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Velocity-like maximum polarization: Irreversibility and quantum measurements
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The polarization emerging in the subsequent scattering processes can never exceed 1 which corresponds to
the fully polarized pure state. This property is shown to be provided by the addition rule similar to that for
relativistic velocities never exceeding the speed of light. The cases of spin 1/2 and 1 are considered. The photon
linear polarization in subsequent Thomson scattering processes is monotonically increasing. This directness is
shown to be a consequence of spin measurement procedure and may be the particular example of the anticipated
relation between quantum measurement and time irreversibility. The emergent polarization may be considered as
a case of the opposing time’s arrows corresponding to microscopic (spin) and macroscopic (momentum) degrees
of freedom, respectively.
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I. INTRODUCTION

The polarization of initially unpolarized particles in vari-
ous scattering processes is a rather common phenomenon. It
is manifested already in nonrelativistic scattering (see, e.g.,
140 in [1]) in the presence of spin-orbital interaction. The
necessary conditions of polarization emergence is the interfer-
ence of spin-conserving and spin-flip amplitudes with phase
difference between them.

In perturbative QCD this leads to the suppression of the
effect [2] by quark mass and QCD coupling (as the phase can
be produced at one-loop order only), and the involvement of
various nonperturbative effects including T -odd (i.e., involv-
ing nonperturbative QCD phases) fragmentation functions [3],
twist 3 contributions [4,5], and Wilson lines [6,7] is required.
This puts forward the problem of total polarization calculation
when various mechanisms contribute. Typically the polariza-
tion due to each of them is not large (of percent order at best)
but what prevents polarization from exceeding one, which is
the limit provided by density matrix positivity [8], at least in
principle?

A similar question is even more sharp in heavy-ion col-
lisions (HIC). The polarization in thermodynamic approach
[9–11] is proportional to the vorticity [12] of strongly inter-
acting medium and, formally, may also exceed one. The issue
of positivity was addressed [13] in the approach [14,15] to
polarization based on axial vortical effect and quark-hadron
duality. The result [14] manifested the compatibility with
density matrix positivity and provided the correct estimate
of energy dependence and size of polarization prior to the
data [16].

The general property of the necessity of phase shifts in
consistent quantum description of global polarization in HIC
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is realized in the approach [17,18] by considering quantized
vortices in pionic superfluid. The baryon polarization is gen-
erated in the cores of the vortices and this is accompanied
by dissipation being the counterpart of absorptive phases.
Note also that such vortices provide the kinematical link with
inclusive polarization [19].

The scattering may also happen at numerous nucleons, and
the suppression of polarization due to the randomization of
the orientations of respective scattering planes was suggested
[20] as a signal of strongly interacting matter formation. At
the same time, the complementary investigation of respective
inclusive polarization [21] provides the quantitative estimates
of these randomization effects so that the composition law for
polarization generated at different stages of hyperon produc-
tion process is also of importance.

We start the consideration of composition of polarizations
in Sec. II from the case of nonrelativistic elastic scattering of
spin-1/2 beam on spin-0 target. We find the complete similar-
ity of the composition rule of initial polarization and the one
generated in the scattering process to the composition rule of
velocities in special relativity. In particular, for the addition of
noncollinear polarizations, the noncommutativity, similar to
Thomas precession, is found.

The generalization for the higher spin relativistic case is
considered in Sec. III by the analysis of Compton scattering.
We concentrate on photon linear polarization which emerges
already in Born approximation. The same composition rule
is also valid here and leads to the monotonic increase of po-
larization in subsequent Thomson scattering processes. This
directness is appearing because of the final state density ma-
trix projection onto that of the detector and may be considered
as a particular example of anticipated relation (see e.g. 8 in
[22]) between time irreversibility and quantum measurement.

The simple generic models for emergent polarization are
considered in Sec. IV. The emergence of polarization is man-
ifesting the decrease of respective entropy while the entropy
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corresponding to macroscopic (momentum) degrees of free-
dom is increasing. This may be considered as opposing time’s
arrows with the measurement process performed after the
irreversibility manifestation for microscopic (spin) time’s ar-
row and, corollary, before it for the macroscopic (momentum)
time’s arrow.

The last section presents main conclusions and outlook of
possible further developments.

II. NONRELATIVISTIC SPIN-1/2 POLARIZATION AND
RELATIVISTIC VELOCITY-ADDITION FORMULA

Let us start from the nonrelativistic scattering amplitude of
spin-1/2 and spin-0 particles [1]:

F = a + ib(�σ �n), (1)

where a and b depend on scattering angle θ , �n is a unit vector
normal to the scattering plane and the imaginary unit factor
makes b real in Born approximation.

