
PHYSICAL REVIEW C 106, L011602 (2022)
Letter

Distinct sequential and massive transfer processes for production
of neutron-rich N ≈ 126 nuclei in 238U + 198Pt reactions
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To investigate the underlying mechanisms responsible for the enhanced production of new neutron-rich
N ≈ 126 nuclei in the reaction 238U + 198Pt, detailed simulations of the system at an incident energy of 8
MeV/nucleon using the improved quantum molecular dynamics model have been performed. Sequential and
massive transfer processes, responsible for the production of targetlike and projectilelike n-rich N ≈ 126 frag-
ments, respectively, have been recognized. Compared to sequential transfer, the contribution from the massive
transfer process plays an almost equal role for the production of new nuclei with atomic number Z � 76. The
two processes show distinct features in the angular and kinetic energy distributions in the laboratory system and
hopefully can be disentangled experimentally.
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The properties of neutron-rich N ≈ 126 nuclei are essen-
tial for understanding the astrophysical r-process abundance
peak around A = 195 [1] and the evolution of the N = 126
neutron shell closure far from the β-stability line [2,3]. Mult-
inucleon transfer (MNT) reaction has been proposed as an
alternative approach of great potential to synthesize these
N = 126 r-process waiting-point nuclei [4,5]. Considering
that the ground-state Q values favor the transfer of protons
from lead to xenon in the reaction 136Xe + 208Pb, Zagrebaev
and Greiner proposed to take advantage of the stabilizing
effects of the neutron closed shells at N = 82 for 136Xe and
N = 126 for 208Pb to enhance the production of N ≈ 126
isotones below 208Pb [4]. However, no evidence for such
multiproton transfer was found in the experiments performed
at Dubna and Argonne [6,7]. The GRAZING code calculations
showed a significant advantage of the system 136Xe + 198Pt
over 136Xe + 208Pb for producing new N = 126 isotopes be-
cause of larger neutron transfer probability compared to
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proton [8]. In the experiment of 136Xe + 198Pt at the incident
energy of ≈ 8 MeV/nucleon performed at GANIL [9], the
cross sections for N = 126 isotones were deduced and MNT
reactions showed an obvious advantage over the fragmenta-
tion of the 208Pb beam on the Be target [10] in the production
of very neutron-rich nuclei with proton number Z � 77. MNT
reactions between symmetric massive nuclei, such as 204Hg
with 198Pt and 208Pb, were performed at Argonne [11,12].
Rather neutron-rich transfer products were populated but no
new isotopes in this region were observed up to now.

The dynamical processes involved in the MNT reac-
tions attracted much interest in theoretical studies using
different approaches. The effects of dynamical deformation
on the potential energy surface and the mass distribution
were investigated in the dinuclear system (DNS) framework
[13–15]. In the calculations performed with the improved
quantum molecular dynamics (ImQMD) model, the energy
dissipation in the 136Xe + 198Pt system was found to be
strongly associated with the incident energy [16]. In the
stochastic mean-field approach, the mass distribution of pri-
mary fragments and the production of isotopes heavier than
the target in the multinucleon transfer of 136Xe + 208Pb
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were better reproduced by considering the quantal diffusion
mechanism [17,18].

The reaction between 238U and 198Pt was initially sug-
gested as an alternative for the production of N ≈ 126
neutron-rich nuclei by Zagrebaev and Greiner [19]. The cal-
culated production cross sections for these neutron-rich nuclei
were on average higher than those in the collision of 136Xe
with 208Pb or 198Pt by the Langevin approach [19] and the
DNS model [20]. And such cross-section enhancement was
confirmed by our recent calculations using the ImQMD model
[21]. Due to the complicated dynamical processes involved,
such as the coupling of single-particle and collective degrees
of freedom, sequential nucleon transfer was assumed to play
a main role in mass rearrangement in the Langevin approach
[19], and only one nucleon transfer was considered in the
DNS model [20]. Compared to the single-nucleon transfer, the
transfer of massive clusters was proposed and supported by
the observed large cross sections for the production of heavier
actinides in Ref. [22]. The sequential transfer and the simulta-
neous transfer of several nucleons were also discussed based
on the experimental measurements of reactions with the target
232Th [23,24]. However, the detailed dynamical mechanisms
of two transfer processes and their effects on the production
of primary fragments are still unclear.

