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The � separation energies in the mirror hypernuclei 4
�H-4

�He exhibit large charge symmetry breaking (CSB).
Analyzing this CSB within pionless effective field theory while using partially conserved baryon-baryon SU(3)
flavor symmetry, we deduce a �-�0 induced in-medium admixture amplitude AI=1 ≈ 1.5% in the dominantly
isospin I = 0 � hyperon. Our results confirm the free-space value A(0)

I=1 inferred directly within the SU(3) baryon
octet by Dalitz and von Hippel in 1964 and reaffirmed in a recent QCD+QED lattice calculation. Furthermore,
exploring the consequences of SU(3) flavor symmetry on the �-nucleon interaction, we find that CSB is expected
to impact the S = 1 and S = 0 spin channels in opposite directions, with the latter dominating by an order of
magnitude. These observations explain a recent deduction of �-nucleon CSB strengths.

DOI: 10.1103/PhysRevC.106.L031001

Introduction. Renormalization of hadron decay constants
in nuclear matter is a recurring theme in hadronic physics.
Well known examples are the roughly 30% in-medium
quenching of the pion decay constant fπ and the weak-decay
axial-vector constant gA. The quenching of fπ was inferred
from deeply bound π−-atom levels in heavy nuclei [1], soon
shown by Friedman to hold over the whole periodic table
[2], in line with a chiral-symmetry partial restoration argu-
ment by Weise [3]. The quenching of gA was noticed by
Wilkinson in nuclear Gamow-Teller β decays [4] and soon
attributed by Rho [5] to spin-isospin correlations manifest
in the Ericson-Ericson-Lorentz-Lorenz renormalization of the
p-wave pion-nucleus optical potential [6].

Less explored is the S = −1 strange hadronic sector,
where the poorer database of � hypernuclei [7] limits the
deduction of in-medium trends. A particularly interesting
question is whether and how far the Dalitz–von Hippel (DvH)
[8] relatively large amplitude A(0)

I=1 ≈ 1.5% of an I = 1 ad-
mixture in the dominantly I = 0 � hyperon gets renormalized
in dense matter. A(0)

I=1 was inferred by DvH from the �-�0

mass-mixing matrix element M�0� related in SU(3)-flavor
[SU(3) f ] symmetry to octet baryon electromagnetic mass dif-
ferences δMBB′ = MB − MB′ :

M�0� = 1√
3

(δM�0�+ − δMnp) = 1.14 ± 0.05 MeV, (1)

leading to the free-space value

A(0)
I=1 = M�0�/δM��0 = −0.0148 ± 0.0006. (2)

We note that this result holds also in quark models, where
SU(3) octet and decuplet baryons are assigned to the 56
SU(6) multiplet, by assuming only one-quark mass terms and
two-quark interaction terms [9] but no three-quark interaction
terms. More recently, Eq. (2) was confirmed in a QCD+QED
lattice calculation [10], although with considerably larger un-
certainty of order 30%.

Appreciable �N charge symmetry breaking (CSB) is
implied by this isospin impurity of the � hyperon. Unfor-
tunately, the poorly known two-body �N scattering data
are limited to �p. In � hypernuclei [7], CSB affects
mirror states (N ↔ Z), e.g., the 0+

g.s. and 1+
exc.

4
�H-4

�He
levels where differences of � separation energies B�(Jπ )
are nonzero: �B�(0+

g.s.) = 233 ± 92 keV and �B�(1+
exc.) =

−83 ± 94 keV; see Fig. 1. A particularly precise measure of
CSB is given by their difference, ��B� = 316 ± 20 keV,
equal to the difference �Eγ between the two γ -ray ener-
gies marked red in the figure. This value is about four times
larger than the nuclear CSB splitting �BCSB(3H- 3He) = 67 ±
9 keV in the mirror core nuclei 3H - 3He [14]. The A = 4
hypernuclear CSB B� splittings have been studied recently
within chiral effective field theory (χEFT) at leading order

FIG. 1. A = 4 hypernuclear level scheme [11–13] with γ -ray
energies [11] marked in red. CSB splittings are shown in MeV to
the right of the 4

�He levels. Figure adapted from Ref. [13].
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FIG. 2. � hypernuclear CS two-body (a) and three-body
(b) contact-term diagrams and their associated low-energy constants
C and D, respectively, plus in (c) a �N → �0N contact-term dia-
gram, followed by a cross for �-�0 mixing, to illustrate a /πEFT(LO)
realization of the CSB ansatz (3).

