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Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies
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Nuclear masses are predicted with the Bayesian neural networks by learning the mass surface of even-even
nuclei and the correlation energies to their neighboring nuclei. By keeping the known physics in various so-
phisticated mass models and performing the delicate design of neural networks, the proposed Bayesian machine
learning mass model achieves an accuracy of 84 keV, which crosses the accuracy threshold of the 100 keV in
the experimentally known region. It is also demonstrated the corresponding uncertainties of mass predictions are
properly evaluated, while the uncertainties increase by about 50 keV each step along the isotopic chains towards
the unknown region. The shell structures in the known region are well described and several important features
in the unknown region are predicted, such as the new magic numbers around N = 40, the robustness of N = 82
shell, the quenching of N = 126 shell, and the smooth separation energies around N = 104.
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Introduction. The origin of heavy elements in the Uni-
verse is an important but unanswered fundamental question of
science [1]. The rapid neutron-capture process (r-process) is
responsible for producing about half of the elements heavier
than iron [2]. During the past decades, the r-process studies
have made substantial progress from both nuclear physics and
astrophysics sides [3,4]. However, the r-process astrophysical
sources and their specific conditions remain mysteries, and
the identification of the most important r-process site also
remains a hot topic [5–7].

The r-process studies necessitate the joint efforts of nu-
clear physicists and astrophysicists [8]. From the nuclear side,
nuclear mass is a crucial input [9], which determines the r-
process path, and hence relates the main r-process abundance
peaks at A = 130 and 195 to the nuclear shell closures at
N = 82 and 126, respectively. Nuclear mass also determines
the reaction energies of β decay and neutron capture in the r
process, so it is one important source of theoretical uncertain-
ties of β-decay half-lives and neutron-capture rates [10,11].
Although the measurements of nuclear mass have been made
great progress in recent years, especially for the nuclei on the
r-process path around N = 82 [12], the r-process path near
N = 126 or above is still unreachable for the present, or even
the next-generation, radioactive ion beam facilities. Therefore,
accurate nuclear mass predictions are essential to understand
the mysteries in the r process.

Due to the difficulties in the quantum many-body problem
and the complexity of nuclear force, accurate nuclear mass
prediction is a very challenging theoretical task. Even in the
experimentally known region, the accuracies of nuclear mass
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predictions are generally around 500 keV [13], which is much
poorer than the accuracy of 100 keV required by the r-process
studies [14]. The greater difficulty lies in the extrapolation.
It is found that the deviations of different mass models can
even reach tens of MeV when they are extrapolated to the
unknown neutron-drip line. Therefore, the accurate nuclear
mass prediction has become one of the bottlenecks in the
r-process studies.

In particular, one of the hot topics in the r-process studies
during past decades is the origin of the rare-earth peak, which
has been claimed to be associated with the N ≈ 104 kink in
the separation energies [15] or the doubly asymmetric fission
fragment distributions in the A ≈ 278 region [16]. If one can
construct accurate enough mass predictions for the r-path
nuclei leading to the rare-earth peak, one can confirm whether
there is a kink in the separation energies near N = 104, which
will become an essential step for understanding the origin of
the rare-earth peak.

For the above key open questions, we recall that the fa-
mous Bethe-Weizsäcker (BW) formula is the first nuclear
mass model, in which the nucleus is assumed as a charged
liquid drop [17,18]. It achieves an accuracy of about 3 MeV,
while large deviations from the experimental data are found
in the nuclei near the magic numbers. These large devia-
tions can be reduced by including the microscopic correction
energies, and the nuclear mass predictions with the accu-
racy of about 300-500 keV can be obtained. This kind of
mass model is usually named as macroscopic-microscopic
model, such as finite-range droplet model (FRDM) [19] and
Weizsäcker-Skyrme (WS) model [20]. However, the micro-
scopic correction energies are generally extracted from the
single-particle levels of phenomenological mean fields, which
are generally independent of the macroscopic part. Such an
inconsistency between the macroscopic and microscopic parts
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would affect the model reliability. The microscopic mass
models based on the nuclear density functional theory are
usually believed to have better extrapolation abilities, e.g., the
relativistic mean-field model [21,22] and the nonrelativistic
Hartree-Fock-Bogliubov (HFB) model with Skyrme [23] or
Gogny [24] force. Their present accuracies are, however, gen-
erally lower than the macroscopic-microscopic models.

