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Chiral anomaly implies the existence of nondissipative transport phenomena, such as the chiral magnetic
effect. At second order in the derivative expansion, novel quantum transport phenomena emerge. In this paper,
we focus on the anomalous transport driven by a combination of shear, vorticity, and magnetic field. We find
that the corresponding transport phenomena—shear-induced chiral magnetic and chiral vortical effects—induce
characteristic charge correlations among the hadrons produced in heavy ion collisions. We propose the charge
asymmetry of triangular flow as a signature of the anomalous transport, and estimate the strength of the signal,
as well as the background, using hydrodynamical model simulations. We find that the signal-to-background ratio
for the proposed observable is favorable for experimental detection.
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Introduction. The chiral anomaly links the short distance
behavior of chiral fermions in quantum field theory to the
macroscopic properties of the gauge fields that can possess
nontrivial topology. As a result, new kinds of transport phe-
nomena emerge in systems possessing chiral fermions in
the presence of magnetic field or vorticity, see [1–6] for
reviews. The most studied phenomena of this type are the
chiral magnetic effect (CME) [7–9] and the chiral vortical
effect (CVE) [10,11] that describe nondissipative transport of
electric charge along the axis of magnetic field or vorticity
in the presence of chirality imbalance. In addition, at finite
vector charge density (e.g., at a finite baryon number density),
quantum anomalies induce the axial current in response to
both magnetic field and vorticity [12–14]. The vector and axial
currents are coupled by the chiral anomaly, which leads to the
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emergence of a novel collective excitation, the chiral magnetic
wave [15].

The generation of axial current may be related [16–18] to
the recently observed polarization of � hyperons in heavy
ion collisions at the BNL Relativistic Heavy Ion Collider
(RHIC) [19]. In particular, the measurement of the second
order harmonic in the azimuthal angle dependence of longi-
tudinal (along the beam axis) � polarization [20,21] points
towards a substantial role of the shear-induced mechanism
of polarization [22,23]. This raises a question of whether the
chiral anomaly may induce a higher harmonic in the azimuthal
distribution of electric charge.

Indeed, such effects were predicted to arise at the sec-
ond order in the gradient expansion in hydrodynamics as a
consequence of chiral anomaly [24]. Specifically, the electric
current was predicted to possess contributions from shear in
the presence of vorticity and magnetic field, and a contribution
from the combination of vorticity and magnetic field. The
corresponding transport coefficients are proportional to the
chiral chemical potential, just like for the CME and CVE, so
these effects can be considered as the second-order analogs of
CME and CVE. These effects were studied using the effective
field theory methods in [25].

Second order anomalous transport coefficients. The CME
and CVE are of first order in the hydrodynamic gradient
expansion, and the corresponding transport coefficients can be
derived in the framework of hydrodynamics by imposing the
non-negativity of entropy production [26]. At second order,
there appear additional transport coefficients that have been
classified in Ref. [24]. The relations between these transport
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FIG. 1. The tilting of vorticity in a shear flow. In the presence of
a shear flow σ xy (the fluid velocity u is along x with ∂ux/∂y �= 0), the
vortex immersed in the flow and originally pointing in the direction
ω ∼ y gets tilted and points in the direction ω′, thus acquiring a
component along x.

coefficients have been derived from the absence of entropy
production that stems from the time reversal invariance [24].

In this paper we will focus on the contributions to electric
current that arise from the combination of shear and vorticity
or magnetic field [24]:

jμ(2) = ξ1σ
μνων + ξ2QσμνBν, (1)

where σμν = 1
2 (∂μ

⊥uν + ∂ν
⊥uμ) is the transverse shear tensor

(uμ is the fluid velocity and ∂
μ

⊥ is the gradient perpendicular to
uμ), ωμ = 1

2εμναβuν∂αuβ is vorticity, and Bμ is magnetic field.
We will refer to the first term in Eq. (1) as the shear-induced
chiral vortical effect (siCVE), and to the second term as the
shear-induced chiral magnetic effect (siCME).1

