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Mixed configurations and intertwined quantum phase transitions in odd-mass nuclei
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We introduce a new Bose-Fermi framework for studying spectral properties and quantum phase transitions
(QPTs) in odd-mass nuclei, in the presence of configuration mixing. A detailed analysis of odd-mass Nb
isotopes discloses the effects of an abrupt crossing of states in normal and intruder configurations (Type II QPT),
accompanied by a gradual evolution from spherical- to deformed-core shapes within the intruder configuration
(Type I QPT). The pronounced presence of both types of QPTs demonstrates, for the first time, the occurrence
of intertwined QPTs in odd-mass nuclei.
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Structural changes induced by variation of parameters in
the Hamiltonian, called quantum phase transitions (QPTs)
[1,2], are salient phenomena in dynamical systems, and form
the subject of ongoing intense experimental and theoretical
activity in diverse fields [3]. In nuclear physics, most of the
attention has been devoted to the evolution of structure with
nucleon number, exhibiting two types of phase transitions.
The first, denoted as Type I [4], is a shape-phase transition in
a single configuration, as encountered in the neutron number
90 region [5]. The second, denoted as Type II [6], is a phase
transition involving an abrupt crossing of different configu-
rations, as encountered in nuclei near (sub)shell closures [7].
If the mixing is small, the Type II QPT can be accompanied
by a distinguished Type I QPT within each configuration
separately. Such a scenario, referred to as intertwined QPTs
(IQPTs), was recently shown to occur in the Zr isotopes [8,9].

Most studies of QPTs in nuclei have focused on sys-
tems with even numbers of protons and neutrons [5,7,10–12].
The structure of odd-mass nuclei is more complex due to
the presence of both collective and single-particle degrees
of freedom. Consequently, QPTs in such nuclei have been
far less studied. Fully microscopic approaches to QPTs in
medium-heavy odd-mass nuclei, such as the large-scale shell
model [13] and beyond-mean-field methods [14], are compu-
tationally demanding and encounter difficulties. Alternative
approaches have been proposed, including algebraic modeling
(shell-model inspired [15–17] and symmetry-based [18–24])
and density functionals-based mean-field methods [25–28],
involving particle-core coupling schemes with boson-fermion
or collective Hamiltonians. So far these approaches were
restricted to Type I QPTs in odd-mass nuclei without config-
uration mixing.
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The goals of the present Letter are twofold. (i) To introduce
a framework for studying spectral properties and QPTs with
configuration mixing, in odd-mass nuclei. This is motivated
by a wealth of new experimental data on shape-coexisting
states in such nuclei near shell closure [29,30], whose await-
ing interpretation necessitates multiple configurations. (ii) To
apply the formalism and show evidence for concurrent types
of QPTs exemplifying, for the first time, IQPTs in odd-mass
nuclei.

Odd-A nuclei are treated in the interacting boson-fermion
model (IBFM) [16], as a system of monopole (s) and
quadrupole (d) bosons, representing valence nucleon pairs,
and a single (unpaired) nucleon. We propose to extend the
IBFM to include core excitations and obtain a boson-fermion
model with configuration mixing (IBFM-CM), employing a
Hamiltonian of the form

Ĥ = Ĥb + Ĥf + V̂bf . (1)

The boson part (Ĥb) is the Hamiltonian of the configuration
mixing model (IBM-CM) of [31,32]. For two configurations
(A,B), it can be cast in matrix form [6],

Ĥb =
[

ĤA
b (ξ (A)) Ŵb(ω)

Ŵb(ω) ĤB
b (ξ (B))

]
. (2)

Here, ĤA
b (ξ (A)) represents the normal A configuration (N

boson space) and ĤB
b (ξ (B)) represents the intruder B con-

figuration (N + 2 boson space), corresponding to 2p-2h
excitations across the (sub)shell closure. Standard forms,
as in Eq. (4) of Ref. [9], include pairing, quadrupole, and
rotational terms, and a mixing term Ŵb = ω[(d†d†)(0) +
(s†)2] + Hermitian conjugate (H.c.). Such IBM-CM Hamil-
tonians have been used extensively for the study of
configuration-mixed QPTs and shape coexistence in even-
even nuclei [8,9,31–39].
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The fermion Hamiltonian (Ĥf ) of Eq. (1) has the form