In the investigation of the underlying mechanism respon-
sible for the favored production of neutron-rich N ≈ 126
species in the reaction system 238U + 198Pt, the dynamical
process of massive transfer is revealed by using the ImQMD
model in the present work. In the model, a variety of de-
grees of freedom, such as neck formation, nucleon transfer,
deformations of two colliding nuclei, and different types
of separation of the composite system, can be considered
simultaneously [25]. Over 3 000 000 events of the sys-
tem 238U + 198Pt are simulated at an incident energy of 8
MeV/nucleon and different impact parameters. At the initial
time of reaction, the distance between the centers of mass of
the projectile and the target is taken to be 30 fm. The decays
of primary fragments produced in the ImQMD model are
described by the statistical evaporation model (HIVAP code)
[26,27]. A detailed description of the method of ImQMD +
HIVAP can be found in Ref. [21].

Here we take the production of the primary fragment 204Pt
(N = 126) as an example and plot two different events at an
impact parameter of b = 6.0 fm of the 238U + 198Pt reaction
at an incident energy of 8 MeV/nucleon in Fig. 1. They
are the snapshots at three moments, namely, the touching of
the projectile and the target, a moment in the multinucleon
transfer process, and the reseparation of the composite system.
Nucleons originated from the projectile and the target are
represented in red and green, respectively. Event I presents
a simple scenario where the targetlike fragment 204Pt is pro-
duced by the transfer of six neutrons from the projectile to
the target. Event II illustrates the transfer of a large number
of nucleons from the projectile to the target. The remaining
nucleons of the projectile 238U and several nucleons trans-
ferred from the target 198Pt form the primary projectilelike
fragment 204Pt in event II. In Fig. 1, the z axis is set as
the beam direction and the x axis as the impact parameter. In
the two cases, the pictures of the systems are quiet similar at

FIG. 1. The snapshots at three different moments of two exam-
ples producing primary fragments 204Pt at an impact parameter of
b = 6.0 fm in the 238U + 198Pt reaction at an incident energy of 8
MeV/nucleon.

the touching point, but very different at the reseparation of the
composite systems. The fragment 204Pt is produced along the
trajectory of the target in event I, while it is produced along
that of the projectile in event II.

Figure 2 depicts the density along the axis of the sys-
tem, which passes the centers of the projectilelike fragments
(PLFs) and the targetlike fragments (TLFs), at different reac-
tion times in the two events of Fig. 1. The neck region, having
the smallest density between the two centers, is denoted in
blue. In event I, the neck can be recognized easily as the
density is always lower than 0.04 fm−3, which is consistent
with the picture of the sequential transfer of a few nucle-
ons between two colliding nuclei. The neck position barely
changed from the touching of the projectile and the target
to the reseparation of the composite system. In event II, a
bulky mass shifting from the projectile to the target with a
high-density region over 0.14 fm−3 (denoted in red) occurs.
It corresponds to the collective transfer of a large number of
nucleons. It results in the shift of the neck region by about 4
fm towards the projectile in a short time. Therefore, two com-
pletely different dynamical processes are revealed in events I
and II, leading to the production of the same primary fragment
204Pt.

FIG. 2. The density evolution around the neck region for the two
events shown in Fig. 1. The density is calculated along the axis of the
system, which passes the centers of the PLFs and the TLFs.
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FIG. 3. (a) The nucleon exchange rates, (b) the average lifetimes
of the composite systems (c.s.), and (c) the cross sections for produc-
ing the primary fragment 204Pt as a function of impact parameters for
different ξ groups.

In most events, the primary fragment 204Pt is produced by
the exchange of nucleons between the projectile and the target
in both directions. To investigate the feature of the production
mechanisms of primary fragments, we define a variable to
describe the extent of nucleon transfer as ξ = AP

