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Detecting the chiral magnetic effect via deep learning
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The search for chiral magnetic effect (CME) in heavy-ion collisions has attracted long-term attention. Multiple
observables are proposed, but all suffer large background contaminations. In this study, we construct an end-to-
end CME-meter based on a deep convolutional neural network. After being trained over a dataset generated
by a multiphase transport model, the CME-meter shows high accuracy in recognizing the CME-featured charge
separation from the final-state pion spectra. It also exhibits remarkable robustness to diverse conditions including
different collision energies, centralities, and elliptic flow backgrounds. In extrapolation tests, the CME-meter
is validated in isobaric collisions and different model simulation, showing robust generalization performance.
Moreover, based on variational approaches, we utilize the DeepDream method to derive the most responsive
CME-spectrum that demonstrates the physical contents the machine learned.
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Introduction. Quantum chromodynamics (QCD) is the
standard theory describing the physics of the strong inter-
action. Among the studies on QCD, the proposal of using
chiral magnetic effect (CME) to reveal the vacuum structure
of QCD is of great importance [1–3]. It predicts that in hot and
dense quark-gluon plasma (QGP), the topological fluctuations
of gluon fields can cause imbalance between the number of
left-handed and right-handed quarks and this difference can
induce an electric current under external magnetic field.

High-energy heavy ion collisions (HICs) provide an envi-
ronment for CME to take place. However, QGP and the strong
magnetic field required for giving rise to CME exist only in
the early stages of the collisions. To retrieve the information
of possible CME from the final-state hadrons, multiple ob-
servables were proposed [4–8], such as the γ -correlator (see
definition in below). However, due to the large contributions
of elliptic flow and other background noises [9–11], these ob-
servables cannot clearly recognize CME or its induced charge
separation (CS) in QGP along the magnetic-field direction.

Although it is difficult to detect CME through specific
observables, analyzing the final-state hadronic spectrum as
a whole in the sense of big data may help reveal hidden
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fingerprints of CME. Deep learning is a branch of machine
learning with superiority in recognizing patterns with com-
plex correlations [12,13]. With the hierarchical structure of
neural networks, deep learning is particularly effective in
tackling complex systems that cannot be easily handled by
conventional techniques. Recently, significant progress has
been made in applying deep learning to physics studies, in-
cluding nuclear physics [14–22], particle physics [23–27], and
condensed matter physics [28–32]. In this study, we explore
the possibility of using deep learning to determine whether
there are detectable final-state signals of CME that survive the
collision dynamics and background interference.

Methods. In this section, we introduce a deep learning
model containing convolutional neural networks (CNNs) to
detect the CME signals in HIC systems. The architecture of
the neural network is shown in Fig. 1. Details are in the
Supplemental Material [57] with also a connection to the
physics-informed neural network concept discussion [33,34].
For the purpose of supervised learning, we prepare training
data from the string melting a multiphase transport (AMPT)
model.1 To implement the CME in the AMPT model, we
adopt a global CS scheme first employed for Au + Au colli-
sions in Ref. [44]: the y-components of momenta of a fraction
of downward moving u quarks and upward moving ū quarks
are switched, likewise for d̄ and d quarks.2 This gives a

1The AMPT model [35] is a transport model which is widely used
to simulate the evolution of both partonic and hadronic matter in
HICs and has been proven to be successful in describing the experi-
mental data of harmonic flows [36–39], global polarization [40–42],
QCD phase transitions [43], and so on.

2Here, “upward” and “downward” are refer to the y-axis which is
perpendicular to the reaction plane.
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FIG. 1. The convolutional neural network architecture with π+

and π− spectra ρ±(pT , φ) as input.

right-dominant CME event, and for a left-dominant one we
switch quarks with the momenta opposite to those in the
right-dominant case, or just rotate the event along the z-axis
(beam direction) by 180◦. The CS fraction f is introduced as

f = N±
↑(↓) − N∓

↓(↑)

N±
↑(↓) + N∓

↓(↑)

, (1)

where the superscript labels the sign of charge and the sub-
script labels the direction of momentum along the y-axis.
Events with f = 0% belong to “no CS” class and are labeled
as “0” while events with f > 0% are in “CS” class and labeled
as “1”.