Ĥf =
[∑

j ε
(A)
j n̂ j 0

0
∑

j ε
(B)
j n̂ j

]
, (3)

where j is the angular momentum of the occupied orbit, n̂ j

the corresponding number operator, and ε
(i)
j (i = A, B) are

the single-particle energies for each configuration. The boson-
fermion interaction has the form

V̂bf =
[
V̂ A

bf (ζ (A)) Ŵbf (ω j )

Ŵbf (ω j ) V̂ B
bf (ζ (B))

]
. (4)

Here, V̂ (i)
bf (i = A, B) involve monopole, quadrupole, and ex-

change terms with parameters ζ (i) = (A(i)
j , �

(i)
j j′ ,�

(i) j′′
j j′ ). Using

the microscopic interpretation of the IBFM [16], these cou-
plings can be expressed in terms of strengths (A(i)

0 , �
(i)
0 ,�

(i)
0 )

and occupation probabilities (u j, v j ). The term Ŵbf (ω j ) =∑
j ω j n̂ j[(d†d†)(0) + (s†)2 + H.c.], controls the mixing for

each orbit.
The Hamiltonian of Eq. (1) is diagonalized numerically.

The resulting eigenstates |�; J〉 are linear combinations
of wave functions �A and �B, involving bosonic basis
states in the two spaces |[N], α, L〉 and |[N + 2], α, L〉.
The boson (L) and fermion ( j) angular momenta are
coupled to J , |�; J〉 = ∑

α,L, j C(N,J )
α,L, j |�A; [N], α, L; j; J〉 +∑

α,L, j C(N+2,J )
L, j |�B; [N + 2], α, L; j; J〉. The probability of

normal-intruder mixing is given by

a2 =
∑
α,L, j

∣∣C(N,J )
α,L, j

∣∣2
, b2 = 1 − a2 =

∑
α,L, j

∣∣C(N+2,J )
α,L, j

∣∣2
. (5)

Operators inducing electromagnetic transitions of type σ and
multipolarity L contain boson and fermion parts,

T̂ (σL) = T̂b(σL) + T̂f (σL). (6)

For E2 transitions, T̂b(E2) = e(A)Q̂(N )
χ + e(B)Q̂(N+2)

χ , where
the superscript (N ) denotes a projection onto the [N] boson
space and Q̂χ = d†s + s†d̃ + χ (d†d̃ )(2). For M1 transitions,

T̂b(M1) = ∑
i

√
3

4π
g(i)L̂(Ni ) + g̃(i)[Q̂(Ni )

χ × L̂(Ni )](1), where i =
(A, B), NA = N , NB = N + 2. The fermion operators T̂f (σL)
have the standard form [16] with effective charge e f for E2
transitions, and gs quenched by 20% for M1 transitions. In
what follows, we apply the above IBFM-CM framework to
the study of QPTs in the odd-mass Nb isotopes.

The A
41Nb isotopes with mass number A = 93–105 are de-

scribed by coupling a proton to their respective 40Zr cores with
neutron number 52–64. In the latter, the normal A configura-
tion corresponds to having no active protons above the Z = 40
subshell gap, and the intruder B configuration corresponds to
two-proton excitation from below to above this gap, creating
2p-2h states. The parameters of Ĥb (2) and boson numbers are
taken to be the same as in a previous calculation of these Zr
isotopes (see Table V of Ref. [9]), except for χ = −0.565 at
neutron number 64.