What is the microscopic origin of the phenomena encoded
in Eq. (1)? It is well known that the anomaly relation, and thus
the expression for the CME current

j = e2

2π2
μ5B, (2)

are exact at the operator level. Nevertheless, when the expec-
tation value of this operator relation is taken over a physical
state, there may well appear corrections arising from the
renormalization of operator quantities that enter Eq. (2), see,
e.g., [27] and discussion in [28]. In particular, the magnetic
field in the medium can be renormalized by interactions.
Moreover, if the shear (and/or vorticity) are present in the
medium, they can rotate the orientation of an effective mag-
netic field by generating a component of the field in the
direction perpendicular to initial B.

To illustrate this argument, let us consider a vortex im-
mersed in the flow and aligned initially along the axis y, with
ω ∼ ŷ. The shear flow with σ xy ∼ ωz will rotate the axis of the
vortex in the (x, y) plane, creating a component of an effective
vorticity along the axis x, see Fig. 1. This “tilting” of vorticity
in shear flows has been extensively studied in hydrodynamics,

1This effect, introduced in [24], is referred to as shear-induced Hall
effect in Ref. [25].

see [29] and references therein. Perhaps the most spectacular
manifestation of vorticity tilting in nature is the emergence of
tornadoes in “supercell” thunderstorms, see [30] for a review.

The “conventional” first order chiral vortical effect will
then create the current along the x axis. Therefore, the second
order anomalous transport phenomenon can be understood in
terms of the modification of vorticity (or magnetic field) by
the back-reaction of the medium.

The values of the second-order transport coefficients ξi

had been evaluated at strong and weak coupling through
holography and chiral kinetic theory, respectively. These com-
putations will be briefly summarized below. One can also
write down the general Kubo relations for these coefficients
that will be described below as well.

Transport coefficients at strong coupling. The value of
ξ1 has been computed by holographic methods in N = 4
supersymmetric Yang-Mills (SYM) theory [11]. Although
the conformal N = 4 SYM and quantum chromodynamics
(QCD) are clearly not the same theories, we may estimate ξ1

for QCD basing on the N = 4 SYM result. We thus get

ξ1 = − NF Nc√
3π3

μAμ

T
(strong coupling), (3)

where μ and μA are the chemical potentials of the vector and
axial charges, respectively. For numerical estimates we will
assume that the number of light quark flavors NF = 3.

Considering parity and charge conjugation symmetries, ξ2

is proportional to μA only, and we estimate

ξ2 = − NF Nc√
3π3

μA

T
(strong coupling). (4)

It is interesting to note that these transport coefficients
are the result of interplay between chiral anomaly and the
dissipative dynamics of the plasma represented by shear vis-
cosity and conductivity. This physics seems to be unique
for these transport terms, among other possible second order
terms. This feature will be important in our computation of
these transport coefficients in weakly coupled regime, and
also in the derivation of Kubo relations based on the Zubarev
approach.

Weakly coupled regime: The chiral kinetic theory. To
demonstrate the universal nature of the discussed phe-
nomenon, let us now discuss how it emerges at weak coupling.
For this purpose we will present a derivation of shear-induced
anomalous transport using the chiral kinetic theory (CKT)
[31–33].

Using the covariant fermion Wigner function

Wab(x, p) =
∫

d4y e
−i
h̄ p·y 〈ψ̄b(x)ey·←−∇ e−y·∇ψa(x)〉, (5)

where ∇μψ = (∂μ + i Q Aμ/h̄)ψ , we can express the vector

current in the form jμ = ∫ d4 p
(2π )4 Tr[γ μW (x, p)].