With supervised learning, the deep CNNs are trained to
distinguish the two classes from the labeled data. As for the
input to the CNNs, we prepare from AMPT simulation series
of two-dimensional (2-D) spectra ρ±(pT , φ) of charged pions
(π+ or π−) in the final state with 20 transverse momentum
pT -bins and 24 azimuthal angle φ-bins.3 The dataset consists
of Au + Au collision events at

√
sNN = 7.7, 11.5, 14.5, 19.6,

27, 39, 62.4, and 200 GeV, with CS fraction f = 0% or f >

0%, all divided into six centrality bins in the range 0 to 60%.
Each species of collision conditions contains 50 000 events.
To reduce fluctuations, 100 events with the same collision
condition and dominant chirality are randomly picked out.
Their pion spectra are averaged and normalized to form a
single sample for the training. Meanwhile, such averaging
also suppresses backgrounds and sets a prerequisite to the
experimental feasibility of the model, which will be discussed
in the following sections. To preserve the mirror symmetry,
every sample is accompanied by its flipped copy along the

3We maintain the periodic boundary condition (p.b.c) in φ in all the
convolution layers in the network, so as not to lose correlations near
φ = 0 and 2π , while pT follows the original boundary condition of
the convolution layer.

TABLE I. The validation accuracy of the well-trained model
in confronting unseen events with the same set and different
centralities.

Model 0–10% 10–20% 20–30% 30–40% 40–50% 50–60%

0% + 5% 79.6% 80.8% 79.2% 77.9% 77.8% 75.2%
0% + 10% 91.4% 94.1% 93.9% 94.4% 93.3% 92.8%

y-axis. It can be viewed as exchanging the initial distribu-
tion of nucleons between the projectile and target nuclei,
which naturally provides data augmentation and reduces re-
dundancy in training the CNNs. To eliminate the ambiguity of
introducing the CME under various conditions, we take two
species of dataset with different CS fractions to train the deep
CNNs. They are f = 5% and 10% “CS” events mixed with
the equivalent amount of “no CS” events. The correspond-
ing well-trained CNN models are named as (0% + 5%) and
(0% + 10%), respectively, in Table I, with their performance
on recognizing the CS signal also shown. The validation ac-
curacy of the (0% + 5%) model is less than the other one,
which, however, could ameliorate overfitting [45] as demon-
strated in the Supplemental Material [57]. It indicates that
larger CS fraction is recognized better by the network, being
manifested as more distinctiveness. In spite of the discrepancy
between the two models, their performance is robust against
various collision conditions, such as the

√
sNN and centrality,

see Table I for centrality dependency. The performance of
the network also reflects that the CS signals are not totally
diminished or contaminated after the collision dynamics and
visible to our network-constructed CME-meter.

Results and discussion- a. Extrapolations. In this section,
we investigate the generalization abilities of the trained NN
and how it can serve as a CME-meter. The output of the
network contains two components (P0, P1) for each input
spectrum with P0 + P1 = 1. P1 is identified as the probability
that the network regards the input spectrum to be with CME.
This will be an important indicator in the following. Besides
the shown robustness against

√
sNN and centrality, a positive

correlation of the NN performance with the CS fraction f is
also expected and demonstrated by Fig. 2. As f increases,

FIG. 2. The network prediction probability on datasets with
mixed collision energies and centralities along with varying CS rate.
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TABLE II. The results of the (0% + 10%) model on the isobaric
collision systems (Ru + Ru and Zr + Zr at 200 GeV).

Centrality 0–10% 10–20% 20–30% 30–40% 40–50% 50–60%

Riso 9.95% 12.99% 8.13% 13.84% 19.67% 10.47%
σRiso 2.52% 2.05% 2.03% 1.87% 2.25% 2.64%

the P1 of the two NNs also increase, both for true-positive
and false-negative cases. The reasonable extrapolation of P1 to
different f indicates that the CME strengh (or f ) is aligned to
P1 by the NN, thus it is also related to the CS signal intensity.

