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Resolving the spurious-state problem in the Dirac equation with the finite-difference method
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To solve the Dirac equation with the finite-difference method, one has to face the spurious-state problem due to
the fermion doubling problem when using the conventional central difference formula to calculate the first-order
derivative on equal interval lattices. This problem is resolved by replacing the central difference formula with the
asymmetric difference formula, i.e., the backward or forward difference formula. To guarantee the hermiticity
of the Hamiltonian matrix, the backward and forward difference formula should be used alternatively according
to the parity of the wave function. This provides a simple and efficient numerical prescription to solve various
relativistic problems in the microscopic world.
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The Dirac equation is essential to describe relativistic sys-
tems consisting of spin- 1

2 particles in atomic physics, nuclear
physics, and particle physics. The Dirac equation is a cou-
pled first-order differential equation for wave functions with
large and small components. It can be solved analytically
with very few potentials. Therefore, the numerical methods
to obtain the eigenenergies and wave functions of the Dirac
equation are highly demanded in the relevant fields. Many
numerical technologies have been applied to solve the Dirac
equation, such as the shooting method [1,2], basis expansion
method [3–6], finite-difference method (FDM) [7–9], finite-
element method (FEM) [10–15], Green’s function method
[16], imaginary time step (ITS) method [17], inverse Hamil-
tonian method [18,19], conjugate gradient method [20], and
so on. Among these methods, the shooting and basis expan-
sion methods are quite robust. They are extensively used to
solve the Dirac equation in the relativistic mean-field model,
which is a powerful tool to describe many nuclear properties
[2,21–24]. However, these two methods are very sensitive to
the box size or basis space for the weakly bound states. The
Green’s function method is not sensitive to the space size but
cannot give the eigenenergies and wave functions directly. The
ITS, inverse Hamiltonian, and conjugate gradient methods are
also friendly to the space size but they need steps of evolutions
to achieve the final solutions.

The FDM is a very simple and efficient method to solve the
differential equation, where the derivative operator is easily
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replaced by a combination of several function values with
the finite-difference formula. This method does not need any
evolution process. It achieves great success in solving the
Schrödinger equation [25]. In the lattice quantum chromody-
namics (LQCD) theory [26,27], researchers found a so-called
“fermion doubling” problem when the Dirac field is dis-
cretized with a central difference formula (CDF), i.e., more
fermionic states than expected were obtained. On the other
hand, one could get spurious solutions with rapidly oscillating
wave functions mixing with the physical solutions in solving
the Dirac equation with FDM for the same reason.

LQCD atttempts to remove the fermion doubling problem
by introducing an external energy term in the Hamiltonian,
i.e., the Wilson term, which modifies the energy-momentum
dispersion relation of Dirac particle and shifts the spuri-
ous state to the continuum spectrum [28,29]. Alternatively,
the high-accurate finite-difference formula for the first-order
derivative with more lattice points can also help to reduce the
number of spurious states in Dirac equation [7,8].

In this work, we will propose a novel and simple pre-
scription to solve the spurious-state problem when solving the
Dirac equation with the FDM for massive fermions without
adding any artificial terms. For a numerical illustration, we
will take the nucleons of a finite nucleus moving in a Dirac
Woods-Saxon potential as an example to explain this prescrip-
tion.

The Dirac equation describing a nucleon with the mass M
moving in the scalar S(r) and vector V (r) potentials can be
written as [2]

{α · p + V (r) + β[M + S(r)]}�(r) = ε�(r), (1)
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TABLE I. The neutron energy levels of 132Sn for κ = −1 and κ = 1 in the Woods-Saxon potential obtained by the FDM with different
difference formulas and shooting method. The spurious states are marked in boxes. The unit of the energy level is MeV.