Dirac equation for charged massless fermions in a constant
electromagnetic field leads to the following equation for the
Wigner function:

γ μ

(
pμ + ih̄

2
�μ

)
W (x, p) = 0, (6)
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where �μ = ∂μ − Q Fμλ∂
λ
p ; we regard the electromagnetic

field Fμν as the first order quantity in the derivative expansion.
We are interested in the vector current that represents the

sum of right-handed and left-handed chiral currents: jμ =
jμ+ + jμ−. The right- and left-handed currents of charge Q
fermions with (dual) electromagnetic field F̃μν are given in
CKT by

j±μ =
∫

d4 p

(2π )4
[4πδ(p2)pμ f ± + J̃ ±

μ + ˜̃J ±
μ ] (7)

with

J̃ ±
μ ≡ 4π h̄δ(p2)

{
∓ Q

p2
F̃μσ pσ f ± ± �n

μρ�
ρ f ±

}
,

˜̃J ±
μ ≡ ∓pμ

1

p2

h̄

2pn
εαβρσ pαnβ�ρJ̃ σ

±

± h̄

2pn
εμνρσ nν�ρJ̃ σ

± , (8)

where f ± is the distribution function for right(left)-handed
particles, �μν

n ≡ εμνρσ pρnσ /(2pn) is a spin tensor for chiral
fermions, and nμ is a unit time-like frame that satisfies n2 = 1.
The second-order expressions for the current have also been
derived, both for the case of background electromagnetic field
[34] and for a curved space-time in Ref. [35].

According to the analysis [24], the shear-induced second
order terms are given by Eq. (1). We find that such terms do
not arise from ˜̃J ±

μ . This is consistent with the qualitative anal-
ysis given above that indicates that these shear-induced terms
originate from the medium modifications of the distribution
function. We will see below that once these modifications are
taken into account in the first order distribution function f ±

(1),

the shear-induced current indeed emerges from J̃ ±
μ .

We assume, as usual, that the distribution function depends
on the linear combination of quantities that are collisionally
conserved at local equilibrium, so that the detailed balance
condition can be satisfied. For the case of Fermi-Dirac distri-
bution we thus obtain [36]

f ±
eq = [e(p·β∓ h̄

2 �
αβ
n γαβ−α± ) + 1]−1, (9)

where α± = μ±/T and βμ = uμ/T are, respectively, the
temperature-scaled chemical potential and fluid velocity, and
γαβ = − 1

2 (∂αββ − ∂ββα ) is thermal vorticity. The above dis-
tribution function agrees with the one obtained within the
exact density matrix approach [37] at first order in vorticity;
we can thus use it to describe the effects at first order in vortic-
ity. An important point for us is that there is no shear-induced
term in f ±

eq, which means that we cannot derive second order
shear-induced terms in J̃ ±

μ using the distribution function (9).
In order to include the shear contributions, we need to

consider the viscous corrections to the distribution function.
For this purpose, we employ the moment expansion method
[38] to formulate the nonequilibrium distribution:

f ± = f ±
eq + f ±

eq (1 − f ±
eq )(λ±

�� + λ±
ν ν

μ
± pμ + λ±

π πμν pμ pν ),
(10)

and compute the shear-induced chiral transport coefficients.
Here, λ±

X are polynomials of up, with coefficients being func-

tions of T and α±. They are determined by matching the
energy-momentum stress tensor from its microscopic inte-
gral representation to the corresponding macroscopic viscous
terms. Following this approach, we find that (the details of the
derivation are presented in the Supplementaral Material [39])

ξ1 ≈ − 0.62
η

s

μAμ

T
= −0.05

μAμ

T
(weak coupling),

ξ2 ≈ − 6.70
η

s

μA

T
= −0.53

μA

T
(weak coupling),

(11)

where η is a shear viscosity, and s is an entropy density.
While the relations (11) have been obtained within the

chiral kinetic theory that is applicable at weak coupling, the
second equalities in Eq. (11) are based on the assumption
η/s = 1/(4π ) that follows from holography at strong cou-
pling and is favored by the data. The use of weak coupling
value of η/s would yield substantially bigger values of the
transport coefficients ξ1 and ξ2—so the values (11) can be
considered as lower bounds on these quantities at weak cou-
pling. Let us note that the ξ coefficients have been computed
in Ref. [40] using relaxation time approximation, as well as
using moment expansion method in Ref. [41] for a single-
component fluid.

