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We demonstrate that Bayesian machine learning can be used to treat the vast amount of experimental
fission data which are noisy, incomplete, discrepant, and correlated. To supply the application needs, the
two-dimensional cumulative fission yields (CFY) of neutron-induced fission of 238U are evaluated for energy
dependencies and uncertainty qualifications by cross-experiment data fusion. For independent fission yields
(IFY) with very few experimental data, the heterogeneous data fusion of CFY and IFY is employed to interpolate
the energy dependence. This work shows that Bayesian data fusion can facilitate the maximum utilization of
imperfect raw nuclear data.
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Machine learning now impacts many scientific fields in-
cluding physics by offering new data-driven methodologies.
The nuclear data needs [1,2] for applications are much con-
cerned about the treatment of vast raw nuclear fission data
which are generally noisy, incomplete, and discrepant [3], and
they are also very costly. Conventionally, the evaluation of
nuclear fission data is a combined inference based on experi-
ments and semi-empirical models [4–6]. Differently, machine
learning provides a new route to infer by including all possible
data correlations, as well as by reducing influences of sub-
jective factors. Hence the augmented evaluation by machine
learning is very anticipated, so that maximum values of raw
imperfect nuclear data can be exploited for novel utilizations.

To supply nuclear application needs, more accurate fission
data are imperative in upgrading energy productions towards
a sustainable and more compact, cleaner, and safer way [1,2].
It is also crucial for understanding the reactor antineutrino
anomaly [7,8] and the astrophysical r process [9]. The fis-
sion product yields (FPYs) are the most important fission
observables, being correlated with multiple observables. In
major nuclear data libraries [4,10–12], evaluated fission yields
are only available for neutron incident energy at thermal
energy, 0.5, and 14 MeV. The energy dependence of FPYs
is ascribed to energy-dependent shell effects, dissipation ef-
fects, and prompt neutron emissions [13–15]. However, it is
still challenging for microscopic fission theories to provide
satisfying FPYs at the application level. The uncertainty quan-
tification of nuclear fission data is another major issue for the
safety design in nuclear engineering [16]. Since uncertain-
ties are correlated, the covariance matrix is widely used for
uncertainty assessments [17,18], which describes actually the
first-order sensitivity of uncertainty propagation. It is also not
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realistic to obtain an ideal covariance matrix from experiments
[16].

To overcome the issues in evaluations of imperfect fission
yields regarding the energy dependence and the uncertainty
quantification, we propose to use data fusion for augmented
evaluations based on Bayesian machine learning. There have
been an increasing number of applications of machine learn-
ing in nuclear physics (see a review [19]). For example,
machine learning has been applied for inferences of nuclear
structures [20–25] and nuclear reactions [26–29]. In par-
ticular, the machine-learning evaluation of fission data has
promising application interests [30–35]. Besides, the Gaus-
sian process can also solve regression problems of nuclear
data evaluations but it assumes local correlations. The appli-
cations of machine learning in nuclear physics so far have not
seriously considered the uncertainty propagation inherent in
imperfect data.

Data fusion is a prevalent way to deal with imperfect data
[36]. Data fusion refers to the process whereby information
from individual datasets sharing at least a number of variables
is merged [37]. The fused data are expected to produce more
consistent, accurate, and useful information than separated
data sources, due to underlying data correlations. It is possible
that some nonlocal and high-dimensional correlations could
be weak but non-negligible, in analogy to long-range and
many-body interactions in quantum systems. The inference
would be less precise when data in some energies is sparse,
however, its correlations with other data in other energies
can be beneficial to improve the inference. The case treated
in this work reveals that the evaluation of extremely incom-
plete independent fission yields (IFYs) in terms of energy
dependencies, namely, a large gap between incident-neutron
energies of 2 and 14 MeV can profit from the data fusion of
a more comprehensive coverage of cumulative fission yields
(CFYs). It is known that Bayesian machine learning is ideal
for uncertainty quantification [38] which is the key in fusion
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of imperfect data. Furthermore, the fusion of complex hetero-
geneous data can be naturally treated by Bayesian machine
learning, which exhibits the powerful capabilities of machine
learning by including correlations beyond the Gaussian pro-
cess and the covariance matrix.