An extrapolation to the other collision system is also re-
alized. The networks are trained to recognize the CS signal
in Au + Au collisions, whereas they are also qualified for
96
40Zr + 96

40Zr and 96
44Ru + 96

44Ru, the isobar collisions [46–50]
recently proposed specifically for the CME search. Although
being deformed for the nuclei which just has about half the
mass of Au, the two systems well verify our trained NN, as
shown in Table II. Physically, it is because four more protons
in Ru may induce a larger magnetic field and thus cause a
larger CS signal in Ru + Ru collisions. The quantity presented
is

Riso = 2 ×
〈
logit

(
PRu

1

)〉 − 〈
logit

(
PZr

1

)〉
〈
logit

(
PRu

1

)〉 + 〈
logit

(
PZr

1

)〉 , (2)

and σRiso is its error. The function logit(x) = log[x/(1 − x)] is
used to restore the derivative at the saturation region of SOFT-
MAX, the last activation of our NN. The angle bracket means
the average over samples. Riso indicates a distinguishable dif-
ference between the two isobaric collision systems caused by
PRu

1 > PZr
1 . The portability of NN to isobaric systems benefits

from the normalization we carry out in training as to highlight
the pion distribution instead of scale. This offers evidence for
applicability of NN to a series of collision systems.

The generalization of the trained CNN is also vali-
dated on different model simulations. Events generated with

FIG. 3. Test on AVFD samples of (0% + 10%). N5/S controls the
CME strength, LCC rate is local charge conservation contamination.

anomalous-viscous fluid dynamics (AVFD) 4 are tested here,
see Fig. 3.5 As N5/S increases, P1 rises just as concluded also
from Table I, indicating the positive correlation between them.
Moreover, P1 remains robust against the contaminations from
LCC even up to 30%, where almost half of the final particles
are from resonance decay. More details are in Supplemental
Material [57].

CME-meter. In the above, we demonstrated the trained
network can efficiently decode the CS information from
ρ±(pT , φ). In this sense, the network provides a meter to
measure the CME occurring probability in HICs. In the fol-
lowing, we investigate the comparison between P1 and the
γ -correlator to reveal the coherent account of the CME-meter.
The γ -correlator measures the event-by-event two-particle az-
imuthal correlation of charged hadrons, which is considered
sensitive to CME [4]. It is defined as γsame = 〈cos(φ(±)

α +
φ

(±)
β − 2	R)〉 or γopp = 〈cos(φ(±)

α + φ
(∓)
β − 2	R)〉 for corre-

lation between the same or opposite charges, where φ(±)
α is the

azimuthal angle of particle α with positive or negative charge,
	R is the azimuthal angle of the reaction plane (	R = 0 in
this work), and 〈·〉 represents the average over particles in the
event. To subtract charge-independent backgrounds one often
uses 
γ = γsame − γopp.

The histograms of P1 for “no CS” and “CS” cases are
shown in Fig. 4(a). As a comparison, the histogram of 
γ

on single events in Fig. 4(b) do not show a distinct difference
between the two cases. 
γ on averaged events composed of
100 single events are also calculated (see the Supplemental
Material [57]), showing around ten times smaller width than
the single-event histogram for both cases and around five
times smaller in the mean values. This means for averaged
events, the signal from 
γ also suppresses, together with the
backgrounds. In contrast, P1 can recognize the two cases, indi-
cating that possible background contamination may mask the
γ -correlator, but does not disturb the CME-meter. Such con-
tamination is potentially proportional to the elliptic flow v2.
In fact, previous studies revealed that v2-driven backgrounds
can strongly interfere with the CME signal in the γ -corerlator
because both the magnetic field and v2 have similar centrality
dependence [53,54]. Thus, v2-induced 
γ can emerge in both
“CS” and “no CS” events, making 
γ difficult to distinguish
these two cases.

To further examine whether the CME-meter will be influ-
enced by v2, we depict P1 versus v2/N (N is the multiplicity)
in Fig. 5. It shows that CNN retains robust against the v2

background in identifying the CME signal. Specifically, P1 of
“CS” events changes inconspicuously with v2/N increasing,
except for small v2/N .

4Anomalous-viscous fluid dynamics (AVFD) implements the fluid
dynamical evolution of chiral fermion currents on top of the neutral
bulk background described by the VISH2 + 1 hydrodynamic sim-
ulations and plays as an active role in recent simulations of many
anomalous effects in HICs [6,50–52].

