the
produced QGP [1], and may lead to a detectable signal in these
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collisions [32]. The observation of CME in heavy ion colli-
sions would establish the presence of topological fluctuations
in a non-Abelian plasma, which represent a crucial ingredient
of the baryon asymmetry generation in the early universe.

Extensive experimental efforts have been made by STAR,
ALICE, and CMS Collaborations to look for CME in col-
lisions at both the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [33–37]; see re-
views [38–40]. The search has proved to be challenging
due to a relatively small signal masked by a strong back-
ground contamination [32,41–44]; see, e.g., discussions
in [38–40,45–47].

To disentangle the signal driven by magnetic field (in addi-
tion to topological fluctuations) and the background driven by
the collective flow determined by the collision geometry, it has
been proposed to perform a measurement of CME observables
in RuRu and ZrZr isobar collisions [48,49]. The motivation
for this measurement was that the similar size and shape of the
colliding nuclei would lead to a nearly identical background,
whereas the difference in electric charge of Ru and Zr nuclei
would result in a difference in the created magnetic field, and
thus in a difference in the observed CME signal.

In 2018 the STAR Collaboration performed the corre-
sponding measurements at RHIC. A careful blind analysis was
carried out subsequently [50], with the first set of data released
in September 2021 [51]. STAR results are inconsistent with
the “predefined” criteria for the CME, i.e., the criteria based
on the assumption that the backgrounds in RuRu and ZrZr
collisions are identical. Namely, the ratios of the CME observ-
ables measured in RuRu and ZrZr collisions are smaller than
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1, whereas a stronger magnetic field in RuRu system would
apparently make this ratio bigger than 1 in the presence of
CME. The problem with this result, however, is that if the
CME is absent, the ratios of these observables would have
to be equal to 1, and not be smaller than 1. Indeed, none of
the theory models predicted the ratio smaller than 1, so this
experimental result begs for an explanation.

The examination of STAR data [51] shows the key to
understanding this puzzle is the observed difference between
the gross properties of hadron production in RuRu and ZrZr
collisions that stem from the difference in the shape and size
of Ru and Zr nuclei. This observed difference in the mul-
tiplicity distributions and the collective flow invalidates the
“predefined” criteria for the presence of CME, and clearly
indicates the need for a post-blinding reanalysis of STAR
data. Only after such an analysis is performed will one be
able to draw conclusions about the presence or absence of
CME in the data. In this Letter, we address this issue by
combining insights from theoretical simulations based on
the event-by-event anomalous-viscous fluid dynamics (EBE-
AVFD) framework [52–56] with the analysis of STAR data.
Correlation observables. In heavy ion collisions, the CME
leads to a charge separation along the magnetic field which is
approximately perpendicular to the reaction plane [57]. Such
a charge separation can be measured via charge-dependent
azimuthal correlations [32–34], with the most commonly used
�γ and �δ observables defined as

�γ ≡ [cos(φ1 + φ2 − 2�2)]OS−SS, (2)

�δ ≡ [cos(φ1 − φ2)]OS−SS. (3)

Above, φ1,2 are azimuthal angles of the charged hadron pairs
while �2 is the event-plane angle. The “OS − SS” means the
difference between the opposite-sign hadron pairs (i.e., the
pairs of hadrons with opposite electric charges) and same-
sign pairs. Other observables have also been developed and
used for experimental analysis [46,51], such as �γ compar-
ison between reaction and event plane [58,59], �γ invariant
mass dependence [60], R correlator [61], signed balance func-
tion [62], event-shape engineering [36,63], and others.

The CME signal induces the parity-odd harmonic in the
azimuthal angle distribution of charged hadrons [1]:

dN±
dφ

∼ 1 ± 2a1 sin(φ − �2) + · · · .

Therefore it contributes to the above observables as �γcme =
+2a2

1 and �δcme = −2a2
1, which are thus proportional to the

square of the magnetic field strength.
The main challenge in the experimental search of CME

is the background correlations that dominate the observables.
The identified backgrounds are local charge conservation at
hydrodynamic freeze-out and resonance decays. Their con-
tributions to the observables scale approximately as �γbkg ∝
+ v2

Nch
and �δbkg ∝ + 1

Nch
, where Nch is the charged particle

multiplicity and v2 is the elliptic flow coefficient. One may
also consider the observable �γ̄ ≡ �γ/v2 for which �γ̄bkg ∝
+ 1

Nch
. Such scaling behaviors were found to approximately

hold in model simulations. For more detailed discussions on
signals and backgrounds see, e.g., [46].