For 41Nb isotopes, the valence protons reside in the Z =
28–50 shell. Using as an input the empirical single-proton
energies (taken from Table XI of Ref. [40]) and a pairing gap

TABLE I. Parameters in MeV of the boson-fermion interactions,
V̂ (i)

bf of Eq. (4), obtained from a fit assuming A(i)
0 =A0, �

(i)
0 =�0 and

�
(i)
0 =�0, ε

(i)
j =ε j , where (i = A, B). From a BCS calculation, ε j =

1.639, 1.524, 2.148 and 2.519 MeV and v2
j =0.299, 0.589, 0.858,

and 0.902, for the 1g9/2, 2p1/2, 2p3/2, 1 f5/2 orbits, respectively, and
Fermi energy λF =2.024 MeV.

Neutron number 52 54 56 58 60 62 64

A0 0.00 0.00 0.00 −0.11 −0.20 −0.20 −0.20
�0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
�0 1.00 1.00 3.00 3.00 3.80 3.80 3.80

�F = 1.5 MeV, a BCS calculation yields the single quasi-
particle energies (ε j) and occupation probabilities (v2

j ) for
the considered 1g9/2, 2p1/2, 2p3/2, 1 f5/2 orbits, assuming, for
simplicity, the same parameters for both configurations. The
derived ε j and v2

j , and the common strengths (A0, �0,�0),
obtained by a fit, are listed in Table I. As seen, the monopole
term (A0) vanishes for neutron number 52–56 and corrects
the quasiparticle energies at neutron number 58–64. The
quadrupole term (�0) is constant for the entire chain. The ex-
change term (�0) increases towards the neutron midshell [16].
Altogether, the values of the parameters are either constant
for the entire chain or segments of it and vary smoothly. We
take ω j = 0 in the Ŵbf term of Eq. (4), since for equal ω j it
coincides with the Ŵb term of Eq. (2).

In the present Letter, we concentrate on the positive-parity
states in Nb isotopes, postponing a discussion of both parity
states to a longer paper. Such a case reduces to a single- j
calculation, with the π (1g9/2) orbit coupled to the boson
core. Figure 1 shows the experimental and calculated levels
of selected states, along with assignments to configurations
based on Eq. (5). Open (solid) symbols indicate a dominantly
normal (intruder) state with small (large) b2 probability. In

FIG. 1. Comparison between (a) experimental [41–45] and
(b) calculated lowest-energy positive-parity levels in Nb isotopes.
Open (solid) symbols indicate a state dominated by the normal A
configuration (intruder B configuration), with assignments based on
Eq. (5). In particular, the 9/2+

1 state is in the A (B) configuration
for neutron number 52–58 (60–64) and the 5/2+

1 state is in the A (B)
configuration for 52–54 (56–64). Note that the calculated values start
at 52, while the experimental values include the closed shell at 50.
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FIG. 2. Evolution of spectral properties along the Nb chain.
Symbols (solid lines) denote experimental data (calculated results).
(a) Percentage of the intruder (B) component [the b2 probability in
Eq. (5)], in the ground state (J+

gs) and the first-excited positive-parity
state (7/2+

1 ) of 93−103Nb. The values of J+
gs are indicated at the top.

(b) B(E2; 7/2+
1 → J+

gs ) in Weisskopf units (W.u.). (c) Quadrupole
moments of J+

gs in eb. (d) Magnetic moments of J+
gs in μN . Data

in (b)–(d), are taken from Refs. [41,42,47], Refs. [41,42,48], and
Refs. [41–45,48], respectively.

the region between neutron number 50 and 56, there appear
to be two sets of levels with a weakly deformed structure,
associated with configurations A and B. All levels decrease
in energy for 52–54, away from the closed shell, and rise
again at 56 due to the ν(2d5/2) subshell closure. From 58,
there is a pronounced drop in energy for the states of the B
configuration. At 60, the two configurations cross, indicating
a Type II QPT, and the ground state changes from 9/2+

1 to
5/2+

1 , becoming the bandhead of a K = 5/2+ rotational band
composed of 5/2+

1 , 7/2+
1 , 9/2+

1 , 11/2+
1 , 13/2+

1 states. The in-
truder B configuration remains strongly deformed and the
band structure persists beyond 60. The above trend is similar
to that encountered in the even-even Zr isotopes with the same
neutron numbers (see Fig. 14 of Ref. [9]).