Assuming that the initial particles are described by the spin
density matrix

ρi = 1
2 (I + (�σ �P)), (2)

where �P is a polarization vector, the final density matrix be-
comes

ρ f = FρiF
+ = 1

2 (a + ib(�σ �n)(I + (�σ �P))(a∗ − ib∗(�σ �n). (3)

Let us consider first the scattering of unpolarized particles
with P = 0 leading to

ρ f = 1
2 (I (|a|2 + |b|2) + 2(�σ �n))�(ab∗)), (4)

implying that final particles have the polarization

�P0 = �n 2�(ab∗ )
|a|2+|b|2 . (5)

This effect may be considered as a manifestation of the tran-
sition of “macroscopic” to “microscopic” order. In the initial
state the beam has a definite (ordered) momentum while the
spin is completely random. At the same time, in the final state,
the partial ordering of spin described by P0 is compensated by
a disorder in momentum described by a(θ ) and b(θ ).

Let us pass to the case of the partially polarized initial par-
ticles, starting from the more simple case when its polarization
is parallel to �n, choosing its direction along the z axis. In that
case

ρ f = 1
2 (a + ibσz )I + σzP))(a∗ − ib∗σz )

= 1
2 [I (|a|2 + |b|2 + 2P�(ab∗))

+ σz(P(|a|2 + |b|2) + 2�(ab∗))]. (6)

This implies the final polarization (which is also, of course,
directed along z axis):

Pf = (|a|2 + |b|2)P + 2�(ab∗)

|a|2 + |b|2 + 2P�(ab∗)
= P + P0

1 + PP0
, (7)

where Eq. (5) is taken into account.
This equation is one of the main results of the current work.

The polarization-addition and velocity-addition rules are the
same. This relation between properties of nonrelativistic spin

and relativistic velocity may be due to relation of Lorentz and
SU (2) [and O(3)] groups. One might recall here the model
for Drell-Yan processes [23] providing the simple geometric
description of the result of a Feynman diagrams calculation
and allowing for the complementary interpretation of exper-
imental data [24,25] compatible with general properties of
density matrix [26,27].

If one considers polarization as an average dimensionful
spin and introduces the speed of light different from one,
the relation between the addition rules implies also the inter-
change of fundamental constants

h̄ ↔ c.

Let us now pass to the case of noncollinear �P and �n, than
Eq. (3) leads to

ρ f = 1
2 (I (|a|2 + |b|2 + 2�(ab∗)( �P�n))

+ 2(�σ �n)(�(ab∗) + |b|2( �P�n))

+ (�σ �P)(|a|2 − |b|2) + 2�(ab∗)[ �P�n]�σ ). (8)

The resulting emergent polarization is

�Pf =
�P0 + �P |a|2−|b|2

|a|2+|b|2 + �n 2|b|2( �P�n)
|a|2+|b|2 + [ �P�n] 2�(ab∗ )

|a|2+|b|2

1 + ( �P �P0)
. (9)

One can see that it has the components along vectors
�n(‖ �P0), �P and their vector product. Contrary to the one-
dimensional case (7), the initial polarization �P and the
polarization �P0 generated in the scattering process enter non-
symmetrically. This may be considered as an analog of
noncommutativity of the Lorentz transformations related to
the Thomas precession. At the same time, considering the
square of polarization, one gets, after some algebra,

P2
f = ( �P + �P0)2 − [ �P �P0]2

(1 + ( �P �P0))2
. (10)

This is also completely similar to the addition of noncollinear
relativistic velocities.

III. POLARIZATION-ADDITION IN THOMSON
SCATTERING, IRREVERSIBILITY AND

QUANTUM MEASUREMENT

We established similarity of addition of relativistic veloc-
ities and polarizations of nonrelativistic spin-1/2 particles.
One may ask how the polarizations addition holds for scat-
tering of relativistic particles with higher spin.

To address this issue let us consider Thomson scattering. In
the case of unpolarized photons it leads to the emergent linear
polarization described by the ξ3 Stokes parameter appearing
already in the Born approximation. Here, we consider what
happens if there is also an initial photon polarization and
establish the addition rule.

The phenomenological importance of this effect consists,
in particular, in the manifestation of linearly polarized glu-
ons [28,29] as well as tensor polarization of virtual photons
and electroweak bosons produced in hadronic [24,25,30] and
heavy ion [31–36] collisions. Needless to say, that photon
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polarization plays also a crucial role in the search of gravi-
tational waves.

