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Uncertainty propagation of model parameters through nuclear reaction models is critical for nuclear data
evaluation and other applications. Nuclear reaction models generally contain nonlinear functions of the model
parameters, making the process of uncertainty propagation difficult. Usually stochastic approaches like the
Monte Carlo method are employed to propagate the uncertainties through nuclear reaction models. The Monte
Carlo method does provide proper results, but it takes a lot of computational power and time, which makes
the process of uncertainty propagation difficult. Deterministic sampling approaches may provide results with
accuracy using less computational time making the process of uncertainty propagation fast. In this study we have
explored the use of a deterministic sampling approach called the unscented transform method for the uncertainty
propagation in the nuclear reaction models. As a test case we have propagated the uncertainties of correlated
optical model parameters through the optical model calculations for total and reaction cross sections of the
n + 56Fe reaction. The results obtained using the unscented transform method are then compared with the results
of the Monte Carlo method. It has been observed that the unscented transform method provides results practically
similar to the Monte Carlo method in less computational time. It is concluded in this study that the unscented
transform method can propagate uncertainties effectively through optical model calculations and there should be
further investigation of the use of this method for other nuclear reaction models.
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Nuclear reaction data of good quality with a covariance
matrix are crucial for safer and more advanced nuclear fa-
cilities, and this field has seen much progress in the past
few decades [1–3]. Experimental measurement of nuclear re-
action observables like cross sections, angular distributions,
differential cross sections, etc., is a challenging and expensive
task. Measuring all the physical quantities experimentally for
a variety of nuclear reactions over a wide range of projectile
energies is not feasible. Also some reactions of high im-
portance may be impossible to measure directly due to the
unavailability of targets or projectiles [4–6]. Therefore the use
of the theoretical models is inevitable in this kind of situation,
also such theoretical models are regularly used to interpolate
and extrapolate the data in the absence of the experimental
measurements, making them an integral part of the nuclear
data evaluation [1,7]. Theoretical predictions are also associ-
ated with the uncertainties and may be correlated similarly
to the experimentally measured data. These uncertainties can
be attributed to different sources, e.g., uncertainties in the
model parameters, uncertainties due to model deficiencies,
algorithmic uncertainties, etc. [8,9]. Hence the quantitative
knowledge of such sources of uncertainties and their effect
on the final predictions of the model is very important.

In recent years there have been a renewed interest in the
field of uncertainty quantification in low energy nuclear re-
actions [10–13]. Uncertainty quantification problems can be
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broadly classified into two categories, one is inverse prob-
lems; in which the model parameter uncertainties or model
uncertainty itself are quantified using the well known final
outcomes. The second is the forward problems, which are
concerned with the determination of the uncertainties in the
final outcomes of the models due to uncertainties in the input
parameters [1]. In this study we will be focusing only on
the forward uncertainty propagation of the model parameters.
Input parameter uncertainties need to be propagated through
nuclear reaction models, which generally contain nonlinear
functions of the input parameters. When the statistical mo-
ments of the input parameters are known then there are two
distinct approaches for calculating the statistical moment of
the model outputs, these are the stochastic approach and de-
terministic approach [1,14]. In this study, we will be using a
stochastic approach called the Monte Carlo method of uncer-
tainty propagation, which provides accurate results even if the
model functions are highly nonlinear [7,9]. In this method the
input model parameters are sampled randomly from their joint
probability distribution function and these random samples of
the input parameters are then used to propagate the uncertain-
ties through the theoretical model. But this method requires
a very large number of random samples to be drawn so that
it can give reliable results, which makes this method compu-
tationally expensive if the model calculations itself take large
computational time. Deterministic sampling approaches may
provide satisfactory results in less calculations as compared
to the Monte Carlo method [15]. In this study we have also
used a deterministic sampling approach called the unscented
transform method [16–19]. This method was first proposed
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by Julier and Uhlmann for improving the performance of the
Kalman filter in the presence of nonlinearities [16,18]. Since
then this method has been used extensively in many fields
of science and engineering successfully. There are different
variants of the unscented transformation, and here we will
be using the scaled unscented transform method [20,21]. In
this method a few sample points (also called sigma points) are
sampled using well defined deterministic equations and each
sigma point is assigned with its corresponding weight. The
weights and sigma points can be adjusted using an arbitrary
scaling parameter to include information about the higher
moments of the output probability distribution.

