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Coupled fission fragment angular momenta
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Nuclear fission produces fragments whose spins are coupled to the relative angular motion via angular
momentum conservation. It is shown how ensembles of such spins can readily be obtained by either direct
microcanonical sampling or by sampling of the associated normal modes of rotation. The resulting distribution of
the spin-spin opening angle is illustrated in various three- and two-dimensional scenarios and it is demonstrated
how recent mutually conflicting model calculations can be well reproduced with different assumptions about the
scission geometry.
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Introduction. Nuclear fission has become a very active
topic, both experimentally [1,2] and theoretically [2,3]. In
particular, recently there has been considerable interest in the
calculation of the correlations between the angular momenta
of the fragments, and a number of mutually contradictory pre-
dictions have been made about the distribution of the spin-spin
opening angle, P12(ψ ).

The first calculations of P12(ψ ) were made with the fis-
sion event generator FREYA, which assumes that the fragment
spins are perpendicular to the fission axis. It was found
that, apart from the restriction of being two-dimensional
(2D), the spins were nearly independent, in magnitude as
well as direction [4,5]. Accordingly, P12(ψ ) exhibited only
a small undulation away from constancy. Subsequently, us-
ing time-dependent density functional theory with various
energy-density functionals, Bulgac et al. [6] found that P12(ψ )
exhibits a large angular variation and peaks around ψ ≈ 130◦.
Very recently, dynamical calculations with Antisymmetrized
molecular dynamics have yielded a nearly symmetric distri-
bution that peaks slightly above 90◦ [7].

The present situation is thus rather unclear and it is the
purpose of this paper to provide a framework within which
it can be understood how such widely different results can
emerge when the coupled spins are sampled under different
assumptions.

First, descriptions are given of two different (but equiva-
lent) general techniques for sampling angular momenta that
are subject to conservation relations that render them cor-
related. Though the methods are applicable generally, the
present study concentrates on the sampling of the two frag-
ment spins S1 and S2 together with the angular momentum
associated with the relative fragment motion, S0.

Then these methods are applied to the sampling of the
three angular momenta, {Si}, and it is demonstrated that the
two methods do indeed yield identical results. The focus
is first on the more general scenario in which the angular
momenta are three-dimensional vectors that are constrained
only by the conservation laws. Subsequently, the scenario is

addressed in which the angular momenta must be perpendic-
ular to the fission axis (as certainly S0 must be by definition),
a requirement that effectively reduces the spins to being two
dimensional.

Sampling methods. Generally, the rotational degrees of
freedom of the fledging fragments can exchange energy with
the remainder of the system. Because the associated rotational
energies are typically relatively small in comparison with the
internal excitation energy, the nuclear complex effectively
acts as an energy reservoir. Therefore, in the present study
where the energy is not important, it is assumed that the
rotational energies have canonical distributions characterized
by the prevailing temperature in the system at scission. By
contrast, because no external torques are acting on the fission-
ing system, its overall angular momentum is conserved. For
simplicity and with no bearing on the results, it is assumed that
the total angular momentum vanishes, so angular momentum
conservation requires S1 + S2 + S0 = 0.

Below are described two different but equivalent methods
for sampling the microcanonical ensemble of the three cou-
pled angular momenta {Si}.

An important role is played by the moments of iner-
tia, whose relative magnitudes influence the appearance of
P12(ψ ). For simplicity, the two fragments are treated as solid
spheres. Their moments of inertia are denoted by I1 and I2

and the numerical calculations use Ii = 2
5 MiR2

i , where Mi is
the fragment mass and Ri is its radius. Furthermore, I0 = μR2

is the moment of inertia associated with the relative mo-
tion where R = R1 + R2 + d is the distance between the two
fragment centers and μ = M1M2/(M1 + M2) is the reduced
mass.

Direct microcanonical sampling. The perhaps conceptually
simplest method makes a direct sampling of the microcanon-
ical ensemble defined by the total energy E and the total
angular momentum.

The fragments are assumed to be noninteracting, so the
total rotational energy of the system is given by E =
S2

1/2I1 + S2
2/2I2 + S2

0/2I0. The expectation value of any
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spin-dependent “observable,” F {Si}, is then

〈F {Si}〉 = 1

�D(E )

2∏
i=0

[∫
dDSi

]
F {Si}

× δ

(
E −

2∑
i=0

S2
i

2Ii

)
δ(D)

(
2∑

i=0

Si

)
, (1)

where the corresponding microcanonical phase-space volume
for D-dimensional spins is [8]

�D(E )≡
2∏

i=0

[∫
dDSi

]
δ

(
E −

2∑
i=0

S2
i

2Ii

)
δ(D)

(
2∑

i=0

Si

)

= 2π

�(D)

(I1I2I0

I
)D/2

[2πE ]D−1, (2)

with I ≡ I1 + I2 + I0. Although the total rotational energy
E fluctuates in the actual fissioning system, this has no
impact when only directional effects are considered. The
specific value of E is thus immaterial. The focus is here
on the opening angle between the two fragment spins, ψ12,
where cos ψ12 = S1 · S2/(S1S2), so the normalized opening-
angle distribution P12(ψ ) is given by the expectation value of
F {Si} ≡ δ(ψ12 − ψ ).