The isobar collision experiment in principle allows one
to separate the signal and background contributions. In the
idealized scenario, the two systems would be identical in
their bulk properties (such as multiplicity and collective flow),
which would result in the identical background contributions
to the �γ and �δ correlators. Therefore in the case of pure
background, with no CME present, the measured isobar ratios
would be �γ Ru/�γ Zr = 1 and �δRu/�δZr = 1. The case of
a finite CME contribution would imply �γ Ru/�γ Zr > 1 and
�δRu/�δZr < 1. These are the “predefined criteria” used in
the STAR blind analysis [50,51]. However, as clearly shown
by the STAR data, the bulk properties of hadrons produced
in the two isobar systems are not identical. For example, in
the same centrality class, the hadron multiplicities differ at
a few percent level; this difference is extremely important in
the search for the ≈1% CME effect. This situation requires
a more careful isobar comparison with a proper baseline
identification.

Isobar multiplicity comparison. As discussed above, the
event multiplicity plays a key role in the background corre-
lations and it is important to first examine the multiplicity
difference between the two isobar pairs. While the Ru and
Zr nuclei have an equal number of nucleons, the geometric
distributions of protons and neutrons within these nuclei have
a non-negligible difference [66–68]. This difference translates
into the difference in the initial conditions (e.g., the partici-
pant and the binary collision densities), which in turn affects
the subsequent bulk evolution and leads to the observed
discrepancy in multiplicity.

First, we will show that by adopting suitable parameters
(like charge radius, neuron skin, and harmonic deformation
coefficients) for Ru and Zr nuclear distributions, one can
reasonably reproduce the observed multiplicity difference. In
Fig. 1 (upper panel), we show the ratio for the multiplicity
distribution P(Nch) between RuRu and ZrZr from simulations
with several choices for the nuclear parameters [51,64,65].
The STAR data are also shown for comparison, along with
vertical bars indicating centrality class definition by STAR
analysis. The simulation results compare well with data for
the (20–50)% centrality class which will be the focus of our
analysis. Considerable deviations occur in the very central and
peripheral regions where fluctuations and uncertainties of both
simulations and data become large. In Fig. 1 (lower panel)
for the ratio of average multiplicity between RuRu and ZrZr
in the same centrality class as defined by the STAR analy-
sis, one sees nice agreement between simulation results and
experimental data. With such multiplicity difference quantita-
tively accounted for, one can expect the simulations to provide
useful and realistic baseline resulting from the background
correlations. Understanding the measured correlations. Given
the isobar multiplicity difference, a reasonable way to com-
pare the correlators is to take into account the expected scaling
behavior of background correlations by examining the follow-
ing rescaled correlators: Nch × �γ/v2 and Nch × �δ. Using
STAR data from [51,69], we plot these re-scaled observables
for RuRu and ZrZr in Fig. 2 (upper panels) as well as the
RuRu/ZrZr ratios (lower panels).

Let us discuss the RuRu/ZrZr ratios shown in the lower
panels of Fig. 2. If the background correlations were to
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FIG. 1. The ratios of the multiplicity distribution P(Nch ) (upper
panel) and of the average multiplicity in the same centrality class
measured in RuRu and ZrZr collisions as defined by the STAR anal-
ysis (lower panel). The orange, grey, and green curves are simulation
results taking initial nucleon distributions in the colliding nuclei to
be deformed [64] and spherical [51] Woods-Saxon distributions and
density functional theory calculation [65], respectively. In the upper
panel, red (blue) vertical bars indicate centrality class definition by
STAR analysis for RuRu (ZrZr) collisions.

scale exactly as v2/Nch, then the pure-background baseline
for both Nch × �γ/v2 and Nch × �δ ratios would be unity.
(As a caveat, the nonflow effect has the potential of shift-
ing this ratio at about the 1% level and requires careful
scrutiny [70].) A nonzero CME contribution on top of the
baseline would then lead to Rγ ≡ [Nch × �γ/v2]RuRu/ZrZr > 1
and Rδ ≡ [Nch × �δ]RuRu/ZrZr < 1. As one can see from Fig. 2,
the ratio for the scaled γ correlator is around unity for very
central collisions and gradually increases to a value well above
one towards the relatively more peripheral region.