In this paper, we have propagated the optical model param-
eter uncertainties through the optical model calculations for
the total and reaction cross sections of the n + 56Fe reaction
for the neutron energies 1–20 MeV using the Monte Carlo and
unscented transform methods. The final cross sections, their
uncertainties, and correlation matrix obtained by using both
methods are then compared to check the performance of the
unscented transform (UT) method with respect to the Monte
Carlo (MC) method.

Consider an n dimensional input vector X of correlated
input parameters with Vx as their covariance matrix. Let Y
be an m dimensional output vector derived from a collection
of functions yk = fk (X); k = 1, 2, . . . , m; and Vy represents
its covariance matrix. Generally such functions are nonlinear,
and can be linearized by using the first two terms of the Taylor
series expansion as

yk ≈ fk (X0) + f ′
k (X0)(X − X0). (1)

Here, X0 represents the vector of mean values of the input
vectors, and the first term of the Taylor series expansion
represents the mean of the output variables Y0 = f (X0). Then
according to the general law of uncertainty propagation [14],
we can write Vy ≈ HVxHT , where H represents the Jacobian
matrix of Y with respect to X. This method does not provide
satisfactory results if the functions are nonlinear, because
then the higher order derivatives in the Taylor series will
not be negligible [22]. Also calculating the Jacobian matrix
and Hessian matrix is a cumbersome task if the functions
are nonlinear. Hence, instead of using linearization, using the
sampling methods reduces the need for the determination of
derivatives.

In the MC method, a large collection of vectors Xl (l =
1, 2, . . . , L) is sampled randomly from the joint probability
distribution function of the input vector X. Then an ensemble
of the output vector YMC

l is calculated [YMC
l = f (Xl )] cor-

responding to each randomly sampled input vector Xl . From
this ensemble, the mean (YMC

0 ) and covariance matrix of the
output vector (VMC

yi j ) can be calculated [14] as

YMC
0 = 1

L

L∑

l=1

YMC
l , (2)

VMC
yi j =

∑L
l=1

(YMC
li YMC

l j

)

L
− YMC

0i YMC
0 j ; i, j = 1, 2, . . . , m.

(3)

FIG. 1. Total and reaction cross sections calculated correspond-
ing to the parameters sampled deterministically are presented
in (a) and (c), respectively, calculated total and reaction cross
sections corresponding to 100 out of 1000 random samples of pa-
rameters used in this study are presented in (b) and (d), respectively.

This method is robust against the nonlinearities and also pro-
vides complete information about the probability distribution
function of the output vector. The results of this method are
not unique as the mean and covariance are functions of the
number of samples, hence in order to achieve the better con-
vergence a large number of samples should be used.

In the UT method instead of using random samples, (2n +
1) sigma points (χi; i = 0, 1, . . . , 2n) are sampled from the
input vector X using deterministic equations. The transforma-
tion equations [20,21] are as given below:

χ0 = X0,

χi = X0 + (
√

(n + λ)Vx )i (i = 1, . . . , n),

χi = X0 − (
√

(n + λ)Vx )i−n (i = n + 1, . . . , 2n). (4)

Here, λ = α2(n + κ ) − n. The matrix square root in above
equations can be calculated using algorithms like Cholesky
decomposition, which is numerically stable. Every sigma
point χi is assigned with its corresponding weight [21] using
the following equations:

W (m)
0 = λ/(n + λ), (5)

W (c)
0 = λ/(n + λ) + (1 − α2 + β ), (6)

W (m)
i = W (c)

i = 1/{2(n + λ)} (i = 1, . . . , 2n). (7)