Kubo relations in the Zubarev approach. It is important
to establish the general Kubo formulas for the transport co-
efficients of siCME and siCVE. For a relativistic quantum
system, Kubo relations can be obtained using the linear
response theory in the Zubarev formalism for the nonequilib-
rium statistical operator [42,43].

In this formalism, a covariant form of the local thermal
equilibrium statistical operator is obtained by maximizing the
total entropy at fixed energy-momentum density [44–48]. In
the presence of vorticity the statistical operator around a point
x can be approximated as [49]

ρ̂ � 1

Z
exp{−β(x)P̂ + B̂ω + B̂D}

with P̂ the total momentum of the system and

B̂ω = − β(x)ωρ (x)Ĵρ
x , B̂D =

∫
�

d� T̂ μν∇μβν,

where Ĵx is the angular momentum of the system evaluated
around the point x and � is the region of space-time enclosed
by the two hypersurfaces at the initial thermalization time
and at the present time, and by the time-like hypersurface at
their boundaries. The operator B̂ω describes the nondissipative
effects related to vorticity, while B̂D describes the dissipative
effects. In particular, the latter contains the contribution from
the shear tensor that can be written as B̂η = ∫

�
d� T̂ μνβσμν .

The siCVE is obtained by evaluating the current jμ(x) =
tr[̂ρ ĵμ(x)] as a linear response to B̂ω and B̂D and considering
the term of order B̂ω × B̂η. Using the linear response theory
as in [50–56] and expressing the correlators in terms of the
three-point retarded Green function [57–59]

iGR1
Ô,X̂ ,Ŷ (x; x1, x2)

= θ (t − t1)θ (t1 − t2)〈[[Ô(x), X̂ (x1)], Ŷ (x2)]〉T

+ θ (t − t2)θ (t2 − t1)〈[[Ô(x), Ŷ (x2)], X̂ (x1)]〉T ,

L051902-3



MATTEO BUZZEGOLI et al. PHYSICAL REVIEW C 106, L051902 (2022)

FIG. 2. Illustration of the shear-induced chiral vortical and mag-
netic effects; see text for the description.

we obtain (see Supplementaral Material [39] for detailed
derivation)

�ωη jμ(x) =2ων (x)

β(x)

∫
d4x1

∫
d4x2

∫ t2

−∞
dθ2 β(x2)σμν (x2)

× (x1 − x)y i GR1
ĵy,T̂ tz,T̂ xy (x; x1, (θ2, x2)),

where we denoted by 〈Ô〉T the trace with the homogeneous
statistical operator in the local rest frame with temperature
T = 1/β(x). Notice that since the effects that we seek to
describe require breaking of parity, this statistical operator
must also contain a chiral imbalance.

We can move the shear tensor out of the integration by
studying the perturbations with respect to the equilibrium. For
a fluid in the hydrodynamic regime, only the perturbations
with small frequency and small wave vector contribute to the
integral. In that case, following [43], we obtain �ωη jμ(x) =
σμν (x)ων (x)ξ1 with

ξ1 = lim
p,q→0

2
∂

∂q0

∂

∂ py
ImGR1

ĵy,T̂ tz,T̂ xy (p, q), (12)

where GR1(p, q) = ∫
d4x1 d4 x2 e−i(p·x1+q·x2 ) GR1 (0; x1, x2).

Moreover, comparing the known Kubo formulas of the CME
and CVE, we see that we can obtain ξ2 from ξ1 replacing T̂ tz

with (β/2) ĵz, that is

ξ2 = lim
p,q→0

β
∂

∂q0

∂

∂ py
ImGR1

ĵy, ĵz,T̂ xy (p, q). (13)

Experimental observable: Charge dependent fluctuations of
a3. Let us now discuss the experimental signatures of siCME
and siCVE. Let us assume that the beam direction of the
colliding ions is along the axis z, and the axis x lies in the
reaction plane, see Fig. 2. The elliptical flow of the expanding
quark-gluon plasma then induces the dependence of the fluid
velocity component ux on y, and thus the shear σxy of the
sign that is indicated in the insert of Fig. 2. The axes of
vorticity and magnetic field are aligned perpendicular to the
reaction plane, anti-parallel to y. The resulting siCME and
siCVE currents are thus directed parallel or antiparallel to x,
depending on the sign of σxy, as shown in Fig. 2.