5Samples are averaged among events from different hydrodynamic
evolution,where

√
sNN = 200 GeV, centrality is mixed within 30–

60%.
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FIG. 4. (a) P1 histogram calculated by (0% + 10%) on averaged
events for Au + Au

√
sNN = 200 GeV, centrality 40–50%. (b) 
γ

histogram for single events. The average of 
γ are marked with lines
in the zoom-in plot. For clarity some data points in (b) are moved.

b. Hypothesis test. Although events-averaging for the
training set introduces background suppression manually,
it provides a clear CS signal for constructing a sensitive
CME-meter. In addition, the reaction plane of each event in
averaging is aligned beforehand. To deploy the CME-meter
into experimental measurements, one needs to reconstruct the
reaction plane first, which can be reached through measuring
final particle correlations and inevitably include finite resolu-
tion and backgrounds. A detailed discussion about how the
event plane reconstruction influences P1 shows in the Sup-
plemental Materials, where the trained meter can recognize
CS signals under restricted reconstruction. With better recon-
struction where events averaging is closer to our set-up, P1 is
less affected by the background, and represents the CS signal
more faithfully.

However, with a hypothesis test perspective, on single-
event measurements the CME-meter also holds experimental
feasibility. For a fixed finite number of events M, one can
assume a large-enough “residual chirality,” which can be
detected through our CME-meter if CS effects are believed

FIG. 5. P1 at different v2/N , here N is the multiplicity at midra-
pidity (Au + Au at 200 GeV).

exiting in HICs. If CME exists in HICs, the residual chirality
of an averaged event will behave like P(P1) in the f 	= 0 case,
otherwise it will obey the distribution of the f = 0 as shown
in Fig. 4. To establish a reasonable estimation on P(P1) for
testing M events, we treat f as a latent variable representing
CME in a single event, by the initial CS fraction we use in this
work. Moreover, because of event-by-event fluctuation, we set
f to be a random variable subject to a Gaussian distribution,
f ∼ N (μ, σ 2), where μ is the mean of the latent variable
f and shall be around 0. For the variance σ , we give an
estimation based on Fig. 1 in the Supplementary Material(A)
[57]. From γ -correlators, we can estimate the average of | f |
around 8%,

8% = 〈| f |〉 =
∫

| f |N>(| f |; σ 2) d| f |, (3)

here N>(| f |; σ 2) is the half normal distribution and | f | is a
positive-definite variable because the γ -correlator is indepen-
dent of the sign of f . Solving Eq. (3) gives σ ∼ 0.2. Because
we adopt averaged events in preparing the CME-meter, the
way to compose a ρ( feff ) from single events {ρ( fi )} becomes
crucial, where feff is the residual chirality of averaged events.
We can choose the arithmetic mean as

1

M

M∑
i

ρ( fi ) = ρ

(
1

M

M∑
i

fi

)
= ρ( feff ). (4)

Therefore, the distribution of | feff| can be achieved
as feff ∼ N (μ/M, M σ 2/M2) = N (0, 0.04/M ) with Feff ≡
| feff| ∼ N>(0.04/M ). The conditional probability P(P1| Feff )
can be approximated as a Beta distribution, Be(x; α, β ).6 After

6The Beta distribution is Be(x; α, β ) = �(α+β )
�(α)�(β ) xα−1(1 − x)β−1,

with α and β the parameters of the Beta distribution, and � is Gamma
function. To describe P(P1| Feff ) at any Feff, we assume α and β are
functions of Feff, and fit several sets of (α, β ) from the fitted beta
distribution with polynomial(for α) and Softplus (for β, to reach
proper asymptotic behavior around P1 = 1).
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FIG. 6. P(P1) of AMPT events from two different average num-
bers show as gray circles (M = 15) and black crosses (M = 20). The
red and blue curves are from predictions of two different hypotheses.

parametrizing P(P1| Feff ), P(P1) is derived as

P(P1) =
∫

P(P1| Feff )P(Feff ) dFeff

=
∫ ∞

0
Be(P1; α(Feff ), β(Feff ))N

>

(
0.04

M

)
dFeff. (5)