The parameters α, β, and κ are called the scaling param-
eters. The value of α controls the spread of the sigma points
around the mean value of the parameter, the secondary scaling
parameter κ also determines the spread of the sigma points. If
the number of parameters involved in the calculations is large
(n > 3) then κ is generally set to be zero and the value of α

varies between 1 � α � 10−4. The value of β does not effect
the sigma points but rather it incorporates information about
the probability distribution function of the input parameters
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FIG. 2. (a) Mean and standard deviation of total cross sec-
tions calculated using the MC and UT method. (b) Mean and
standard deviation of reaction cross sections calculated using the MC
and UT method.

by including the contributions from higher order moments of
the parameters in the covariance of the output vector. Weights
represented by the superscripts ‘m’ and ‘c’ are used for cal-
culating the mean and covariance matrix, respectively. Then
an ensemble of (2n + 1) output vectors is calculated corre-
sponding to each sigma point; YUT

i = f (χi ), i = 0, . . . , 2n.
The mean and the covariance matrix of the output vector can
be calculated using the following equations:

YUT
0 =

2n∑

i=0

W (m)
i YUT

i , (8)

VUT
y =

2n∑

i=0

W (c)
i

(YUT
i − YUT

0

)(YUT
i − YUT

0

)T
. (9)

An optical model potential contains real and imaginary
parts, which further contains volume central, surface central,
and spin orbit parts

U (r, E ) = V (r, E ) − iW (r, E ). (10)

There are different parametrizations available to represent the
strength and shape of these parts [23–26]. We have used
a common Woods-Saxon phenomenological optical model
potential parametrization that has been used extensively in
recent years [23].

In this study we have compared two approaches of un-
certainty propagation as described above by propagating the

FIG. 3. Fractional uncertainties in the total and reaction cross
sections calculated using the UT and MC methods are presented in
(a) and (b), respectively.

optical model parameter uncertainties for the reaction and
total cross section for the n + 56Fe reaction. Total and reac-
tion cross sections are the basic observables in optical model
calculations [27] and may be expressed as

σreaction = πλ̄2

2

∑

l j

(2 j + 1)
(
1 − ∣∣S j

l

∣∣2)
, (11)

σtotal = πλ̄2
∑

l j

(2 j + 1)
(
1 − ReS j

l

)
. (12)

Here, S j
l represents S-matrix element, l and j represents the

orbital and total angular momentum; for neutrons j = l ±
1/2, and λ̄ is the reduced wavelength of the neutrons.

In our previous study [12], we have optimized the optical
model parameters and their correlation matrix for n + 56Fe
and some other reactions. It was concluded in Ref. [12] that
the optical model parameters are correlated to each other,
therefore in this study, we will be using the correlated optical
model parameters and their covariance matrix calculated in
Ref. [12] as our inputs for the optical model calculations.
We have used TALYS-1.95 nuclear reaction code [28] for the
optical model calculations.

We have used 18 energy independent optical model pa-
rameters. For propagating their uncertainties through optical
model calculations using MC method, 1000 samples of 18
optical model parameters were randomly sampled from the
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FIG. 4. Correlation matrix for total cross sections calculated using the UT and MC methods are presented in (a) and (b), respectively, and
in (c),(d) the correlation matrix for reaction cross sections calculated using the UT and MC methods, respectively, is presented.

multivariate normal distribution functions. Then optical model
calculations were performed for each random vector of optical
model parameters and 1000 corresponding vectors of total
and reaction cross sections for the neuron energy range 1 to
20 MeV were calculated. From this ensemble of total and
reaction cross sections their mean and covariance matrix were
calculated using Eqs. (2) and (3). Similarly for propagating
these uncertainties using the UT method, 37 deterministic
sigma points of 18 optical model parameters were generated
using Eq. (4). We have used scaling parameters with values
α = 0.55, κ = 0, and β = 0.177 in this study. Then 37 vectors
of total and reaction cross sections corresponding to each
sigma point were calculated using optical model calculations.
From the ensemble of cross sections the mean and covariance
matrix of the cross sections were calculated using Eqs. (8) and
(9).