The actual evaluation is carried out by sampling the mi-
crocanonical distribution. Though this may appear to be a
technically demanding task, it can in fact be accomplished
remarkably easily [8,9]: first tentative spin values {S′

i} are
sampled independently from Boltzmann distributions with a
common but arbitrary temperature; then the resulting total
angular momentum is calculated, S′ = S′

1 + S′
2 + S′

0 and the
corresponding rotational frequency is determined, ω′ = S′/I;
the overall rotational motion is then removed, yielding S′′

i =
S′

i − Iiω
′, and these spins are finally scaled by a common

factor c = √
E/E ′′ to ensure that the specified total energy

E is matched, yielding the spins {Si} = {cS′′
i }. (This last step

is of course superfluous when only directional effects are of
interest.) The resulting spins clearly satisfy the requirements
on the total angular momentum and, crucially, they are dis-
tributed according to the correct microcanonical measure (see
Refs. [8,9] for a proof of this key feature). This sampling
method is efficient (no rejections are required), robust (no
delicate numerical cancellations occur), and fast (millions of
samples can be obtained in seconds on a typical laptop).

Sampling of normal modes. An alternative, equivalent, sam-
pling technique utilizes the normal spin modes of the system
which are obtained by bringing the rotational energy into
diagonal form,

E = S2
1

2I1
+ S2

2

2I2
+ |S1+ S2|2

2I0
= s2

+
2I+

+ s2
−

2I−
, (3)

where angular momentum conservation has been used to
replace the angular momentum of the relative motion, S0,
by −S1 − S2. The moments of inertia of the normal modes
are [10]

I−1
+ = [I1 + I2]−1 + I−1

0 , I−1
− = I−1

1 + I−1
2 , (4)

where it should be noticed that I+ ≈ I1 + I2 when I0 	
I1 + I2. The components of the normal modes s± may thus
be sampled from the respective Boltzmann distributions and
the expectation value of an observable F {Si} can be evaluated
as

〈F {Si}〉 = 1

�T

∫
dDs+

∫
dDs− F {Si} e−E/T , (5)

where E is the rotational energy given in Eq. (3) and the
canonical phase space is �T = [(2πI+T )(2πI−T )]D/2.

Once the normal spins s± have been sampled, the individ-
ual fragment spins can be readily constructed [10],

S1 = I1

I1 + I2
s+ + s−, S2 = I2

I1 + I2
s+ − s−, (6)

and the orbital angular momentum is S0 = −s+. Thus the
conservation of angular momentum is built into the normal
modes s±, each of which carries no total angular momentum.
The mode sampling method has the special advantage that
different temperatures can be employed for different modes,
thus making it possible to control their relative presence, as
was recently exploited [10].

The sampling via normal modes is also efficient, robust,
and fast. Importantly, it yields the same ensemble of spins
{Si} as the direct microcanonical sampling described above,
provided that the energy E in Eq. (1) is sampled from
the appropriate canonical distribution for three coupled D-
dimensional spins, P(E ) ∼ ED−1 exp(−E/T ).

Spin-spin opening-angle distributions. The above sampling
methods are now applied to the calculation of the distribution
of the opening angle between the fission fragment angular
momenta for various scenarios of current interest.

Three-dimensional spins. In the scenario considered here,
the three angular momenta involved are three-dimensional,
i.e., D = 3, so one may write Si = (Sx

i , Sy
i , Sz

i ).
First, to establish a convenient reference scenario, the

two fragment spins are sampled entirely independently
from isotropic distributions, such as Boltzmann distributions,
P(Si ) ∼ exp(−S2

i /2IiTi ), where the values of the temperature
parameters Ti are immaterial. The directions of the fragment
spin vectors are then distributed uniformly over 4π and it fol-
lows that the distribution of cos ψ is constant, equivalent to the
opening angle itself having the distribution Pindep

12 (ψ ) ∼ sin ψ .
In reality the fragments are interacting and their spins are

coupled to the angular momentum of their relative motion, S0.
Because the combined system is isolated, its total angular mo-
mentum remains unchanged and so the appropriate statistical
spin distribution has a microcanonical form.