This trend is consistent with a nonzero CME contribution
that should increase with growing magnetic field strength

from central to peripheral collisions. On the other hand, the
ratio for the scaled δ correlator also increases from unity in
very central collisions to be above unity in more peripheral
collisions, while a nonzero CME contribution would have
decreased this ratio to be below unity. This apparent “incon-
sistency” between the γ and δ trends requires a closer scrutiny
of the background behavior.

To resolve this issue, we have used our (20–50)% sim-
ulation events in the pure background case to verify the
assumption about the 1/Nch background scaling. It turns out
that the scaling is not exact and a non-negligible additional
dependence on the average transverse momentum 〈pT 〉 can be
identified, especially in the δ correlator. The physical origin
of this effect is due to the initial fluctuations that could induce
a spread of radial flow “push” and thus a spread of 〈pT 〉 even
for events with similar multiplicity. Stronger radial flow (i.e.,
larger 〈pT 〉) would lead to a stronger angular collimation of
correlated charged hadron pairs, and thus to the enhancement
of background correlations [42].

To demonstrate the impact of this effect on the δ and γ

correlators, we bin the (20–50)% simulation events based on
〈pT 〉 and compute the corresponding correlators in each bin.
The results, plotted in Fig. 3, clearly show a linear increase
of Nch × �δ with 〈pT 〉. The Nch × �γ/v2, on the other hand,
appears to be relatively insensitive to the 〈pT 〉. We also note
that hydrodynamic simulations performed in [71] and in our
calculations demonstrate that the RuRu events have a larger
〈pT 〉 than ZrZr events in the same centrality class.

Our findings suggest that while unity is a suitable baseline
ratio of the Nch × �γ/v2 correlator, flow-induced correc-
tions need to be taken into account for the baseline ratio of
Nch × �δ. Since the RuRu system has a larger multiplicity
than ZrZr system in the same centrality class, the scaled δ

correlator would have a relative enhancement in the RuRu
system due to a slightly larger radial flow “push.” To quantify
this correction, we have evaluated the baseline ratio from pure
background case to be 1.033 by using the (20–50)% AVFD
simulation events for the isobar pairs. In short, our analysis
of the baseline ratios can be summarized as Rbaseline

γ = 1 and
Rbaseline

δ = 1.033 for (20–50)% collisions, shown as blue lines
in Fig. 2 (lower panels). Comparing with the corresponding
STAR data, RSTAR

γ = 1.011 > Rbaseline
γ and RSTAR

δ = 1.028 <

Rbaseline
δ , shown as red bands in Fig. 2 (lower panels), we

conclude that both the scaled γ and δ correlators are consistent
with a nonzero CME contribution.

Extracting CME signal fraction. Given the indication of a
nonzero CME signal from our analysis above, we now make
an attempt to extract the CME signal fraction from both the
γ and δ correlators based on the available information for
(20–50)% centrality from the STAR data as well as from the
simulation results.

Let us first examine the �γ̄ correlator. Assuming that the
CME signal fraction is fs, we split the correlator measured in
RuRu collisions into a signal and background contributions as
follows:

�γ̄ Ru
s = fs�γ̄ Ru, (4)

�γ̄ Ru
b = (1 − fs)�γ̄ Ru, (5)
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FIG. 2. Comparison between RuRu and ZrZr measurements for scaled correlators Nch × �γ/v2 (left) and Nch × �δ (right), with the lower
panels showing the RuRu to ZrZr ratios. The STAR data are taken from [51,69]. In the lower panels, the red shaded bands indicate measured
values with error bars for (20–50)% while the blue lines indicate the baselines from the present simulation analysis.

where the subscripts s and b denote the signal and background
components, respectively. Since the ZrZr collisions are ex-
pected to possess a weaker magnetic field, and thus relatively

FIG. 3. The dependence of scaled γ (upper) and δ (lower) corre-
lators from pure background contributions on the average transverse
momentum 〈pT 〉 from simulations for (20–50)% centrality.

smaller signal and larger background, we then rescale these
quantities from RuRu to ZrZr collisions as follows:

�γ̄ Zr
s = (1 − λs)�γ̄ Ru

s = (1 − λs) fs�γ̄ Ru, (6)

�γ̄ Zr
b = (1 + λb)�γ̄ Ru

b = (1 + λb)(1 − fs)�γ̄ Ru. (7)

Therefore, the total �γ̄ correlator for ZrZr is:

�γ̄ Zr = �γ̄ Ru × [(1 − λs) fs + (1 + λb)(1 − fs)]

= �γ̄ Ru[1 + λb − (λs + λb) fs], (8)

which means the �γ̄ ratio between the isobars is

R = �γ̄ Ru

�γ̄ Zr
= 1

1 + λb − (λs + λb) fs
. (9)

Let us rewrite the ratio as R ≡ 1
1+λR

(or equivalently
λR = 1/R − 1) and then we can express the fs as

fs = λb − λR

λs + λb
. (10)

Under the naïve assumption of identical backgrounds in RuRu
and ZrZr systems, as used in the STAR predefined criteria, the
pure background case would correspond to λb = λR = fs = 0,
while a nonzero signal would correspond to λb = 0, λR < 0
and fs > 0. This assumption is, however, invalidated by the
data, as already discussed above.