We employ Bayesian neural networks (BNNs) [39] for ma-
chine learning of distributions of fission yields. The posterior
distribution p(ω|x, t ) of BNN is based on a prior distribu-
tion p(ω) of network parameters ω and a likelihood function
p(x, t |ω),

p(ω|x, t ) = p(x, t |ω)p(ω)

p(x, t )
. (1)

Thus the resulting inference has a distribution and naturally
provides the associated uncertainty. The data set is given as
D = {xi, ti}, where xi is the input and ti is the output fission
yields. The details of BNN have been described in previ-
ous works [31,38]. For the data fusion, it is crucial to take
into account the experimental uncertainties by the likelihood
function,

p(x, t | ω) = exp(−χ2/2). (2)

The cost function χ2(ω) read

χ2(ω) =
N∑

i=1

[ti − f (xi, ω)]2

δ2
i + σ 2

i,expt

, (3)

where f (xi, ω) denotes the network values. Note that the
weights in the likelihood include a noise scale δ2

i and the
experimental uncertainty σ 2

i,expt. δ2
i is uniform for all data

points and changes in the learning process until numerical
convergence. It is reasonable to see that data points with large
experimental uncertainties would have small weights in the
data fusion. It is also interesting to study how the experimental
uncertainties propagate to the prediction uncertainties. The
data fusion is in some sense similar to the conception of model
averaging and model mixing [20] but does not suffer from the
bias in model selections.

First, we demonstrate the uncertainty propagation by vary-
ing experimental uncertainties, or by deleting or adding data
points deliberately to mimic incomplete and discrepant data.
We use BNNs to evaluate the fission-mass distribution of
239U as an illustrative example, with experimental data from
Ref. [40]. In this experiment [40], the compound nucleus 239U
is produced by transfer reactions with an excitation energy
of 8.3 MeV (corresponds to a neutron-incident energy of
3.5 MeV). The data set also includes the evaluated IFY of
238U with neutron incident energies at 0.5 and 14 MeV from
JENDL [10]. Note that the nominal energy of 0.5 MeV, given
in JENDL as the mean energy of fission of 238U induced by
fast neutrons, is not realistic, while the true value is higher by
a few MeV [41]. Here the BNN adopts a single hidden layer
with 10 neurons because the tests employ a small data set of
309 data points. Figure 1(a) displays the evaluation of fission
yields of 239U by including original experimental uncertain-
ties. The BNN evaluations generally agree with experimental
data except that the evaluation at mass A = 100 is lower
than experiments, since the JENDL evaluation is also lower.
Figure 1(b) shows the inferred uncertainties by varying the
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FIG. 1. The BNN evaluations of IFY from fission of 239U, with
experimental data from Ref. [40]. The shadows denote the BNN
uncertainties as given by the confidence interval (CI) at 95%. Panel
(a) shows the BNN evaluation with experimental uncertainties. Panel
(b) shows the evaluated uncertainties by varying experimental uncer-
tainties with a factor from 0.5 to 2.0. Panels (c) and (d) show the
evaluations when data points of the right peak or the left peak are
deleted, respectively. Panels (f) and (g) show the evaluations with
some extra noisy data (red color).

experimental uncertainties in Fig. 1(a) with a factor from 0.5
to 2.0. We see that uncertainties indeed increase with increas-
ing experimental uncertainties but do not increase linearly. It
is reasonable to see that the uncertainties are generally larger
around two peaks. Figures 1(c) and 1(d) show the predictions
when the experimental data are deleted at the right or left
peak, respectively. We clearly see that the uncertainties as a
result of absent data are larger than that with experimental
data. Figures 1(e) and 1(f) show the influences of discrepant
data. In Fig. 1(e), we add some extra data at the left peak
that are not far from experiments with small uncertainties. We
see the evaluation moves toward the extra data with increased
uncertainties. In Fig. 1(f), we add some extra data that are
far from experiments but with large uncertainties. However,
we see the evaluation does not move significantly towards the
extra data. Therefore the uncertainty propagation is a com-
prehensive effect and would not significantly change due to a
few specific data. This also indicates that Bayesian machine
learning includes complex uncertainty correlations.