As a result, the siCME, i.e., the current term ξ2σ
μνBν ,

would lead to the triangular distortion of the particle mo-
mentum distribution, that will be different for positive and
negative particles. The sign of this distortion for positive and
negative particles will fluctuate event-by-event, reflecting the
fluctuations of the chiral chemical potential μA. This is similar
to the charge-dependent dipole distortion of the momentum
distribution induced by the “conventional” CME.

The azimuthal particle distribution in heavy ion collision is
often parametrized with Fourier series:

dN

dφ
∝ 1 +

∞∑
n=1

[2vn cos(�φ) + 2an sin(�φ)], (14)

where �φ = φ − �RP is the emission angle relative to the re-
action plane. Coefficients an are zero if parity is conserved in
the collision. Experimental search for the conventional CME
is focused on measuring correlators sensitive to the product
〈a1,αa1,β〉 where α and β denote the charge of the particles
[60]. It is usually done by measuring the so-called “gamma”
correlator γ

αβ

1 = 〈cos(φα + φβ − 2�RP)〉.
The charge-dependent triangular distortions of the mo-

mentum distributions can be detected by the third order
sine harmonics a3 ≡ 〈sin(3φ − 3�RP)〉 evaluated for particles
with positive a+

3 and negative a−
3 charges. Namely, a+

3 =
−a−

3 �= 0 in each event, where the sign of a+
3 depends on the

sign of chiral imbalance.
In analogy to the “conventional” CME observables, we

thus define the two-particle correlator of third order har-
monics, γ αβ

3 ≡ 〈cos(3φα + 3φβ − 6�RP)〉. This correlator for
same-sign (SS) and opposite-sign (OS) pairs responds to the
effect as follows: γ SS

3 = γ SS
3,bkg − (a+

3 )2 and γ OS
3 = γ OS

3,bkg +
(a+

3 )2, where γ3,bkg represents the background contributions.
Therefore, the difference �γ3 ≡ γ OS

3 − γ SS
3 should be sensi-

tive to the siCME.
For the siCVE, induced by the current term ξ1σ

μνων , the
analysis is very similar, but one expects it to lead mostly to
the separation of baryons and antibaryons, just as for the CVE
[61].

To estimate the signal, we use the AVFD simulation frame-
work [62–64] to evaluate the vector and axial-vector charge
evolution on top of a realistic hydrobackground with axial
charge initial condition |nA/s| = 0.1 (equivalently, |μA/T | ∼
1) and magnetic field lifetime τB = 1 fm. The magnitude and
the spatial distribution of the initial chirality imbalance are
set to be the same as in the CME simulation. Even if the
size of topological fluctuations is small, the assumption of
a uniform distribution may still capture the average effect
resulting from the random diffusion of topological charge
that leads to Chern-Simons number of order

√
N , where N is

the number of sphalerons. The initial profile of the magnetic
field is computed from the initial proton distribution of the
colliding nuclei. The bulk evolution starts from the event-
averaged Monte Carlo Glauber initial conditions, followed by
solving 2+1 dimensional second-order viscous hydrodynamic
equations with MUSIC [65,66].

We focus on top energy
√

sNN = 200 GeV Au+Au col-
lisions and compute the observables proposed above for the
detection of shear-induced chiral effects. As an example, we

L051902-4
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FIG. 3. (Upper) Transverse momentum dependence of third-
harmonic charge separation for π+, π−, p, and p̄ due to the
shear-induced chiral magnetic effect. (Lower) Same as the upper
panel but for the shear-induced chiral vortical effect.

take an event with an excess of right-handed particles (n5 > 0),
and show the transverse momentum dependence of the a3

moments. The cases of siCME and siCVE are shown in the
upper and lower panels of Fig. 3, respectively. We observe a
O(10−3) difference between aπ+

3 and aπ−
3 (ap

3 and ap̄
3) due to

the siCME(siCVE) effect, and the separation increases with
transverse momentum pT . We find that the contribution from
“conventional” CME to a3 is an order of magnitude smaller
than the contribution from siCME.