3PCDF 5PCDF 3PADF 5PADF Shooting
κ = −1 κ = 1 κ = −1 κ = 1 κ = −1 κ = 1 κ = −1 κ = 1 κ = −1 κ = 1

−55.006 −55.006 −55.005 −51.734 −55.004 − 46.157 −55.005 − 46.162 −55.005 − 46.162

−46.165 − 46.165 −35.186 − 46.162 −33.915 − 21.377 −33.929 − 21.405 −33.929 − 21.405

−33.937 −33.937 −33.930 − 21.405 −9.171 − 0.284 −9.210 − 0.304 −9.210 − 0.259

−21.419 − 21.419 −9.211 −14.263

−9.230 −9.230 − 0.290

where α and β are the Dirac matrices, and ε and �(r) are
the eigenenergy and the corresponding wave function, respec-
tively.

In a spherical system, the wave function can be written as

�(r) = 1

r

(
G(r)Yl jm

iF (r)Yl̃ jm

)
, (2)

where l = j ± 1/2 and l̃ = 2 j − l . G(r) and F (r) are the
large and small components of the wave function, respec-
tively. Yl jm(r̂) is the spin spherical harmonics. Therefore, the
radial Dirac equation can be obtained as

(
�(r) κ

r − d
dr

κ
r + d

dr �(r)

)(
G(r)
F (r)

)
= E

(
G(r)
F (r)

)
, (3)

where

�(r) = V (r) + S(r),

�(r) = V (r) − S(r) − 2M,

E = ε − M,

κ = (−1) j+l+1/2( j + 1/2). (4)

We take the Woods-Saxon potentials describing the finite
nuclei for the �(r) and �(r) fields from the relativistic mean-
field model. The details can be found in Ref. [30]. Explicitly,
we take the neutron in the nucleus 132Sn (N = 82, Z = 50)
as an example in the following calculation.

With the FDM, the first-order derivative operator d/dr in
Eq. (3) can be replaced by a numerical differentiation formula
on the equal interval lattices. Then the Dirac Hamiltonian in
Eq. (3) can be expressed as a matrix in the coordinate space.
The eigenenergies and wave functions can be easily obtained
by diagonalizing this Dirac Hamiltonian matrix.

There are many formulas for the finite-difference approxi-
mations to calculate the first-order derivative. The three-point
CDF is the simplest one that approximates the first-order
derivative of a function f (r) at r by

df (r)

dr
� f (r + h) − f (r − h)

2h
, (5)

where h is the lattice interval. If the position r is equally
discretized as n lattices, the first-order derivative of f (r) can

be written in a matrix form,

d

dr
= 1

2h

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1

−1 0 1
. . .

−1 0 1

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

In the following calculation, we take a box with Rbox = 20 fm
and n = 500 lattices. Furthermore, we assume the boundary
condition for the wave functions as f (r) = 0 for r = 0 and
outside the box, r > Rbox. Then, the Dirac equation (3) can be
written in the matrix form as(

A B1
B2 C

)(
G
F

)
= E

(
G
F

)
, (7)

where G is a vector for the large component of wave function,
G(r) at r1 = h, r2 = 2h, . . . , rn−1 = (n − 1)h, rn = nh,

G =

⎛
⎜⎜⎜⎜⎝

G(r1)
G(r2)

...

G(rn−1)
G(rn)

⎞
⎟⎟⎟⎟⎠, (8)

and F has a structure similar to G but for the small component.
The matrices A and C are diagonal with �(r) and �(r). The
matrix B1 can be written as

B1c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ
r1

− 1
2h

1
2h

κ
r2

− 1
2h

. . .

1
2h

κ
rn−1

− 1
2h

1
2h

κ
rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)
and B2c = BT

1c.
After diagonalizing the above Dirac Hamiltonian matrix

(7), one can get n sets of eigenenergies and the corresponding
wave functions. The first five bound states obtained by the
above FDM using the three-point CDF (3PCDF) for the states
ns1/2 (κ = −1) and np1/2 (κ = 1) are shown in the columns
3PCDF in Table I. For comparison, the results obtained by the
shooting method are also listed in the same table. One can find
pairs of degenerate solutions between κ = 1 and κ = −1. The
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FIG. 1. The wave functions of neutrons in 132Sn for the states
with κ = −1 and κ = 1 in Woods-Saxon potential obtained by the
FDM with three-point CDF.

large and small components of their wave functions are shown
in Fig. 1. The panels (a) and (b) of Fig. 1 show the wave
functions of the states with the same energy E = −55.006
MeV obtained for κ = −1 and κ = 1, respectively. It is easy
to identify the physical state 1s1/2 in panel (a) for κ = −1,
but the spurious state with rapidly oscillating wave functions
is observed in panel (b) for κ = 1. Similar spurious states
appear in panels (c), (f), and (g) for the states with energies
E = −46.165 MeV (κ = −1), E = −33.937 MeV (κ = 1),
and E = −21.419 MeV (κ = −1), respectively. All the spuri-
ous states are marked in boxes in Table I. On the other hand,
the physical solutions have energies close to those obtained by
the shooting method.