To further improve the accuracy of nuclear models, the
machine learning techniques have attracted much attention
during the past years. In particular, the Bayesian version
of machine learning is expected to be able to provide the
corresponding theoretical uncertainties [25]. For the nuclear
mass predictions with Bayesian neuron network (BNN), we
pointed out that the performance of BNN can be improved
by enriching the network inputs with information of physics
[26], such as the pairing and shell effects. Neufcourt et al. [27]
agreed with this idea in their study of two-neutron separation
energies. Since then, nuclear structure with machine learning
techniques has become a hot frontier, for example, in the stud-
ies of neutron-drip line in the Ca region [28], the incomplete
fission yields [29], and the low-lying excitation spectra [30].
From the above studies, see also a recent review [31] and
the references therein, one can conclude that the accuracy
and the capability of extrapolation of study with machine
learning techniques crucially depend on the delicate designs
of neuron network, by taking into account as much physics as
possible.

In this Letter, we propose a nuclear mass model with
Bayesian machine learning and pay special attention on the
designs of the structure, outputs, and inputs of the neuron
networks. We will first demonstrate the accuracy of mass pre-
diction as well as the capability of extrapolation of the present
model with a theory-to-theory validation. We will then show
the present BML mass model achieves an accuracy of 84 keV
with respect to the experimental data in AME2016 [32] and
also discuss the shell structures in the experimentally known
and unknown regions, which are crucial for the r-process
studies.

Designs of BNN. In the present study, we adopt the general
scheme of BNN [33]. BNN can avoid the overfitting problem
automatically by using the hyper priors. It can also quantify
the uncertainties in predictions, since all model parameters are
described with probability distributions.

For the present designs of the network structure, we keep
in mind that the physics (e.g., the ground-state spin and parity)
of odd-A and odd-odd nuclei are much more sophisticated
than that of even-even nuclei. Thus, the predictive power,
especially the extrapolation capability, will be substantially
affected if we directly train the neural network with the whole
nuclear mass surface. A much more effective strategy is the
training of neural network with the smoother mass surface of
even-even nuclei, together with the trainings with the separa-
tion energies related to their neighboring odd-A and odd-odd
nuclei. As a result, there are in total nine different BNNs to
cover the mass predictions for the whole nuclear chart. See
Fig. 1. in Supplemental Material [34] and the corresponding
descriptions.

For the designs of the network outputs, in our previous
study [35], we showed quantitatively that the performance

FIG. 1. The rms deviations of M, Sn, S2n, Sp, S2p, SD, and Qβ

with respect to the experimental data for the learning set of the
BML mass model. The corresponding rms deviations given by the
BW2, FRDM12, HFB-31, and DZ28 mass models are shown for
comparison.

of machine learning is very limited if crucial information of
physics is missing. The discrepancy between the experimen-
tal data and the predictions of a given model δM = Mexp −
Mmodel is usually taken as the output, i.e., the learning target
[25,26], which can effectively include the known physics in
the given model. To make the best use of the established
nuclear mass models, we employ the macroscopic model
BW2 [36], the macroscopic-microscopic models KTUY [37],
FRDM12 [19], and WS4 [20], the microscopic models RMF
[21] and HFB-31 [38], and other high-precision global mass
models Bhagwat [39] and DZ28 [40]. These mass models
have taken into account the physics important to the descrip-
tion of nuclear mass from different aspects.

For the designs of the network inputs, in addition to Z and
N , we further introduce Emodel

mic ≡ Mmodel − Emac or the coun-
terparts of the separation energies as an input. This quantity is
completely missing in the macroscopic mass models, while it
is related to the effective mass of nucleon in the microscopic
mass models. It can be seen that the perfect mass model that
reproduces all the experimental data holds a perfect correla-
tion between the input and output, Emodel

mic = Emic, independent
of Z and N . In such a way, the systematic overestimation or
underestimation on Emodel

mic of a given model can be corrected
by BNN in an efficient way. In principle, Emac can be taken as
any smooth function of Z and N on the nuclear mass surface.
Here, it is taken from the macroscopic part of FRDM12.

Based on each mass model i, we can get its corresponding
BNN mass prediction Mi with the error σi. To describe the
systematic error of mass prediction, the weighted mean M
and standard deviation σM of Mi are taken as the final mass
predictions, which are

M =
∑m

i=1 ωiMi∑m
i=1 ωi

, σM = 1√∑m
i=1 ωi

, (1)

where ωi = 1/σ 2
i and m is the number of mass models. Since

some sources of error may not be taken into account, the error
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FIG. 2. Microscopic correction energies Emic of BML. The con-
tours show the boundary of nuclei with known masses in AME2016
and the dotted lines denote the traditional magic numbers.

σM is further corrected with a factor χν , which considers the
deviations between mass predictions M and experimental data

χ2
ν = 1

n

∑

Z,N�8

1

σ 2
M(Z,N )

[M(Z, N ) − Mexp(Z, N )]2, (2)

where n is the number of nuclei in the learning set. Here χν =
2.1 for the experimental data in AME2016. For simplicity,
this Bayesian machine learning model described above will
be denoted by BML hereafter.