(LO) [15] and next-to-leading order (NLO) [16]. In the latter
work, the 4

�H-4
�He splittings were used to estimate the impact

of CSB on the �N interaction. It was found that CSB acts
predominantly on the spin S = 0 channel and that it affects
the S = 1 and S = 0 channels in opposite directions, but no
satisfactory theoretical argument was given to motivate this
difference. Below, we show that these findings are conse-
quences of SU(3) f .

It was noted by DvH that �-�0 mixing induces a long-
range, one-pion exchange (OPE), CSB �N potential. This
result was generalized in Ref. [17] relating the CSB �N
potential to the charge-symmetric (CS) �N ↔ �N transition
potential,

〈�N |VCSB|�N〉 = − 2√
3
A(0)

I=1 〈�N |VCS|�N〉 τNz. (3)

A schematic illustration of this CSB ansatz is given in Fig. 2,
diagram (c). The factor 2 emerges from applying � − �0

mixing to either incoming or outgoing � states. Projecting
the IY N = 1/2 �N state on the right-hand side onto its �0N
component produces the factor −τNz/

√
3, with τNz = ±1 for

p, n respectively.
Here we explore whether the CSB ansatz (3) is satisfied

in the 4
�H-4

�He mirror hypernuclei, i.e., to what extent the
value of A(0)

I=1 is renormalized in matter. To this end we intro-
duce CSB into pionless effective field theory (/πEFT) studies
of few-body hypernuclei at LO [18,19]. Since �N one-pion
exchange (OPE) is forbidden for the dominantly I = 0 �

hyperon, a /πEFT breakup scale 2mπ is assumed, remarkably
close to the threshold value pth

�N ≈ 283 MeV/c for exciting
a �N pair. Although � hyperon degrees of freedom are
generally excluded at LO, they may be entered implicitly for
p�N 	 2mπ through a CS �N ↔ �N transition contact term,
such as in Eq. (3), which we relate within a partially conserved
SU(3) f to CS NN and �N diagonal contact terms. Doing so,
we find that the free-space value A(0)

I=1 ≈ −0.015 persists also
in the 4

�H-4
�He mirror hypernuclei.

Model. The LO /πEFT interaction for nucleons and �

hyperons consists of two-baryon BB and three-baryon BBB s-
wave contact terms shown schematically in Figs. 2(a) and
2(b). These contact terms are given by CS potentials of the

form

V S
B1B2

= CS
B1B2

(λ)PSδλ(r12), (4)

and

V IS
B1B2B3

= DIS
B1B2B3

(λ)QIS

∑
cyc

δλ(r12)δλ(r23). (5)

Here, the λ (fm−1) dependence attached to the low energy
constants (LECs) CS

B1B2
and DIS

B1B2B3
stands for momentum

cutoff values, introduced in a Gaussian form to regularize the
zero-range contact terms:

δλ(r) =
(

λ

2
√

π

)3

exp

(
−λ2

4
r 2

)
, (6)

thereby smearing a zero-range (in the limit λ → ∞) Dirac
δ(3)(r) contact term over distances ∼λ−1. The cutoff param-
eter λ may be viewed as a scale parameter with respect to
typical values of momenta Q. To make observables cutoff in-
dependent, LECs must be properly renormalized. Truncating
/πEFT at LO and using values of λ higher than the breakup
scale 2mπ , observables acquire a residual dependence O(Q/λ)
which diminishes with increasing λ. Finally, following the
coupled-channel study of Ref. [20], we estimate that ex-
cluding explicit � hyperon degrees of freedom incurs a few
percent error.