We have performed an uncertainty propagation of the op-
tical model parameters as described above. The total cross
sections and reaction cross sections for the n + 56Fe reaction
corresponding to 37 sigma points of optical model parame-
ters obtained using UT are presented in Fig. 1(a) and 1(c),
respectively. Also the optical model results for the total and
reaction cross sections corresponding to 100 out of 1000 ran-
dom vectors of optical model parameters have been shown
in Fig. 1(b) and 1(d), respectively, for more clarity. These

figures represent the ensemble of the model outputs which
are highly correlated and information about the statistical mo-
ments of the cross sections can be extracted from them. From
the ensembles of reaction and total cross sections obtained
using the MC and UT methods, the mean and covariance
matrix of the cross sections were calculated. Total and reac-
tion cross sections along with their standard deviations have
been presented in Fig. 2(a) and 2(b), respectively. The results
obtained using the MC method have been presented by black
dots, while results of the UT method are presented using red
triangles. These results show that the UT method provides
results similar to that of the MC method. Calculation time
for a single run for the present problem in TALYS-1.95 take
≈25 s, in MC method time required for 1000 runs is ≈25000 s
or ≈416 min, while the calculation time using UT method is
≈925 s or ≈15 min only. This difference in the computational
time of two approaches will be more drastic if the model
calculations themselves take computational time of minutes
or hours. The difference between the MC and UT results for
total cross sections are between 0.1 mb to 11 mb (the results
of the UT method differ from the MC method between 0.02%
to 0.46% for total cross sections). Also the deviations of the
uncertainties for total cross sections from these methods differ
to each other in the range of 0.007 to 3 mb. Similarly for
reaction cross sections the results from the two methods differ
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in the range of 0.001 mb to 5 mb (results of the UT method
differ from that of the MC method by 0.006 to 0.34 %) also
the uncertainties deviate from each other by 0.01 mb to 1.5
mb.

We have also calculated the fractional uncertainties
[�σ/σ (%)] in the total and reaction cross sections for both
MC and UT methods and are presented in Fig. 3. From Fig. 3
it is clear that the fractional uncertainties calculated using
the UT method are very close to those calculated using the
MC method. The difference between fractional uncertainties
calculated from two methods for total cross sections is be-
tween 0.001 to 0.09 and for reaction cross sections it differs
between 0.003 to 0.07. From the ensemble of outputs the
covariance matrix for total and reaction cross sections were
also calculated. From these covariance matrices, we cal-
culated the correlation matrix of the cross sections. The
correlation matrix calculated using the MC and UT methods
for total and reaction cross sections have been presented in
Fig. 4(a), 4(b), 4(c), and 4(d). These figures clearly show
that the cross sections are correlated to each other and also
the correlation matrices calculated by using both the methods
show the same structures. The correlation coefficients calcu-
lated using both methods for total cross sections [Fig. 4(a) and
4(b)] are comparable and the maximum difference between
them is 0.19. Also the correlation matrix from both methods
for reaction cross sections [Fig. 4(c) and 4(d)] is comparable
and the maximum difference between the correlation coeffi-

cients is 0.04. The rapid change in the correlations for neutron
energies below ≈4 MeV can be attributed to the sensitivity of
the total and reaction cross sections to the perturbations in the
optical model parameters [29].

In the present study the uncertainties of the optical model
parameters have been successfully propagated through optical
model calculations using the UT method and MC method for
the n + 56Fe reaction. The cross sections, their uncertainties,
and correlation matrix calculated using both methods have
been compared. It is found that the total and reaction cross
sections show positive correlations among themselves. It is
also established in this study that, although the UT method
takes less calculation time in comparison to the MC method,
yet the mean, uncertainties, and the correlation matrix of the
cross sections are comparable to the MC method. This study
successfully demonstrated that the UT method can be used for
calculating the estimated cross sections and their covariance
matrix with good accuracy in few calculations. This study also
advocates for the further investigation of the UT method for
propagating the uncertainties in other nuclear reaction models
of interest.
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