A possible change in the angular momentum of the ground
state (J+

gs) is a characteristic signature of Type II QPTs in
odd-mass, unlike even-even nuclei where the ground state
remains 0+ after the crossing. It is an important measure for
the quality of the calculations, since a mean-field approach,
without configuration mixing, fails to reproduce the switch
9/2+

1 → 5/2+
1 in J+

gs for the Nb isotopes [46]. Figure 2(a)
shows the percentage of the wave function within the B con-
figuration for J+

gs and 7/2+
1 , as a function of neutron number

across the Nb chain. The rapid change in structure of J+
gs from

the normal A configuration in 93−99Nb (small b2 probabil-
ity), to the intruder B configuration in 101−105Nb (large b2)
is clearly evident, signaling a Type II QPT. The configuration
change appears sooner in the 7/2+

1 state, which changes to
the B configuration already in 99Nb. Outside a narrow region
near neutron number 60, where the crossing occurs, the two
configurations are weakly mixed and the states retain a high
level of purity. Such a trend is similar to that encountered for
the 0+

1 and 2+
1 states in the respective 40Zr cores (see Fig. 10

of Ref. [9]).
Electromagnetic transitions and moments provide further

insight into the nature of QPTs. For T̂b(E2) of Eq. (6),
we adopt the same parameters (e(A), e(B), χ ) used for the
core Zr isotopes [9], with a slight modification of e(A) =
2.45, 1.3375

√
W.u. for neutron numbers 52–54 and e(B) =

2.0325
√

W.u. for 62. The fermion effective charge in T̂f (E2)
is ef = −2.361

√
W.u., determined from a fit to the ground-

state quadrupole moment of 93Nb. For T̂b(M1) we use g(A) =
−0.21, −0.42μN for neutron number 52–54 and zero oth-
erwise, g(B) = (Z/A)μN and g̃(A) = g̃(B) = 0 (−0.017μN ) for
52–56 (58–64). For T̂f (M1) we use g� = 1μN and gs =
4.422μN .

The B(E2; 7/2+
1 → J+

gs ) and quadrupole moment of J+
gs are

shown in Figs. 2(b) and 2(c), respectively. These observables
are related to the deformation, the order parameter of the
QPT. Although the data are incomplete, one can still observe
small (large) values of these observables below (above) neu-
tron number 60, indicating an increase in deformation. The
calculation reproduces well this trend and attributes it to a
Type II QPT involving a jump between neutron number 58
and 60, from a weakly deformed A configuration, to a strongly
deformed B configuration. Such a Type II scenario is sup-
ported also by the trend in the magnetic moments (μJ ) of the
ground state, shown in Fig. 2(d), where both the data and the
calculations show a constant value of μJ for neutron numbers
52–58, and a drop to a lower value at 60, which persists for
60–64. This trend of approximately constant value for each
range of neutron numbers suggests a corresponding constant
mixing in the ground state wave function, in line with the
calculated weak mixing before and after the crossing, shown
in Fig. 2(a).

To identify a Type I QPT, involving shape changes within
the intruder B configuration, we examine the individual struc-
ture of Nb isotopes at the end points of the region considered.
Figure 3 displays the experimental and calculated levels in
93Nb along with E2 and M1 transitions among them. The
corresponding spectra of 92Zr, the even-even core, are also
shown with an assignment of each level L to the normal A or
intruder B configurations, based on the analysis in Ref. [9],
which also showed that the two configurations in 92Zr are
spherical or weakly deformed. It has long been known [50]
that low-lying states of the A configuration in 93Nb can be in-
terpreted in a weak-coupling scheme, where the single-proton
π (1g9/2) state is coupled to spherical-vibrator states of the
core. Specifically, for the 0+

1;A ground state of 92Zr, this cou-
pling yields the ground state 9/2+

1 of 93Nb. For 2+
1;A, it yields a

quintuplet of states, 5/2+
1 , 7/2+

1 , 9/2+
3 , 11/2+

1 , 13/2+
1 , whose
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FIG. 3. Experimental (left) and calculated (right) energy levels in MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates in
W.u., for 93Nb and 92Zr. Lines connect L levels in 92Zr to sets of J levels in 93Nb, indicating the weak coupling (L ⊗ 9

2 )J . Data taken from
Refs. [42,49]. Note that the observed 4+

1;A state in 92Zr is outside the N = 1 model space.