In Eq. (4), PS projects on s-wave B1B2 pairs (NN or �N)
with spin S associated, for a given cutoff λ, with four two-
body LECs CS

B1B2
fitted to low-energy two-body observables,

e.g., to the corresponding CS NN and �N scattering lengths.
Similarly, in Eq. (5), QIS project on NNN or �NN s-wave
triplets with isospin I and spin S associated with four three-
body LECs DIS

B1B2B3
fitted to given CS averages of binding

energies: A = 3 without �, A = 3, 4 with �, thereby making
the procedure applied in Ref. [18] explicitly CS. To calculate
these binding energies, the A-body Schrödinger equation is
solved variationally by expanding the wave function � in
a correlated Gaussian basis within a stochastic variational
method [21]. Convergence to a level of below 1 keV was ver-
ified by increasing the number of basis states. The predictive
power of CS /πEFT(LO) in the s shell was already tested in
Ref. [18] by calculating binding energies of 4He and 5

�He
and may soon be tested by comparing the calculated binding
energy of 5

��H- 5
��He [19], constrained by the 6

��He binding
energy datum, with a forthcoming measurement at J-PARC.
A /πEFT(LO) approach has been used recently in discussions
of the 3

�H (hypertriton) lifetime [22] and of a likely �nn
continuum state [23].

Introducing CSB, the two-body �N contact terms in V�N ,
Eq. (4), are modified by specifying nucleons as protons or
neutrons:

CS
�NPS →

(
CS

�p

1 + τNz

2
+ CS

�n

1 − τNz

2

)
PS, (7)

This suggests to define CS and CSB LECs CS
�N and δCS

�N ,
respectively, as

CS
�N = 1

2

(
CS

�p + CS
�n

)
, δCS

�N = 1

2

(
CS

�p − CS
�n

)
. (8)
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The �N interaction assumes then the form

V�N =
∑

S

(
CS

�N + δCS
�N τz

)PSδλ(r�N ). (9)

The CSB part of this potential, given in terms of two-
body LECs δCS

�N , is then treated perturbatively with respect
to the LO CS wave function. No three-body CSB LECs
are necessary at this order. The systematic accuracy of the
present CS model calculations is about (Q/2mπ )2 ≈ 6%,
where Q ≈ √

2M�B� ≈ 66 MeV/c is a typical momentum
scale in 4

�H-4
�He. The suppression of OPE with respect to

the dominant contact-terms contribution found in χEFT CSB
calculations—see, e.g., Ref. [16]—leads to a similar error
estimate ≈6% also for the present CSB calculations. Never-
theless, if judged by our residual cutoff dependence, a slightly
larger error estimate is suggested. The precise determination
of LO error requires consideration of higher order terms.

Results and discussion. The �N CSB LECs δCS
�N , S =

0, 1, were fitted perturbatively to the two A = 4 binding-
energy differences �B�(0+

g.s.) and �B�(1+
exc.) shown on the

right of Fig. 1. Here we solved the resulting two linear
equations for δCS

�N , S = 0, 1, using LO 4
�H(0+, 1+) wave

functions generated by using CS LECs exclusively. Using
4
�He(0+, 1+) wave functions instead leads to essentially the
same result. Readjusting the CS three-body LECs DIS

�NN
within given experimental errors of B�’s in the A = 3, 4 hy-
pernuclear systems incurs only a few percent uncertainties
in the fitted CSB LECs. The derived CSB LECs δCS

�N , of
order 1% of the respective �N CS LECs CS

�N , were used in a
distorted-wave Born approximation to produce �N scattering
length differences δa�N = 1

2 (a�p − a�n). Since there is no
direct experimental extraction of �N scattering lengths, we
used several model estimates for aS (�N ) as input to our
calculations. These models, including χEFT(LO) [26] and
χEFT(NLO) [27] used in recent A = 4 CSB calculations
[15,16], respectively, are listed in an inset to Fig. 3 and cited
in its caption. The figure shows calculated values of 2δaS as
function of the cutoff momentum λ in these �N interaction
models. In agreement with Ref. [16] we find that CSB hardly
affects the spin triplet aS=1, whereas the singlet aS=0 of or-
der ≈ (−2.5 ± 0.5) fm is affected strongly, making |a0(�n)|
larger by about 0.5 fm than |a0(�p)|, roughly in proportion
to |a0|. The dominance of S = 0 CSB is shown below to arise
naturally from SU(3) f considerations. Interestingly, going to
pure neutron matter, the size of the (attractive) spin averaged
�N scattering length (3a1 + a0)/4 increases by only ≈10%
from its approximately 2 fm value in symmetric nuclear
matter, thereby somewhat aggravating the “hyperon puzzle”
[28–30] in neutron star matter.