Actually, the origin of the above degenerate physical and
spurious states was demonstrated in Ref. [9]. Zhao found that
if the first-order derivative is calculated by the three-point
CDF as in Eq. (6), there exists a unitary matrix U that trans-
forms the Hamiltonian with κ , Hκ to that with −κ , H−κ , i.e.,
UHκU −1 = H−κ . This matrix U has alternating ±1 diagonal
elements. As a result, one can obtain the degenerate energy
solutions Eκ = E−κ , with the wave functions φκ = Uφ−κ . If
the wave function φ−κ is a physical solution, the correspond-

FIG. 2. The wave functions of the large component G(r) of 3p1/2

state obtained by FDM using 5PADF and the shooting method with
box sizes Rbox = 20 fm and 40 fm. The inset shows the asymptotic
wave function in logarithmic scale.

ing φκ will have rapidly oscillating wave function between
the positive and negative values, and thus becomes a spurious
solution. This can be seen in the panels (b), (c), (f), and (g)
of Fig. 1. However, half of each envelope of these oscillating
wave functions is identical to that of the physical state with
the same energy.

One may try to use the five-point CDF that has a higher
accuracy to calculate the first-order derivative instead. The
obtained results for κ = −1 and κ = 1 are listed in columns
5PCDF in Table I. In this case, one can find that the degen-
eracy between the physical and spurious solutions disappear.
This is because there is no longer the unitary matrix U to
transform H−κ to Hκ . Therefore, the number of spurious states
is reduced compared to those obtained by the 3PCDF. This
fact was also found in Ref. [7].

To avoid the fermion doubling problem, Ref. [27] used the
two-point forward or backward difference formula, i.e., the
asymmetric difference formula (ADF), to discretize the Dirac
field of the massless fermion in one-dimensional LQCD.
Recently, Ref. [31] clearly pointed out in their Fig. 5 that
the central symmetric formula (5) uses the wave functions
at r − h and r + h to calculate the first-order derivative, but
misses the information at r. This can also explain the fact that
5PCDF can produce less spurious states since it misses less
information at r comparatively. Therefore, Ref. [31] applied
the ADF to calculate the first-order derivative in the mesh-
sweeping method to solve the Dirac equation for electrons in
two-dimensional graphene.

In the following, we will apply the ADF to calculate the
first-order derivative in the FDM to solve the Dirac equation.
Taking the three-point formula as an example, the forward or
backward difference formulas are

df (r)

dr
� −3 f (r) + 4 f (r + h) − f (r + 2h)

2h
,

df (r)

dr
� f (r − 2h) − 4 f (r − h) + 3 f (r)

2h
. (10)
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One may notice that, if only the forward or backward dif-
ference formula was used for both the large and small wave
function components, the Dirac Hamiltonian matrix thus es-
tablished would be non-Hermitian. Actually, we found that,
for the wave function components with even parity, the
backward difference formula should be applied to guaran-
tee that its derivative is zero at r = 0, according to the
boundary condition. Instead, for the wave function com-
ponents with odd parity, the forward difference formula
should be used. It should be also noticed that the parities
of the large and small components of the same state in
the Dirac equation are opposite. Therefore, we should apply
the forward or backward difference formula alternatively for

the large and small components of the Dirac wave func-
tion according to their parities. This prescription can not
only guarantee the hermiticity of the Dirac Hamiltonian, but
also include the full wave function information while doing
the first-order derivatives, and thus eliminate the spurious
state.