The estimates based on experimental data and simula-
tions suggest instead the following values: (a) R � 0.9641 ±
0.0037 or λR � +(0.0372 ± 0.0040) directly from measure-
ments; (b) λb, dominated by the multiplicity difference, is
estimated according to the ratio of 〈N−1〉 and λb � +0.0508;
(c) The isobar signal ratio is dictated by the magnetic fields,
for which the ratio is determined from simulations to be
λs � +(0.15 ± 0.05) [66]. See Supplemental Material [72]
for details of how these values are obtained or estimated.
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FIG. 4. An illustration of the comparison between isobar systems
for the measured γ̄ correlators, with signal and background compo-
nents indicated as black and green bars. The lengths of the bars are
not plotted in exact proportion and the signal parts are graphically
magnified for visibility. See text for details.

Putting these inputs together, one arrives at the following
estimate for the CME signal fraction in the measured �γ̄

correlator:

fs � +(0.068 ± 0.026) = (6.8 ± 2.6)%. (11)

We note that this value is consistent with the isobar anal-
ysis results from the event-plane/spectator-plane contrast
method [51]. To make the outcome of this analysis more
transparent, we illustrate it in Fig. 4.

Summary. To summarize, we have combined the insights
from theoretical simulations with the analysis of STAR ex-
perimental data to understand the implications of isobar
collisions for the chiral magnetic effect. First, we have shown
that the measured multiplicity difference between the RuRu
and ZrZr systems, which plays a key role for establishing
the background baseline, can be successfully described by
simulations with suitable initial nuclear structure inputs. Fur-
thermore, we have identified the radial flow “push” as an
important contributor to background correlations, in addition
to the multiplicity and elliptic flow. Quantitatively accounting
for these two effects on the backgrounds has allowed us a
calibration of the appropriate baselines for both the scaled
γ and δ correlators. Compared with the experimental data,
we conclude that the correlation measurements could be con-
sistent with a finite CME signal contribution, estimated at a
level of about (6.8 ± 2.6)% fraction, as illustrated in Fig. 4.
Such a fraction is obtained by assuming that the non-CME
background of �γ̄ is inversely proportional to multiplicity.
There is however nonflow effect [70] that could make nontriv-
ial contributions to background ratio, the influence of which

clearly deserves future investigations (see Supplemental Ma-
terial [72] for more discussions).

Let us discuss possible future measurements that can fur-
ther help to establish or rule out the presence of CME signal
in heavy ion collisions. Given that the radial flow push is
found to impact the calibration of backgrounds, it would be
very useful to measure and compare the average transverse
momentum of charged particles between the isobar systems.
Another useful approach for the isobar comparison is to apply
identical event selection criteria for multiplicity, v2, and 〈pT 〉
and then compare the subset of isobar events that are ensured
to have identical background correlations [52,66]. Both the
participant-plane/spectator-plane contrast method [58,59] and
the event-shape engineering approach [73] have the potential
of maximizing the signal/background contrast, extracting the
signal fraction and allowing a verification of expected signal
scaling between isobar pairs. Beyond the γ and δ correlators,
it would be interesting to understand the background scaling
and their implications for the interpretation of isobar com-
parison in, e.g., the R correlator [74] as well as the signed
balance function [62]. Finally, it is of great importance to
achieve a coherent understanding of both isobar and AuAu
systems [75]. Recent STAR measurements in AuAu colli-
sions based on the participant-plane/spectator-plane contrast
method, while suffering from a limited statistics, do suggest
a nonzero CME fraction of (6.3–14.7)% [76]. Future high
precision measurements based on the anticipated large sam-
ple of AuAu events together with the ongoing post-blinding
analysis of the extensive isobar data set will hopefully allow
us to improve the statistical significance of these results and
to make a conclusive statement on the presence or absence of
CME in heavy ion collisions.
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