To check the present extraction of aS (�p) − aS (�n) we
also applied a similar procedure to the nuclear NN case. We
verified, successfully, that the experimentally derived CSB
difference of a0(pp) − a0(nn) = 1.6 ± 0.6 fm in the (NN )S=0

sector can be obtained in /πEFT(LO) from the A = 3 nuclear
“datum” �BCSB(3H- 3He) = 67 ± 9 keV [14]. Details will be
given elsewhere. Proceeding to the main point of this work,
the ansatz Eq. (3), we identify 〈�N |VCSB|�N〉 for a given
spin value S = 0, 1 with the CSB LEC δCS

�N extracted directly
from the 4

�H-4
�He spectrum. Similarly, working within the

FIG. 3. Scattering length differences 2δaS = aS (�p) − aS (�n)
for S = 0 (upper) and S = 1 (lower) as a function of cutoff mo-
mentum λ, derived from δCS

�N LECs extracted here in A = 4 CSB
calculations using �N potential models [24–27]; see text. The col-
ored bands represent uncertainties induced by experimental errors in
�B�(0+

g.s.) and �B�(1+
exc.) values.

framework of /πEFT, we identify the spin dependent matrix
element 〈�N |VCS|�N〉 with a new �N ↔ �N LEC CS

�N,�N .
Following Dover and Feshbach [31], we use SU(3) f to relate
CS

�N,�N to the NN and �N CS LECs established in the present
application of /πEFT(LO):

C0
�N,�N = −3

(
C0

NN − C0
�N

)
,

C1
�N,�N = (

C1
NN − C1

�N

)
. (10)

In the next step, inspired by Eq. (3), we replace the two CSB
LECs δCS

�N derived from the two binding energy differences
�B�(0+

g.s.) and �B�(1+
exc.) by two in-medium amplitudes

AS
I=1, S = 0, 1, defined by

−AS
I=1 = (

√
3/2) δCS

�N/CS
�N,�N , (11)

where the CS LECs CS
�N,�N are expressed through Eq. (10),

thereby eliminating any explicit reference to � hyperon de-
grees of freedom. The amplitudes AS

I=1, S = 0, 1, are shown
on the left-hand side of Fig. 4 as function of the cutoff λ, for
both S = 0 (upper) and S = 1 (lower) two-body spin states,
using the same �N interaction models cited in the inset of
Fig. 3. These amplitudes exhibit a rather weak dependence on
λ, with a common value consistent with (and for S = 0 close
to) the DvH value −A(0)

I=1 = 0.0148 from Eq. (2).
The results exhibited for AS

I=1, S = 0, 1, in the left
panel of Fig. 4 were derived using the relatively imprecise
binding energy differences �B�(0+

g.s.) = 233 ± 92 keV and
�B�(1+

exc.) = −83 ± 94 keV; see Fig. 1. Using instead the
considerably more precise single value �Eγ = 316 ± 20 keV
obtained from the difference between the two γ ray energies
marked in the figure is, however, insufficient to determine both

L031001-3
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FIG. 4. Left: /πEFT estimates for the in-medium DvH amplitudes −AS
I=1 = (

√
3/2)δCS

�N/CS
�N,�N (S = 0, upper; S = 1, lower), with δCS

�N

derived by fitting �B�(0+
g.s.) and �B�(1+

exc.), plotted as a function of the cutoff momentum λ and specified in an inset by the �N interaction
model [24–27] input. Colored bands provide uncertainties caused by �B� input values. Right: −AI=1 values from �Eγ = Eγ (4

�He)−Eγ (4
�H);

see text. Colored bands provide uncertainties caused by that of �Eγ . The horizontal colored intervals mark, in pink, the DvH [8] value of
−A(0)

I=1 = 0.0148 ± 0.0006 from Eq. (2), and in grey the LQCD [10] value 0.0168 ± 0.0054; see also Table I. Note the expanded vertical scale
on the right with respect to that on the left.

AS=0
I=1 and AS=1

I=1 . Assuming spin independence to start with,
a precise value AI=1 is derived from �Eγ as shown on the
right-hand side of Fig. 4. For all four �N potential models
considered on the left-hand side, the derived value (shown for
the χEFT models) is within the LQCD horizontal band for
cutoff λ � 6 fm−1, while for NSC97f [25] and χEFT(NLO)
[27] (and also its 2019 version [32]) the derived values do
enter the considerably narrower (±4%) DvH SU(3) f horizon-
tal band for −A(0)

I=1. All in-medium isospin I = 1 admixture
amplitudes −AI=1 calculated for λ � 2mπ exhibit a ∼λ−1

dependence, and the corresponding values extrapolated to the
renormalization scale-invariance limit λ → ∞ are listed in
Table I.