Explicitly, for the states with κ = −1, the large (small)
component of the Dirac wave function should have odd (even)
parity. Then, the upper-right corner matrix B1 in the Dirac
Hamiltonian (7) which includes the first-order derivative of
the small component should use the backward difference for-
mula. Taking the three-point formula (10) as an example, this
matrix can be written as

B1b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ
r1

− 3
2h

4
2h

κ
r2

− 3
2h

− 1
2h

4
2h

κ
r3

− 3
2h

. . .

− 1
2h

4
2h

κ
rn−1

− 3
2h

− 1
2h

4
2h

κ
rn

− 3
2h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

and the corresponding matrix B2 at the bottom-left of the
Dirac Hamiltonian for the large component should be calcu-
lated with the forward difference formula (denoted as B2 f ),
which turns out to be the same with BT

1b.
The first five bound states obtained by the FDM using the

above three-point ADF for the states with κ = −1 and κ = 1
are listed in columns 3PADF in Table I. One can find that
there is no longer a spurious state. The results have one-to-one
correspondence to those obtained by the shooting method. If
we use the five-point ADF with higher accuracy, the results
listed in columns 5PADF are much closer to those obtained by
the shooting method. The largest energy difference appears in
the 3p1/2 state, which is very weakly bound with the energy
E ≈ −0.3 MeV. We have checked that if the box size is
enlarged to be Rbox = 40 fm, the 5PADF and shooting method
will give the same results −0.292 MeV. Table I shows that
with a smaller box, Rbox = 20 fm, the FDM with 5PADF can
give more accurate eigenenergy for the weakly bound states
than the shooting method.

In Fig. 2, the large components of the wave function
for 3p1/2 obtained by the shooting method and FDM using
5PADF with box sizes Rbox = 20 fm and 40 fm are shown up
to r = 20 fm. When the box size is Rbox = 40 fm, the wave
functions obtained by the two methods are identical. With the
box size Rbox = 20 fm, the wave function obtained by the
shooting method is obviously different from those obtained
with the box size Rbox = 40 fm, especially in the asymptotic
region. Comparatively, the wave functions obtained by the

FDM with the box Rbox = 20 fm are much closer to those
obtained with the box size Rbox = 40 fm. This shows that
the FDM is less sensitive to the box size than the shoot-
ing method for the weakly bound state. The reason is that
the boundary condition for the wave function is G(r) = 0
at r = Rbox in the shooting method, but at r > Rbox in the
FDM.

In summary, the spurious-state problem in the FDM to
solve the Dirac equation for massive fermions is resolved
directly without any evolution process or adding any other
artificial terms. The spurious states are completely eliminated
by using the ADF instead of the CDF to calculate the first-
order derivative in the Dirac Hamiltonian. To guarantee the
hermiticity of the Dirac Hamiltonian, the forward and back-
ward ADFs should be used alternatively for the large and
small components of the wave function according to their
parities. This prescription is illustrated by the example of neu-
trons moving in a Dirac Woods-Saxon potential in 132Sn. The
feasibility of this prescription is also checked for the hydrogen
system. This prescription provides a very simple and efficient
technique to apply the FDM for the description of relativistic
systems in the fields of atom physics, nuclear physics, particle
physics, and so on.

This work was supported in part by the National Natu-
ral Science Foundation of China (Grants No. 11775119 and
No. 2175109) and the Natural Science Foundation of Tianjin
(Grant No. 19JCYBJC30800).

[1] C. J. Horowitz and B. D. Serot, Nucl. Phys. A 368, 503
(1981).

[2] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and
L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).

L051303-4

https://doi.org/10.1016/0375-9474(81)90770-3
https://doi.org/10.1016/j.ppnp.2005.06.001


RESOLVING THE SPURIOUS-STATE PROBLEM IN THE … PHYSICAL REVIEW C 106, L051303 (2022)

[3] Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198,
132 (1990).

[4] S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. C 68, 034323
(2003).

[5] G. Li-Sheng, J. Meng, and H. Toki, Chin. Phys. Lett. 24, 1865
(2007).

[6] B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89,
014323 (2014).