The cross section with the fixed respective components of
polarizations of initial (ξ3) and final (ξ ′

3) photons takes the
form (see, e.g., 87 in [37]):

dσ = r2
e

4
d�′

(
ω′

ω

)2

(F0 + F3(ξ3 + ξ ′
3) + F33ξ3ξ

′
3), (11)

where re is a classical electron (or other scatterer) radius,
ω(ω′) are initial (final)photon frequencies, d�′ = sin θdθdφ

is the solid angle describing the final photon phase, while
coefficients F are

F0 = ω

ω′ + ω′

ω
− sin2 θ, F3 = sin2 θ, F33 = 1 + cos2 θ.

(12)

Let us stress that ξ ′
3 is the polarization measured by the detec-

tor which is related (see, e.g., 65 in [37]) to the polarization
ξ s

3 emerging in the scattering process by the projection of the
respective density matrix (ρ f ) onto that of detector (ρ ′):

dσ ∼ Tr(ρsρ
′) = 1 + ξ s

3ξ
′
3. (13)

Comparing this with Eq. (11) one gets

ξ s
3 = F3 + ξ3F33

F0 + ξ3F3
. (14)

In particular, for ξ = 0, the polarization ξs emerging in scat-
tering process is

ξ s,0
3 = F3

F0
. (15)

Combining this with Eq. (14) one gets

ξ s
3 = ξ s,0

3 + F33
F0

ξ3

1 + ξ s,0
3 ξ3

. (16)

As soon as

F33 � F0, (17)

which may be in fact related to the general property of den-
sity matrix positivity (see, e.g., [8] and references therein),
Eq. (16) results in polarization which can never exceed the
expression provided by the relativistic velocity adding rule.
The latter is achieved in the limit when the photon frequency
is much smaller than the scatterer (e.g., electron) mass so that
the frequency of the scattered photon is close to that of the
initial one:

ω

m
→ 0, ω′ → ω, F0 → F33 = 1 + cos2 θ. (18)

The limiting addition rule

ξ s
3 = ξ s,0

3 + ξ3

1 + ξ s,0
3 ξ3

(19)

may be represented in another form assuming that initial
polarization ξ also emerged in the scattering process (with
corresponding angle θ0) and expressing the polarization ξs

in the similar way in terms of “effective” angle θs, so that,
together with Eq. (15) in the limit (18)

ξ3 ≡ sin2 θ0

1+ cos2 θ0
, ξ s,0

3 ≡ sin2 θs,0

1+ cos2 θs,0
, ξ s

3 ≡ sin2 θs

1+ cos2 θs
.

(20)

As a result, the addition rule (19) takes the simple form

cos2 θs = cos2 θ0 cos2 θs,0. (21)

It is interesting to compare this emergent angle with the one
appearing due to scattering corresponding to the “total” angle
θt = θ0 + θs,0,

cos2 θt = (cos θ0 cos θs,0 − sin θ0 sin θs,0)2. (22)

The cosine (21) corresponding to scattering is larger [and,
consequently, the polarization (20) is smaller] if the scattering
angles (22) are of the same sign, so that the polarization will
be larger after the single scattering described by the angle θt .
At the same time, if the scattering angles are of different sign,
the polarization due to the single scattering is smaller than
described by Eq. (21) and can be even zero if θ0 = −θs,0.

The consequent scattering processes lead, therefore, to
the monotonically increasing polarization. Such irreversibil-
ity happens despite the completely time-reversible dynamics
described by quantum electrodynamics. This fundamental
property is reflected in the structure of Eq. (11) where the
initial and final polarizations enter completely symmetrically.

The source of irreversibility is in fact (besides the posi-
tivity of F3) the quantum measurement process (13) leading
to expression (14). This may be a particular manifestation of
the relation of time’s arrow and quantum measurement antic-
ipated in the classical textbook (see 8 in [22]). This important
point deserves a more detailed discussion.

IV. EMERGENT POLARIZATION AND OPPOSING
TIME’S ARROWS

The observed similarity between addition rules of polar-
ization and velocity manifested for both Dirac fermions and
photons marks the new observable relation between Lorentz
and rotational symmetry. The practical applications of the po-
larization addition rule correspond to the common situations
in hadronic in heavy-ion collisions when various dynamical
mechanisms contribute to the observable polarization effect.
For hadronic collisions this may correspond to the addition
of T -odd effects in distribution (like the Sivers function)
and fragmentation (like the Collins function) functions. For
heavy-ion collisions the subsequent scattering processes may
be considered as a respective counterpart of the emergence of
global polarization in statistical and anomalous approaches.
The collective effects here should correspond to the correla-
tion of orientations of normal to the scattering plane in these
processes.