Next we did the practical Bayesian data fusion of cu-
mulative fission yields (CFY) of neutron-induced fission of
238U from different experiments with different incident ener-
gies. The raw imperfect experimental fission yields are taken
from the EXFOR library [3,42]. The energy-dependent fission
yields of n + 238U are key quantities in next-generation fast-
neutron reactors. In BNN, input variables are given in terms
of (Z , N , E ), i.e., the atomic number Z , neutron number N
of fragments, and the neutron incident energy E . There are
about 1221 scattered data points in a total of 33 experiments

L021304-2



BAYESIAN APPROACH TO HETEROGENEOUS DATA … PHYSICAL REVIEW C 106, L021304 (2022)

FIG. 2. The BNN evaluated CFY yield-energy relations of frag-
ments (a) 99Mo, (b) 135Xe, (c) 140Ba, and (d) 147Nd from n + 238U
fission are shown. The raw experimental data are taken from EX-
FOR [3]. Different experiments are denoted by different colors. The
shadows denote the corresponding BNN uncertainties given by a CI
of 95%.

with different energies of CFY of n + 238U. In addition, 2064
data points of evaluated CFY from JENDL at energies of 0.5
and 14 MeV are included as a learning constraint. Here BNN
adopts a double-layer network with 20-20 neurons.

The yield-energy relations of some long-lived isotopes are
of particular application interests for monitoring fission en-
vironments. For example, 135Xe has large neutron absorption
cross sections and is a “poison” for reactors [43]. Figure 2
shows the evaluated energy dependence of fission yields of
99Mo, 135Xe, 140Ba, and 147Nd. In Fig. 2, we see that the ex-
perimental data are indeed noisy, sparse, and even discrepant.
We see that data fusion can give reasonably the yield-energy
relations and uncertainty quantifications. Since JENDL eval-
uations are included, consequently BNN results are close to
JENDL [10] and ENDF [4] evaluations at 0.5 and 14 MeV
for the above four fragment yields. Our key motivation is
to infer the energy dependence between 0.5 and 14 MeV.
For 99Mo, CFY decreases first but does not decrease after
10 MeV. For 140Ba, the CFY decreases smoothly as the energy
increases. There are more data for 99Mo and 140Ba and they
are usually adopted as standards to determine other yields. For
135Xe, there are very few experimental data and the resulting
uncertainties are larger than in other cases. For 147Nd, there
are some significantly discrepant data between 5 and 10 MeV.
Our BNN evaluations are flat before 10 MeV and are close to
the latest measurement [44]. The corresponding uncertainties
become larger in this energy regime. In Fig. 2, the inference
uncertainties are larger than some experimental uncertainties
but they are acceptable regarding the influences of discrepant
data. The extrapolated yields at higher energies generally have
increasing uncertainties. The BNN uncertainty includes two
parts: the overall regression noise and the data-dependent
posterior uncertainty [39], while they are not exclusive. In
Fig. 2, there is an overall noise scale of ≈0.6 which is related
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FIG. 3. The two-dimensional CFY distributions of n + 238U fis-
sion obtained by BNN data fusion. Panels (a)–(c) show CFY at
incident neutron energies of 2, 8, and 14 MeV, respectively. Panels
(d)–(f) show the corresponding uncertainties at different energies.

to the description capability of BNN and can be reduced by
a more complicated neural network or a physics-informed
neural network. Besides, Figs. 1 and 2 demonstrate that the
experimental uncertainty, data sparsity, and data discrepancy
are reflected by the data-dependent uncertainty.

Figure 3 displays the two-dimensional CFY distributions
of neutron-induced fission of 238U at energies of 2, 8, and
14 MeV from BNN data fusion. It is known that the dis-
tributions of fission yields are often incomplete. Recent
experiments have made great progress in measurements of the
isotopic mass yields using the inverse kinetic method [40,45].
The two-dimensional CFY distribution is very different from
a sum of two-dimensional Gaussian distributions. In principle,
our results include the yield-energy relations of all fragments.
We can see that the highest yields are around Z = 53–54 and
N = 79–81, which decrease gradually with increasing ener-
gies. It is known that symmetric fission would become more
prominent as excitation energy increases [46,47]. The two
peaks associated with asymmetric fission modes reduce with
increasing energies, while the central distributions associated
with the symmetric fission mode are increasing. Therefore,
the energy dependence of fission modes can be reasonably
described by BNN data fusion. Figures 3(d)–3(f) shows the
corresponding uncertainties. There is an overall background
noise scale ≈0.6 for all data. Obviously the uncertainty is
energy dependent. The average uncertainties of Figs. 3(d)–
3(f) are 0.789, 0.805, and 0.793 for 1032 points, respectively.
The larger uncertainty at 8 MeV is related to the data spar-
sity around this energy regime. The uncertainties of some
CFY are as large as 1.4 where CFY have large values. The
relative uncertainties around peaks are actually smaller. The
one-dimensional charge yields can also be extracted from
the two-dimensional CFY distributions. The precise and com-
plete CFY are crucial to estimate the abnormal antineutrino
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FIG. 4. The two-dimensional IFY distributions of n + 238U fis-
sion with the neutron incident energy at 8 MeV. Panel (a) shows
the inference by BNN learning pure IFY data, panel (b) shows the
inference by the BNN heterogeneous data fusion of CFY and IFY,
panel (c) shows the inference by the GEF model for comparison.
Panels (d)–(f) show the uncertainties corresponding to panels (a)–(c),
respectively.

spectrum at reactors [8] and our results will be useful for such
studies.