It should be noticed that the integral variable is Feff because
NN responds the same to different signs of feff. The numerical
results are shown in Fig. 6. P(P1) of the “existing CME” has
an obvious rise around P1 = 1 compared to the “no CME”
case, which suggests a nonzero probability of composing a
large residual chirality. With a smaller M, the width of feff be-
comes larger, which allows one to get a visible P1. In Fig. 6 we
also present results of randomly mixing left- and right-handed
events generated by AMPT, where M = 20 or 15. From the
large-P1 area, it is consistent with our hypothesis test analysis,
which indicates that the trained NN is capable of recognizing
charge separation with less averaged events.

c. Interpretable deep learning for CME. The prediction
P1[ρ±(pT , φ)] from the well-trained network could be under-
stood as a CME-signal response to the spectrum ρ±(pT , φ),
which can be utilized to find the most responsive features via
the variational scrutinization

δP1[ρ±(pT , φ)]

δρ±(pT , φ)
= 0. (6)

Specifically, with the pion spectrum to be a variational Ansatz,
we start from a flat spectrum ρ±(pT , φ) = 1/X with X = 480
the total number of pixels of the spectrum, which derives
P1 = 0, and gradually tune the functional form of ρ±(pT , φ)
with the variational target to maximize P1[ρ±

0 (pT , φ)], that
is, to approach P1 = 1. Note that the trained CME-meter
network is fixed, through which gradient of its output with
respect to its input, δP1[ρ±(pT , φ)]/δρ±(pT , φ), can be eval-
uated via back propagation and is provided as the guidance
for the above spectrum tuning. The resultant “ground state”

FIG. 7. DeepDream map for the (0% + 10%) model.

ρ±
0 (pT , φ) could disclose the crucial patterns manifesting the

CS signal in the perspective of the trained network. The above
procedure is the so-called DeepDream method [55], in which
the variational tuning is implemented as gradient ascent al-
gorithms. In Fig. 7, the “ground state” pion spectrum tuned
from the DeepDream method is visualized (also see Supple-
mental Material C [57]). Although this spectrum may neither
be real nor physical, it shows the “CME pattern” that the
network would response most dramatically. Similar visualiza-
tion method was also demonstrated in image recognition tasks
[56]. The ρ±

0 (pT , φ) explains the following basic features:

(1) Charge conservation. During variation procedures,
the charge conservation is reasonably reserved, from
examination via tracking the charge density of the
spectrum.

(2) Dipole structure. The “ground state” spectrum from
DeepDream variation intuitively displays the CS
pattern. In the low pT regime (center), the pion
distribution induces an electric current, or a dipole
downward, nevertheless it presents an opposite current
which is larger in the high pT regime (pT ∼ 3 GeV).

It should be mentioned that ρ±
0 (pT , φ) derived from Deep-

Dream is a virtual spectrum whose local properties depend on
the AMPT simulation and the well-trained neural networks.
However, it offers a reliable way to evaluate the effectiveness
of P1 in detecting CME and helps us reveal the physical
contents the machine learns.

Summary. In this study, we propose a deep convolutional
neural network (CNN) model to detect the CME signal in the
simulated dataset from a multiphase transport model. With
two different charge separation fractions (5% and 10%), the
machine is trained to recognize the CME signal under su-
pervision. Besides accuracy and robustness against collision
conditions, it is worth noting that this well-trained machine,
encoded with the knowledge of CME in the final state of
HICs, can extrapolate such a pattern to different charge sep-
aration fractions, collision systems, or even different model
simulation (AVFD). The well-trained machine also provides
a powerful meter to quantify the CME, remaining insensi-
tive to the backgrounds dominated by the elliptic flow v2
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and LCC in comparison with the conventional γ -correlator.
Furthermore, a characteristic distribution of max{P1(φ)} is
given based on hypothesis test with reasonable reaction plane
reconstructions, which can be a criterion of whether CME
existing in HICs. In the end, DeepDream, a method used to
visualize the patterns learned by CNNs, is applied as a vali-
dation test of adopting P1 to detect the CME. It helps us drill
the physical knowledge hidden in the well-trained machine,
including charge conservation and special charge distribution.
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