[7] S. Salomonson and P. Öster, Phys. Rev. A 40, 5548 (1989).
[8] J. Fang, S. Chen, T, Heng, Nucl. Sci. Technol. 31, 15 (2020).
[9] B. Zhao, Acta Phys. Sin. 65, 052401 (2016).

[10] C. Bottcher and M. R. Strayer, Ann. Phys. (NY) 175, 64
(1987).

[11] C. F. Fischer and F. A. Parpia, Phys. Lett. A 179, 198 (1993).
[12] W. Pöschl, D. Vretenar, and P. Ring, Comput. Phys. Commun.

99, 128 (1996).
[13] C. Müller, N. Grün, and W. Scheid, Phys. Lett. A 242, 245

(1998).
[14] S. Zhao, Comput. Methods Appl. Mech. Eng. 196, 5031

(2007).
[15] H. Almanasreh, S. Salomonson, and N. Svanstedt, J. Comput.

Phys. 236, 426 (2013).
[16] T. T. Sun, L. Qian, C. Chen, P. Ring, and Z. P. Li, Phys. Rev. C

101, 014321 (2020).

[17] Y. Zhang, H. Liang, and J. Meng, Int. J. Mod. Phys. E 19, 55
(2010).

[18] K. Hagino and Y. Tanimura, Phys. Rev. C 82, 057301 (2010).
[19] Y. Tanimura, K. Hagino, and H. Z. Liang, Prog. Theor. Exp.

Phys. 2015, 073D01 (2015).
[20] B. Li, Z. X. Ren, and P. W. Zhao, Phys. Rev. C 102, 044307

(2020).
[21] P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
[22] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,

Phys. Rep. 409, 101 (2005).
[23] J. Meng and S. G. Zhou, J. Phys. G: Nucl. Part. Phys. 42,

093101 (2015).
[24] Relativistic Density Functional for Nuclear Structure, edited by

J. Meng (Word Scientific, Singapore, 2016), Vol. 10.
[25] J. H. Bartlett, Phys. Rev. 88, 525 (1952).
[26] L. Susskind, Phys. Rev. D 16, 3031 (1977).
[27] R. Stacey, Phys. Rev. D 26, 468 (1982).
[28] K. G. Wilson, in New Phenomena in Subnuclear Physics,

edited by A. Zichichi, The Subnuclear Series Vol. 13 (Springer,
New York, 1977), pp. 69–142.

[29] J. B. Kogut, Rev. Mod. Phys. 55, 775 (1983).
[30] W. Koepf and P. Ring, Z. Phys. A 339, 81 (1991).
[31] B. Szafran, A. Mreńca-Kolasińska, and D. Żebrowski,

Phys. Rev. B 99, 195406 (2019).

L051303-5

https://doi.org/10.1016/0003-4916(90)90330-Q
https://doi.org/10.1103/PhysRevC.68.034323
https://doi.org/10.1088/0256-307X/24/7/021
https://doi.org/10.1103/PhysRevC.89.014323
https://doi.org/10.1103/PhysRevA.40.5548
https://doi.org/10.1007/s41365-020-0728-6
https://doi.org/10.7498/aps.65.052401
https://doi.org/10.1016/0003-4916(87)90056-X
https://doi.org/10.1016/0375-9601(93)91138-U
https://doi.org/10.1016/S0010-4655(96)00100-2
https://doi.org/10.1016/S0375-9601(98)00218-7
https://doi.org/10.1016/j.cma.2007.06.018
https://doi.org/10.1016/j.jcp.2012.11.020
https://doi.org/10.1103/PhysRevC.101.014321
https://doi.org/10.1142/S0218301310014637
https://doi.org/10.1103/PhysRevC.82.057301
https://doi.org/10.1093/ptep/ptv083
https://doi.org/10.1103/PhysRevC.102.044307
https://doi.org/10.1016/0146-6410(96)00054-3
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1103/PhysRev.88.525
https://doi.org/10.1103/PhysRevD.16.3031
https://doi.org/10.1103/PhysRevD.26.468
https://doi.org/10.1103/RevModPhys.55.775
https://doi.org/10.1007/BF01282936
https://doi.org/10.1103/PhysRevB.99.195406