Before ending this part, we perform a theory-to-theory
validation with the above designs of BNN, to demonstrate
the accuracy of prediction and the capability of extrapola-
tion. In such a benchmark calculation, the nuclear masses of
FRDM12 are used as the pseudoexperimental data (i.e., the
target values). Meanwhile, the other seven mass models—
BW2, KTUY, WS4, RMF, HFB-31, Bhagwat, and DZ28—are
regarded as our present knowledge and used as the inputs of
BNN. To simulate the present experimentally known region,
the learning set is limited to those nuclei listed in AME2016,
and all nuclei outside AME2016 will be used to testify the
extrapolation capability. As a result, the mass prediction accu-
racy in the learning region reaches 93 keV. It is also found that
the mass prediction uncertainties increase by about 50 keV
each step along the isotopic chains towards the unknown
region, which agrees with the standard deviations between
the mass predictions and the corresponding FRDM12 values.
For details, see Fig. 2 in Supplemental Material [34] and the
corresponding discussion.

Results and Discussion. Using the high-precision experi-
mental data in AME2016 as the learning set, we construct the
mass predictions of the present BML model. The root-mean-
square (rms) deviations of M and various separation or decay
energies with respect to the experimental data for the learning
set are given in Fig. 1. For comparison, the corresponding
rms deviations given by some other mass models are also
given. It is clear that the BML model achieves a very high
accuracy of mass prediction, which is of the best accuracy for
global mass predictions as we have known and for the first
time crosses the accuracy threshold of 100 keV in the known
region. Furthermore, the BML model also achieves high ac-
curacies for various separation or decay energies, which are at

least about three times higher than other shown mass models.
Even comparing with the previous machine learning model
WS4 + BNN-I4 [26], whose corresponding rms values are
184, 208, 216, 213, 227, and 255 keV for mass, Sn, Sp, S2n,
S2p, and Qβ , respectively, the present BML model achieves
much smaller rms values, i.e., 84, 78, 83, 105, 111, and
99 keV, respectively. This indicates the BML model describes
excellently not only the mass surface globally but also its local
details, including its derivatives in different directions on the
nuclear chart.

The microscopic correction energies Emic can reveal the
shell effects in nuclear properties. Therefore, we show
EBML

mic = EBML − Emac of BML in Fig. 2. It is clear that the
shell structures in the known region are well reproduced.
Being extrapolated to the unknown region, even to the drip
lines, there are several remarkable structure features, which
are hardly achieved by other learning approaches, such as
the radial basis function approach [41–43]. Apart from the
traditional magic numbers, the new magic numbers around
N = 40 in the light nuclei region and those around Z = 120
in the superheavy nuclei region are also predicted by BML.

It is well known that N = 82 and N = 126 shells are cru-
cial for the r-process properties, e.g., they are responsible for
the main peaks of solar r abundance at A = 130 and A = 195,
respectively. From Fig. 2, it is found that the N = 82 shell
remains robust even going to the neutron-drip line, which has
been approved by recent experimental studies [44]. However,
we predict that the N = 126 shell will first quench and then
enhance as approaching the proton magic number Z = 50
when going to the neutron-drip line. The N = 126 shell also
quenches when going to the proton-drip line, even just away
from the known region.

The two-proton (neutron) gaps δ2p (δ2n) are also important
signatures of nuclear magic numbers, which take local max-
ima at proton (neutron) magic numbers. From Fig. 3, which
shows δ2p and δ2n of BML, the traditional magic numbers
are well exhibited. The BML model predicts a neutron magic
number at N = 184, although its δ2n is not as strong as those
of traditional magic numbers. It should be pointed out that
the larger δ2n at N ≈ 200 is not necessarily a signature of
magic number, which mainly originates from the lack of mass
predictions for nuclei with N > 200 in the KTUY model.

To show the details of the present BML mass model and
illustrate explicitly its extrapolation capability, the mass dif-
ferences between Mth from various mass models and Mexp in
AME2016 are shown in Fig. 4, by taking the Cr and Nd iso-
topes as examples. In particular, in these two isotopic chains,
there are several experimental data on both neutron-rich and
proton-rich sides with the accuracy worse than 100 keV,
shown as the white regions in Fig. 4. Therefore, we did not
include those data in the learning set.

It is clear that in the BML learning areas, the shaded
regions in Fig. 4, the BML mass predictions are in an excel-
lent agreement with the experimental data with an accuracy
around 100 keV, apart from the region around 154Nd. It is
also seen that in the extrapolation areas, both neutron-rich and
proton-rich sides, the BML mass predictions agree with the
experimental data within the experimental and theoretical un-
certainties. Remarkably, we still hold such a nice agreement,
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FIG. 3. Same as Fig. 2 but for (a) the two-proton gaps δ2p and
(b) the two-neutron gaps δ2n.

when we extrapolate the mass predictions from 58Cr to 70Cr
with 12 neutrons more. In both learning and extrapolation
areas, the performance of BML is much better than those of
HFB-31 and FRDM12, even better than the previous machine
learning results of WS4 + BNN-I4.