Another reference scenario is the simple (but unrealistic)
case where the two fragments are equal in size and are touch-
ing; the ratios of their moments of inertia are then I1 :I2 :I0 =
1:1 :5. The resulting opening-angle distribution, Ptouch

12 (ψ ), is
displayed in Fig. 1. The coupling causes it to be skewed away
from symmetry and it peaks near ψ = 110◦. The figure also
illustrates that P12(ψ ) is generally not very sensitive to the
mass asymmetry.

The touching-sphere scenario is not realistic because the
distance between the fragment centers exceeds the sum of
the two fragment radii at the time of their formation, as in-
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FIG. 1. The distribution of the fragment spin opening angle
ψ obtained by 3D sampling in various scenarios: Touching: A
schematic reference scenario of two touching spheres of equal size
in which case the relative sizes of the moments of inertia are I1 :I2 :
I0 = 1:1 :5. Scission: A more realistic scenario typical of scission
for which the moments of inertia have ratios similar to those used
in FREYA (see Table I). Independent: The limiting scenario for large
I0 where the angular momentum constraint is ineffective and the
two fragment spins become independent. Each curve is based on
one million spin triplets, obtained either by direct microcanonical
sampling or by sampling of the normal modes. The opening-angle
distribution obtained for I1 :I2 :I0 = 0.5:1.5:5 is also shown (open
circles).

dicated by the measured fragment kinetic energies. (In model
calculations, the center separation typically exceeds the sum
of the fragment radii by d = 4 fm.) As a consequence, the
moment of inertia for the relative motion at scission exceeds
those of the individual fragments by over an order of mag-
nitude (whereas the individual moments of inertia are of
comparable size). In order to approximate such a scenario
for illustrative purposes, the employed moments of inertia are
similar to those used in FREYA, see Table I, but the present
results are not very sensitive to the precise values. [It should
be noted that (1) the moments of inertia employed in FREYA

lead to a reasonable reproduction of the overall fragment spin
distribution [5] and (2) only the relative sizes of the moments
of inertia are needed for the present study.]

The resulting opening-angle distribution, Psciss
12 (ψ ), is

closer to the limiting uncorrelated form than touching spheres,
reflecting the fact that the coupling to the relative motion

TABLE I. The average values of the moments of inertia used by
the fission event generator FREYA [11], relative to the mean fragment
moment of inertia Ī = (I1 + I2)/2. The last line shows the ratios
used here to illustrate scission.

Case I1/Ī I2/Ī I0/Ī
235U(nth,f) 0.71 1.29 16.91
239Pu(nth,f) 0.73 1.27 17.02
252Cf(sf) 0.77 1.23 17.08

This work 0.75 1.25 17
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FIG. 2. The opening-angle distribution obtained by Chen,
Ishizuka, and Chiba [7] with antisymmetrized molecular dynamics
for fission of 252Cf are compared with the 3D sampling results for
the scission scenario, Psciss

12 (ψ ), shown in Fig. 1.

becomes less effective as the associated moment of inertia I0

is increased.
It is interesting that this distribution quite closely resem-

bles the one obtained by recent AMD simulations of fission
of 252Cf [7], as shown in Fig. 2. Antisymmetrized molecu-
lar dynamics represents the state of the system by a Slater
determinant of Gaussian wave packets whose centroids are
propagated by classical equations of motion with the potential
energy having been augmented by the repulsive effect of the
antisymmetrization. This implies a short mean free path for
the individual centroids, and a rapid local equilibration might
therefore be expected. This appears to be indeed borne out by
the AMD results for the distribution of the spin-spin opening
angle, which are consistent with the 3D equilibrium form in
Fig. 1.

It is also noteworthy that the results obtained for P12(ψ )
by Bulgac et al. [6] using time-dependent density functional
theory can be well reproduced by 3D samplings that employ
the ratios I1 :I2 :I0 = 1:1 :2, as shown in Fig. 3. It is quite
remarkable that such a good agreement can be obtained by
using a moment of inertia for the relative motion that is just the
sum of the two individual moments of inertia, a value that is
only 40% of that for touching spheres (about an order of mag-
nitude below those for typical scission configurations) and
corresponds to the two fragments overlapping significantly.

To provide a sense of how well determined the relative
value of I0 is, Fig. 3 also shows the distributions obtained
with I0 values that are either 50% smaller (i.e., 1:1:1) or 50%
larger (i.e., 1:1:3). Neither one of those distributions comes
close to reproducing the results from Ref. [6]. Thus it appears
that the optimal value is rather narrowly determined to be
I0 ≈ I1 + I2.