The amplitude of the signal in a3 is smaller than the CME
a1 charge separation by an order of magnitude, as appropriate
for a second-order effect in the hydrodynamical derivative
expansion. It is thus especially important to estimate the
nonchiral effect of the background on �γ3 before a conclusion
on observability of siCME and siCVE in heavy-ion collisions
can be reached.

To estimate the background from resonance decays, we
sample the resonances according to their transverse distribu-
tion, dN res

dpT dφ
, and collect the decay particle pairs that fall into the

kinematic region of interest that is chosen to be 0.5 < pT < 2
GeV and |η| < 0.5. The lower pT cut is chosen to enhance
the signal and suppress the background. We include the two-
particle decay of K0

S , ρ0, and ω and three-particle decay of K0
L ,

η, and ω particles.
Noting that for resonance decays 〈cos(3φα + 3φβ −

6�RP)〉 ≈ 〈cos(3φα + 3φβ − 6φres) cos(6φres − 6�RP)〉 ≈
〈cos(3φα + 3φβ − 6φres)〉 vres

6,RP and similarly for local-charge
conservation [67,68], we expect that the background contri-
bution in �γ3 is proportional to the sixth-order flow harmonic
with respect to the reaction plane (or the second-order event
plane). In Fig. 4, we present the centrality dependence of

FIG. 4. Centrality dependence of two-point correlation �γ3 in-
duced by shear-induced chiral magnetic effect (upper) and resonance
decay background (lower).

siCME signal (�γ
sgn
3 ≡ 2a2

3) and the background induced
by resonance decay, with the latter scaled by v6,RP. In the
event-by-event hydrosimulation, we found that v6,RP is within
O(10−4), which makes �γ

bkg
3 ∼ O(10−8). As has been found

in the simulation of CME, resonance decays contribute to
about ∼50% of the non-CME background. Therefore, al-
though some other possible backgrounds, e.g. the local charge
conservation, are not included in the current estimation, we
expect the overall background to be of the same order as what
is shown here. Hence, we predict that the signal �γ

sgn
3 ∼

O(10−7) may be significantly (by an order of magnitude)
greater than the background.

Discussion. While the magnitude of the observable
�γ

sgn
3 ∼ O(10−7) induced by siCME and siCVE is about two

orders of magnitude smaller than for “conventional” CME
and CVE, it is expected to be much less contaminated by the
background. This is because the resonance decays and local
charge conservation contribute a lot less to this observable
than to the “conventional” γ correlator.

The expected dominance of the signal over the background
(about an order of magnitude) should make siCME and siCVE
detectable in heavy ion collisions with high statistics data
samples. We thus urge the experimental studies of siCME
and siCVE in both AuAu and isobar collisions at RHIC (even
though we do not predict an observable difference between the
two isobar pairs, the effects could be detectable in both isobars
with the presently accumulated statistics). It will also be of
interest to investigate the effect at the CERN Large Hadron
Collider.

It would be interesting to search for siCME and siCVE
at lower collision energies during the beam energy scan.
One may expect the enhancement of these effects due to
the larger baryon chemical potential, possibly larger vorticity
[69], longer-lived magnetic field, and the enhancement of
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topological fluctuations [70] due to proximity to the critical
point of the QCD phase diagram [71,72].

In the future, it will be interesting to investigate the con-
tribution, analogous to siCME and siCVE, of anomalous
shear-induced axial currents to the polarization of � hyperons.
In particular, the proportionality of the corresponding trans-
port coefficients to the square of the chemical potential μ2 can
yield a characteristic dependence of polarization on the charge
asymmetry of the event. It would also be important to check

our predictions for the siCME and siCVE transport coeffi-
cients using lattice QCD and the Kubo relations derived here.
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