The fundamental aspect of polarization addition rule is the
clear manifestation of time irreversibility. The most simple
case is represented by the Thomson scattering of photons.
The linear polarization is monotonically increasing in the
subsequent scattering processes. This irreversibility appears
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to be related to the quantum measurement process. The cross
section depends on the initial polarization (defined by the
experimental setup) and final one (measured by the detector)
in the completely symmetric way. The crucial role is played by
the measurement process defined as the projection of the den-
sity matrix corresponding to the real polarization emerging in
the scattering process onto the density matrix of the detector.
It is this procedure which leads to the velocity-like addition
rule for the emergent polarization. As the polarizing structure
F3 = sin2 θ is always positive, the polarization is always in-
creasing, which corresponds to the addition of velocities in the
same direction. One can recall the role of positivity in QCD
evolution equations leading to “Scale’s Arrow”( see Sec. 4.3.4
in [8]).

The similar situation holds also for the scattering of Dirac
fermions. Let us consider the important case of longitudinal
polarization The generic expression similar to Eq. (11) is valid
also here,

dσ ∼ F0 + Fh(ξ + ξ ′) + Fhhξξ ′, (23)

where ξ, ξ ′ stand for the helicities in initial and final (i.e.,
selected by detector) state. The appearance of common factor
Fh in front of initial ξ and final ξ ′ helicities is due to time-
reversal invariance, while inequality

F0 � |Fhh|, (24)

completely similar to Eq. (17) is providing the analog of
Eq. (16). This inequality stemming from density matrix pos-
itivity is saturated for the chiral particles leading to the
velocity-like addition rule (7).

Recall, that the irreversibility for photon polarization
emerges from the positivity of F3, so that the irreversibility
for fermions requires the positivity of Fh. This may be pro-
vided by parity violation which is the possible mechanism of
polarization, in particular for chiral particles.

In the case of parity conservation the polarization normal
to the scattering plane may emerge due to interference of am-
plitudes with a phase shift (see Sec. II) leading to expression

dσ ∼ F0 + Fz(sz + s′
z ) + Fzzszs

′
z, (25)

where only this normal z component of polarization is kept.
One should stress that Fz is not necessarily positive so that
the irreversibility depends on the scattering kinematics. More
exactly, Fz is changing sign together with the scattering an-
gle (corresponding to the scattering to the “left” or “right”)
accompanied by the change of direction of the normal to the
scattering plane. Therefore, irreversibility requires scattering
in the same direction (say, always to the left) and corresponds
to the “angular arrow” (emerging also in QCD evolution at
low x, see Sec. 4.3.3.vii in [8]) rather than times’ arrow. This
property is related to the change of the sign of the vector
polarization of spin 1/2 particle under P and T reflections,
while the photon linear polarization (which is a tensor one)
sign is not changed.

The irreversibility is therefore including two essential in-
gredients: positivity and quantum measurement. The latter
has some paradoxical specifics: the result of measurement is
time-reversible while the state before measurement, recovered
from its result by backward procedure, provides the necessary

ingredient of irreversibility. These specifics may be related to
the fact that the evolution of spin density matrix manifests
the increasing of complexity encoded in polarization. This
seeming “violation” of the second law of thermodynamics
happens because of a decrease of complexity related to the
momentum of scattered particles: while in the initial state the
beam consists of particles of definite momentum, the final
particles manifest the spread in momentum. One may say that
the “macroscopic” (momentum) complexity is transformed to
the “microscopic” (spin) one.

The simplest example of such transformation may be
represented by the case when initial state density matrix corre-
sponds to the absence of the “microscopic” spin J polarization
(described by Greek indices) and the definite Latin-indexed
(discrete) “momentum” state p,

ρ in
αβ,i j = (2J + 1)−1δαβδipδ j p, (26)

while the final state corresponds to definite spin polarization
γ and momentum distribution Fi j :

ρ
f in
αβ,i j = δαγ δβγ Fi j . (27)

As soon as the density matrix evolution is described by the
total Hamiltonian H ,

i
dρ

dt
= [H, ρ], (28)

implying also the same equation for density matrix powers,

i
dρn

dt
= [H, ρn], (29)

one may conclude that

Tr(ρ in)n = Tr(ρ f in)n. (30)

For matrices (2), (3) this results in

Tr(F )n = (2J + 1)1−n. (31)