Two-dimensional spins. It is theoretically expected [10,12],
as well as experimentally indicated [13,14], that the fission
fragment angular momenta are predominantly perpendicular
to the fission axis. It is therefore of interest to also analyze
idealized scenarios where the fragment spins are perfectly
perpendicular to the fission axis. Such a situation is analogous
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FIG. 3. The opening-angle distributions calculated by Bulgac
et al. [6] for 252Cf(sf) with time-dependent density functional theory
using either the SkM* or the SeaLL1 energy density functional
are compared with 3D sampling results for a compact scenario for
which I1 : I2 : I0 = 1 : 1 : 2. To illustrate the sensitivity to I0, also
shown are the distributions for a 50% smaller (dots) or a 50%
larger (dot-dash) I0 value. The open squares show the results for
I1 : I2 : I0 = 0.75 : 1.25 : 2.

to the above case, except that the dimensionality is now only
D = 2, so Si = (Sx

i , Sy
i , 0). Figure 4 shows the spin-spin open-

ing angle distribution for the same instructive 2D scenarios as
shown in Fig. 1.

In the reference scenario of totally independent spins,
I0/Ī → ∞, the directions of the fragment spin vectors are
distributed uniformly in the perpendicular plane, and it fol-
lows that the distribution of the opening angle ψ is constant.

When the coupling to the orbital motion is taken into ac-
count in the sampling, the two fragment spins have a slight
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FIG. 4. The distribution of the fragment spin opening angle ψ

obtained by 2D sampling of the three angular momenta, using mo-
ments of inertia corresponding either to touching (I1 : I2 : I0 = 1 :
1 : 5) or to scission (I1 : I2 : I0 = 0.75:1.25:17). The samplings
were done either microcanonically or via the normal modes. The two
dashed curves are the corresponding first-order Fourier fits, while
the dot-dashed curve is the second-order Fourier fit to the touching-
sphere distribution, which has a larger amplitude.
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FIG. 5. The distribution of the fragment spin opening angle ψ

obtained with FREYA for 235U(n,f) [4] is compared with the 2D
sampling results for the scission scenario shown in Fig. 4.

preference for being directed oppositely, The opening-angle
distribution is typically well represented by the lowest-
order Fourier approximation, P12(ψ ) ∼ 1 + f1 cos ψ . When
scission moments of inertia are used the deviation from uni-
formity is fairly small, f1 = −0.086.

As was the case in 3D, the touching-sphere configuration,
with its considerably smaller I0, leads to larger deviations of
P12(ψ ) from the independent scenario, namely f1 = −0.264,
and so the second-order Fourier term is required for an ac-
curate representation, Ptouch

12 (ψ ) ∼ 1 + f1 cos ψ + f2 cos 2ψ ,
with f2 = 0.028, as is apparent from Fig. 4.

The standard version of the fission model FREYA [15]
assumes that the fission fragments emerge with angular mo-
menta that are perpendicular to the fission axis, and they are
therefore sampled from the corresponding 2D distribution.
The resulting spin-spin opening-angle distribution [4] is then
in accordance with the results sampled here, as shown in
Fig. 5.

Concluding remarks. This study describes two different
but equivalent methods for sampling angular momenta that
are correlated due to conservation laws. These methods were
applied to sampling the angular momenta of fission fragments
in either three or two dimensions. With a focus on the distri-
bution of the spin-spin opening angle ψ , it was illustrated how
the relative magnitude of the moment of inertia for the orbital
fragment motion influences P12(ψ ) significantly.

Comparisons with recent model calculations of the
opening-angle distribution showed that the result obtained
with antisymmetrized molecular dynamics [7] agrees well
with the statistical form pertaining to 3D spins with mo-
ments of inertia typical of scission, as might be expected.
On the other hand, it is puzzling that results obtained with
microscopic time-dependent functional theory [6] can be re-
produced with the 3D equilibrium distribution using a relative
moment of inertia that corresponds to a shape that is signifi-
cantly more compact than touching spheres. It may be noted
that the 3D samplings do not invoke the scission geometry,
thus ignoring the basic geometric requirement that the relative
angular momentum be perpendicular to the fission axis.
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Finally, it was shown that the 2D equilibrium form with
scission moments of inertia reproduces the results of fis-
sion simulations with the FREYA code [4,5] which does
take account of the specific scission geometry and gener-
ates fragment spins that are perpendicular to the fission
axis.

The present analysis brings out an important feature of
the coupled angular momenta appearing in fission: The rela-
tive motion, due to the large size of the associated moment
of inertia in comparison with those of the individual frag-
ments, effectively acts as a reservoir of angular momentum.
Then the conservation of angular momentum has little effect
on the fragment spins and they become nearly independent.
Indeed, the angular momenta generated by FREYA are only
slightly correlated with regard to both their directions and

their magnitudes. The latter feature was recently observed
experimentally [16].

In view of the large differences between the model calcula-
tions of the spin-spin opening angle distribution, experimental
information on this observable is highly desirable as it could
help to clarify the scission physics.
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