In the regions of Cr and Nd, there are a number of new
experimental data [45,46] after AME2016, which are shown
with blue solid symbols in Fig. 4. The comparison between the
new data and the BML mass predictions again show excellent
agreements not only on the values of the mass but also on the
systematics of the mass surface. For example, the BML mass

FIG. 4. Mass differences between Mth from the BML, NewBML,
HFB-31, FRDM12, and WS4 + BNN-I4 mass models and Mexp in
AME2016 for the Cr and Nd isotopes. The shaded (white) regions
indicate the BML learning (extrapolation) areas, where the accuracy
of Mexp in AME2016 is higher (worse) than 100 keV. The new
experimental data [45,46] after AME2016 are shown with blue solid
symbols.

FIG. 5. Two-neutron separation energies S2n of Z = 60-65 iso-
topes. The S2n calculated with the experimental data in AME2016 are
shown with yellow circles, while the new S2n calculated by including
the new experimental data [45–72] are shown with blue circles. The
S2n predictions of BML and NewBML are shown with open circles
and open squares, respectively. For displaying the data clearly, all S2n

of Z = 61-65 isotopes are increased by (Z − 60) MeV.

prediction on 154Nd is consistent with the new data, instead of
that in AME2016.

As a step further, to show the influence of new experimen-
tal data, the new BML mass predictions are made by including
these new data after AME2016 [45–72] into the learning set,
which are denoted by NewBML for simplicity. The corre-
sponding results are also shown in Fig. 4 with dark-green
shaded bands. It is found that, if the new data are included
in the learning set, the theoretical uncertainties near the new
data reduce to about half of the original values.

For the important issue related to the origin of the rare-
earth peak and the possible kinks in the separation energies
near N = 104, we show in Fig. 5 the two-neutron separation
energies S2n for the Z = 60-65 isotopes. While the BML mass
predictions agree well with both AME2016 and new data in
this region, the new data can further substantially reduce the
theoretical uncertainties of S2n for the neighboring nuclei. As
a result, the S2n predictions around N = 104 by NewBML
tend to be smooth, rather than with kinks. In other words,
it is more likely that the origin of the rare-earth peak is
due to the doubly asymmetric fission fragment distributions
in the A ≈ 278 region [16]. More experimental data in the
coming years will further testify this conclusion. By taking
the new nuclei with Z, N � 8 first appearing in latest database
AME2020 [12] as the testing set, the rms deviation of BML
model with respect to those new data with the experimental
uncertainties smaller than 100 keV is 170 keV. This indicates
a good accuracy is also achieved by the BML model for
these new data, which are not in the training. In contrast,
the corresponding rms deviations are 245, 691, and 718 keV
for WS4 + BNN-I4 [26], FRDM2012 [19], and HFB-31 [38]
models, respectively.

Finally, all experimental masses with Z, N � 8 and uncer-
tainties smaller than 100 keV in the latest database AME2020
[12] are employed to train the BML model, the resulting
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mass predictions are given in the Supplemental Material
[34].

Summary. High-precision mass predictions are made with
the Bayesian neural networks by learning the mass surface of
even-even nuclei and the correlation energies to their neigh-
boring nuclei. The known physics in various mass models are
kept to achieve good predictive capability. With this strategy,
the proposed BML mass model describes well not only the
mass surface globally but also its local details including its
derivatives in different directions on the nuclear chart. As a
result, BML achieves high accuracy for both nuclear masses
and various separation or decay energies. The accuracy of
BML mass predictions reaches 84 keV, which has crossed
the accuracy threshold of 100 keV in the known region. The
uncertainties of BML mass predictions are also reasonably
evaluated, which increase about 50 keV as going forward one
step along the isotopic chain from the known region, and
the new experimental data after AME2016 can be precisely
predicted by BML within the experimental and theoretical
uncertainties.

While the shell structures in the known region are well
described, we also predict several important features in the
unknown region, such as the new magic numbers around

N = 40, the robustness of N = 82 shell, the quenching
of N = 126 shell, and the smooth separation energies around
N = 104, which are all crucial for the quantitative r-process
calculations.

With the present designs of the BML mass model, the
future experimental data of nuclear mass as well as the future
advanced nuclear mass models can be taken into account by
the same strategy. The nuclear mass predictions towards the
unknown region can be carried out and improved systemati-
cally and continuously.
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