“center of gravity” (CoG) [51], is 0.976 MeV, in agreement
with the observed energy 0.935 MeV of 2+

1 in 92Zr. The E2
transitions from the quintuplet states to the ground state are
comparable in magnitude to the 2+

1;A → 0+
1;A transition in 92Zr,

except for 9/2+
3 , whose decay is weaker. The corresponding

M1 transitions are weak, while M1 transitions within states of
the quintuplet are strong, as expected for weak-coupling to a
spherical vibrator [16]. An octet of states built on 4+

1;A can also
be identified in the empirical spectrum of 93Nb, with a CoG of
1.591 MeV, close to 1.495 MeV of 4+

1;A.
The weak-coupling scenario is also valid for states of

the intruder B configuration in 93Nb. As shown in Fig. 3,
the coupling of π (1g9/2) to the 0+

2;B state in 92Zr yields the
excited 9/2+

2 state in 93Nb. For 2+
2;B it yields the quintu-

plet, 5/2+
3 , 7/2+

3 , 9/2+
4 , 11/2+

3 , 13/2+
2 , whose CoG is 1.705

MeV, a bit lower than 1.847 MeV of 2+
2;B. The observed E2

rates 1.03(9) W.u. for 9/2+
2 → 9/2+

1 , is close to the calcu-
lated value 0.85 W.u., but is smaller than the observed value
1.52(10) W.u. for 9/2+

3 → 9/2+
1 , suggesting that 9/2+

2 is as-
sociated with the B configuration.

For 103Nb, the yrast states shown in Fig. 4 are arranged
in a K = 5/2+ rotational band, with an established [53] Nils-
son model assignment 5/2+[422]. The band members can be
interpreted in the strong-coupling scheme, where a particle
is coupled to an axially deformed core. The indicated states
are obtained by coupling the π (1g9/2) state to the ground
band (L = 0+

1 , 2+
1 , 4+

1 , . . .) of 102Zr, which is associated with
the intruder B configuration. The calculations reproduce well
the observed particle-rotor J (J + 1) splitting, as well as the
E2 and M1 transitions within the band. Altogether, we see
an evolution of structure from weak-coupling of a spheri-
cal shape in 93Nb, to strong-coupling of a deformed shape
in 103Nb. Such shape changes within the B configuration

(Type I QPT), superimposed on abrupt configuration crossing
(Type II QPT), are the key defining feature of intertwined
QPTs (IQPTs). Interestingly, the intricate IQPTs scenario,
originally observed in the even-even Zr isotopes [8,9], persists
in the adjacent odd-even Nb isotopes.

In conclusion, we have presented a general framework
(IBFM-CM), allowing a quantitative description of config-
uration mixing and related QPTs in odd-mass nuclei. An
application to the positive-parity states in odd-even Nb iso-
topes disclosed a Type II QPT (abrupt configuration crossing)
accompanied by a Type I QPT (gradual shape evolution
and transition from weak to strong coupling within the in-
truder configuration), thus demonstrating, for the first time,

FIG. 4. Experimental (left) and calculated (right) energy levels in
MeV, and E2 (solid arrows) and M1 (dashed arrows) transition rates
in W.u., for 103Nb. Data taken from Refs. [47,52].
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IQPTs in odd-mass nuclei. The observed IQPTs in odd-A
Nb isotopes echo the multiple QPTs previously found in
the adjacent even-even Zr isotopes [8,9]. The results ob-
tained motivate further experiments of non-yrast spectroscopy
in such nuclei, as well as set the path for new investiga-
tions on multiple QPTs and coexistence in other Bose-Fermi
systems.
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