This property may be realized if F has 2J + 1 nonzero eigen-
values equal to (2J + 1)−1 each. One has a sort of interchange
between macroscopic and microscopic degrees of freedom,
which is similar to the equality of eigenvalues of density
matrices of entangled systems. This property can be also
seen in the reduced density matrices, obtained by tracing of
macroscopic and microscopic indices, respectively:

ρ in
αβ = (2J + 1)−1δαβ, (32)

ρ in
i j = (2J + 1)−1δipδ j p, (33)

ρ
f in
αβ = δαγ δβγ , (34)

ρ
f in
i j = Fi j . (35)

The conditions (30) imply the stability of density matrix
eigenvalues and von Neumann entropy.1 One is observing
here a sort of entropy flow from microscopic to macroscopic
degrees of freedom while the total entropy is conserved.

1And Renyi entropy which directly follows from Eq. (30) with
n = 2.
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This example directly corresponds to the appearance of
constant polarization and may be associated, say, with Barnett
and Einstein–de Haas effects, or, more closely to our consid-
eration, Thomson scattering for 90◦ to the both left and right
leading to the polarization ξ3 = 1. To address the more general
case of “local” polarization, one may consider the following
model of final density matrix, when microscopic polarizations
γk are correlated with respective macroscopic distributions Fk:

ρ
f in
αβ,i j =

∑
k

δαγk δβγk F k
i j . (36)

The conditions (30) take now the form
∑

k

Tr(F k )n = (2J + 1)1−n. (37)

Let us consider the simplest case J = 1/2 when there are only
two terms in the sum in Eq. (36) corresponding to the spin
projections to some axis, k = ±. The final state polarization
in the state described by the momentum q is

P(q) = F+
qq − F−

qq . (38)

The nonzero result implies some spin-momentum correla-
tion (in particular, due to spin-orbital interaction, considered
above).

For higher spins there are also other components of spin
polarization. Say, for J = 1 there is also a tensor polarization:

PT (q) = F+
qq + F−

qq − 2F 0
qq. (39)

The major problem is the role of quantum measurement
in the case of a “normal” situation of increasing entropy.
For the case of decreasing entropy and emergent polarization,
the result of measurement manifests the reversibility, while
the irreversibility holds for real emergent polarization before
the measurement. Could it be that for increasing entropy the
irreversibility appears after the direct measurement of the
respective observable?

At least in the simple models considered above this indeed
seems to be the case. The decreasing microscopic entropy
is accompanied by the increasing macroscopic one and one
may consider that as the existence of two “colliding” time’s
arrows with opposite directions (c.f. [38]). The irreversibility
therefore emerges after the measurement according to the mi-
croscopic time’s arrow and before the measurement according
to the macroscopic one. Whether such generic considerations

may be directly applied in other fields of physics requires
further investigations.

V. CONCLUSIONS AND OUTLOOK

The spin quantum measurement (13), together with density
matrix positivity and time reversal invariance, encoded in
Eqs. (11), (23) plays a crucial role in establishing of the emer-
gent polarization evolution similar to velocity addition rule in
special relativity and manifesting some kind of irreversibility.

The latter includes the time’s arrow manifested in mono-
tonically increasing linear polarization of photons and angular
arrow manifested in the increasing transverse polarization of
Dirac fermions. The difference between these two cases is
due to the positive parity of linear photon polarization and
negative parity of Dirac fermion polarization.

The emergent polarization may be considered as a tran-
sition of order from macroscopic to microscopic degrees of
freedom. This implies opposing time’s arrows for macro-
scopic and microscopic degrees of freedom.

The implications of these observations for hadronic colli-
sions correspond to an interplay of various mechanisms of a
generation of various single spin asymmetries, to which the
velocity-like rule can be generalized.

For heavy-ion collisions, besides providing the consistent
quantum-theoretical treatment of polarization, one may search
for opposing time’s arrows for spin and hydrodynamic de-
grees of freedom. Also, the large vorticity and acceleration
provides the access to the largest ever effective gravity [39]
and emergent conical singularity [40]. It is important, that the
equivalence principle for spin motion in the noninertial frame
is deeply related to quantum measurements [41,42] and one
might expect also the relation to irreversibility in heavy-ion
collisions.

For more exotic developments, one can look for very differ-
ent scales. Say, one may think whether a cosmological time’s
arrow can be accompanied by opposing one? It might be also
interesting to look for a possible interplay of macroscopic
and microscopic orders in condensed matter systems. One can
mention here that, say, the general properties of spin 1 density
matrix [27] may be related [36] to qutrit operation.
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