In view of its success, the above procedure can also be
applied in reverse. That is, substituting the DvH value A(0)

I=1

TABLE I. Estimates of the I = 1 admixture amplitude −AI=1

in the � hyperon from (i) baryon-number B = 1 free-space studies
of DvH and LQCD [8,10] and (ii) the present /πEFT(LO) B = 4
4
�H-4

�He CSB study, using Eq. (3) and input from �N χEFT models.
The B = 4 values are extrapolations to the renormalization scale in-
variance limit λ → ∞ and their listed uncertainties reflect primarily
input data uncertainties.

Method/Input B −AI=1

SU(3) f [8] 1 0.0148 ± 0.0006
LQCD [10] 1 0.0168 ± 0.0054
/πEFT(LO)/χEFT(LO) [26] 4 0.0139 ± 0.0013
/πEFT(LO)/χEFT(NLO) [27] 4 0.0168 ± 0.0014

from Eq. (2) and the SU(3) f relations Eq. (10) in Eq. (11), one
extracts the CSB LECs δCS

�N and evaluates the A = 4 CSB
splittings �B�(0+

g.s.) and �B�(1+
exc.). Doing so, we find that

the �B� values marked in Fig. 1 are reproduced within their
experimental error. We also find that (i) the resulting LECs
δC0

�N , δC1
�N have opposite signs, and (ii) |δC0

�N | � |δC1
�N |,

implying that CSB acts predominantly on the spin S = 0
channel.

Our results suggest strongly that the �’s I = 1 isospin
impurity of magnitude ≈1.5% in free space is upheld in the
A = 4 � mirror hypernuclei. This conclusion appears natural
in the context of partial restoration of chiral symmetry in
dense matter, since there is no direct link known to us between
�-�0 mixing and chiral symmetry breaking; for example, the
nonstrange quark-mass difference md − mu does not enter the
SU(3) f mass mixing matrix element M�0�, Eq. (1).

Closing remarks. /πEFT(LO) applications to few-body hy-
pernuclei are normally limited to N and � degrees of freedom.
To consider hypernuclear CSB, the set of two-body and three-
body s-wave CS LECs shown schematically in (a) and (b) of
Fig. 2 was extended, adding two S = 0, 1 �N CSB LECs
which were then fitted to the two experimentally available
CSB A = 4 �B� values. The resulting CS broken values of
the �N scattering lengths shown in Fig. 3 come out then
practically the same as those derived within a more involved
χEFT(NLO) approach [16] that includes additional � hy-
peron and pseudoscalar octet meson degrees of freedom.

Apart from suggesting an economical way to evaluate CSB
in strange matter, we were able to show that CSB is linked
uniquely to the I = 1 isospin impurity A(0)

I=1 of the dominantly
I = 0 � hyperon, provided (i) the ansatz (3) is adopted and (ii)

L031001-4
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the 〈�N |VCS|�N〉 transition matrix element in (3) is related
by SU(3) f to the 〈NN |VCS|NN〉 and 〈�N |VCS|�N〉 matrix
elements, each near its own threshold. Having managed to
avoid introducing explicitly � hyperon degrees of freedom
into the employed /πEFT(LO) scheme, we are spared of try-
ing to impose SU(3) f symmetry simultaneously on all �N ,
�N , and �N ↔ �N LECs fitted to low-energy scattering and
reaction data, proven impossible at LO in χEFT [26] as dis-
cussed recently [32] upon introducing a new χEFT(NLO)19
version. It is worth mentioning that two �N channels, specif-
ically (I = 3

2 , Jπ = 1+) and (I = 1
2 , Jπ = 0+), are plagued

by “Pauli forbidden” six-quark configurations, say uuuuds for
Iz = 3

2 of the former channel [33], providing thereby a specific
mechanism beyond the scope of SU(3) f .

The usefulness of the CSB approach outlined here for the
A = 4 mirror hypernuclei, where precise γ ray data exist,

should be tested in heavier hypernuclei when similarly pre-
cise CSB data become available. However, phenomenological
arguments regarding � hyperon admixtures in � hypernuclei
[17,34] lead us to believe that CSB splittings of 1s� mirror
levels decrease quickly with A, making such tests more diffi-
cult but nonetheless challenging.
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