Different from CFY, there are much fewer experimental
data of IFY and its evaluation is more challenging. IFY distri-
butions are particularly useful for posing constraints on fission
theories. For the neutron-induced fission of 238U, there are
only 211 IFY experimental data [3] and 2064 evaluated data
points from JENDL. For better interpolations of the energy de-
pendence of IFY, we employ the heterogeneous data fusion of
CFY and IFY by utilizing the correlations between CFY and
IFY. The learning dataset is (Ai, ZC/I

i , Ei, YC/I
i ), in which CFY

and IFY share the mass number A of fragments and the inci-
dent energy E , but their proton numbers are deliberately sep-
arated into two groups as ZI

i and ZC
i . Such a scheme is based

on the fact that CFY mainly results from β decays of IFY but
they have very different distributions. Actually the conversion
between CFY and IFY is nontrivial although they are related
by β decays. The heterogeneous datasets are learned by the
same network so that their multidimensional correlations are
naturally included. The evaluated IFY from JENDL at 0.5 and
14 MeV are used in the learning and our main purpose is to
interpolate the energy dependence at other energies.

Figure 4 displays the evaluation of IFY at 8 MeV with
learning of pure IFY and heterogeneous CFY and IFY, re-
spectively. The homogeneous fusion of IFY adopts a 16-16
network and the heterogeneous fusion of CFY and IFY adopts
a 20-20 network. There are almost no experimental IFY data

between 2 and 14 MeV. It is known that the energy depen-
dence of FPYs is nonlinear from Fig. 2. Thus the evaluation
of IFYs at 8 MeV is not reliable by learning only IFY data. We
see that there are almost no IFYs from the symmetric fission
between two peaks in Fig. 4(a), but there are considerable
symmetric fission IFY in Fig. 4(b). This demonstrated that
the heterogeneous data fusion of CFYs and IFYs can build
the energy-dependence information of CFYs into IFYs. The
resulting IFYs in Fig. 4(b) are consistent with the CFY in
Fig. 3(b). For comparison, the same evaluation by the GEF

model [6] is shown in Fig. 4(c), which also has considerable
IFY from the symmetric fission. Figures 4(d)–4(f) display the
uncertainties, correspondingly. We see that the homogeneous
fusion has a much smaller overall noise but some points have
large uncertainties. The heterogeneous fusion has an overall
background noise scale about 0.2 due to the influence of CFY.
Indeed, it has been pointed out that cross-experiment corre-
lations would result in increased final estimated uncertainties
[18]. On the other hand, without the background noise, the
data-dependent uncertainties of heterogeneous data fusion are
generally smaller than that of the homogeneous fusion. The
BNN evaluation will be further improved by considering the
subtle features such as the odd-even effects in charge yields
and the second-chance fission, through additional dedicated
data or physics knowledge.

In summary, we have applied Bayesian data fusion for
the evaluation of imperfect fission yields, in which the raw
experimental data are generally noisy, incomplete, discrepant,
and correlated. The Bayesian data fusion can be used to
augment the inference of energy dependence and uncertainty
quantification of imperfect fission data by including under-
lying correlations. The full two-dimensional distributions of
CFYs in terms of energy dependence are obtained, which
is valuable for designing advanced reactors. The evolution
of fission modes is revealed by the smooth transition of the
two-dimensional fission yields. The yield-energy relations of
some key fragments are now given with uncertainty quantifi-
cations, in which the energy dependencies of the uncertainties
are data dependent. Furthermore, we applied the heteroge-
neous data fusion to interpolate the energy dependence of
IFYs, which have very few experimental data, by including
additional information from CFYs. In the future, it is vital to
develop physics-informed machine learning for more reliable
evaluations. We expect that the heterogeneous data fusion
of multiple fission observables by physics-informed machine
learning is promising for a comprehensive and accurate mod-
eling of nuclear fission.
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