F/AF, where
AF is the mass number of the fragment and AP

F is the number
of nucleons coming from the projectile in this fragment. We
take Aex/τc.s. as the nucleon exchange rate, i.e., the average
number of exchanged nucleons per unit time, where Aex is
the total number of nucleons exchanged between the projectile
and the target. τc.s. is the lifetime of the composite system
(c.s.), which is defined as the time interval between touching
of two colliding nuclei and reseparation of the composite
system. Figure 3 displays the average values of Aex/τc.s.,
τc.s., and the corresponding production cross sections for the
primary fragment 204Pt. They are grouped according to ξ

values as functions of the impact parameters. As shown in
Fig. 3(a), the nucleon exchange rates for the production of
PLFs (ξ > 0.5) and TLFs (ξ < 0.5) at large impact parame-
ters are very different: the former is almost twice the latter. As
the impact parameter decreases, the nucleon exchange rates
for both increase and saturate to nearly an identical value.
It is noted that the production of the 204Pt PLFs requires
the net transfer of 34 nucleons, while only 6 nucleons are
required for the production of the 204Pt TLFs. In Fig. 3(b), the
average lifetimes of the composite systems for five groups of ξ

decrease monotonically with increasing the impact parameter.
The longest corresponds to the central collision where more
nucleons are exchanged, while the shortest corresponds to
peripheral collisions where the primary fragments are pro-
duced as either TLFs with the smallest ξ or PLFs with the
largest ξ . For TLFs of ξ < 0.5, they can be understood by the

FIG. 4. The angular distributions of (a) primary and (b) resid-
ual fragments of 204Pt produced in the 238U + 198Pt system at 8
MeV/nucleon in the laboratory system. Panels (c) and (d) present
the distributions of kinetic energies of primary and residual 204Pt,
respectively.

sequential transfer of nucleons between two colliding nuclei.
The transfer of more nucleons needs a longer lifetime of
the composite system and generally occurs at smaller impact
parameters. The group with the largest ξ (PLFs are denoted by
red diamonds) is produced at similar impact parameters with
the smallest ξ group (TLFs are denoted by black squares). In
these PLFs, at least 34 nucleons are transferred from the pro-
jectile 238U to the target for producing the primary fragment
204Pt. The sequential transfer of nucleons cannot explain the
short lifetime of the composite system denoted by the red di-
amonds. As Fig. 2 shows, large mass collective transfer plays
a critical role in both the production of these PLFs and the
evolution of the corresponding composite system. In Fig. 3(c),
the production cross-section curve has a parabolalike shape
for each group. The biggest contribution comes from TLFs
produced in peripheral collisions at large impact parameters.

The different production mechanisms of 204Pt in
238U + 198Pt revealed above are also present in the
distributions of emitting angles and kinetic energies. In
Fig. 4, we divide the production processes of 204Pt into two
groups, i.e., PLFs with ξ > 0.5 and TFLs with ξ < 0.5.
Figures 4(a) and 4(b) illustrate the angular distributions of
primary and residual 204Pt fragments by blue lines in the
laboratory system. For both primary and residual fragments,
two peaks located at 30◦ and 53◦ come from the PLFs and
TLFs, respectively. The distributions of kinematic energies
in the laboratory system are shown in Figs. 4(c) and 4(d).
The PLF and TLF components are also distinguishable,
corresponding to the two bumps at about 1200 and 600 MeV.

Similar behavior is also found in the angular distributions
of new isotopes of Os, Re, W, and Ta (see Fig. 5). Open
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FIG. 5. The angular distributions of new isotopes in primary and
residual fragments of elements (a) Os, (b) Re, (c) W, and (d) Ta in
the laboratory system.

and solid symbols represent primary and residual fragments,
respectively. For new neutron-rich isotopes with lower atomic
number, the contributions of the PLFs are significantly en-
hanced relative to TLFs compared to 204Pt. However, the two
peaks get closer to each other with decreasing atomic number
and are less distinguishable for neutron-rich Ta isotopes. The
production cross sections for these residual fragments depend
on the cross sections for primary fragments and their excita-
tion energies. Figure 6 shows the average excitation energies
of the primary fragments as a function of ξ . The excitation
energies of primary fragments peak around ξ = 0.5, corre-
sponding to central collisions with the maximum number of
nucleons exchanged and the longest lifetime of the composite
system. The smallest and largest ξ values corresponding to
peripheral collisions induce lower excitation energies. This
is consistent with the correlation between the lifetime of the

FIG. 6. The distributions of the average excitation energies of
primary fragments of (a) Os, (b) Re, (c) W, and (d) Ta.

FIG. 7. The distributions of the average number of neutrons
evaporated from primary fragments of (a) Os, (b) Re, (c) W, and
(d) Ta.

composite system and ξ shown in Fig. 3(b). In the case of a
shorter lifetime, large mass collective transfer leads to lower
excitation energies of primary fragments. The residual frag-
ments of new neutron-rich nuclei are mainly produced by the
evaporation of neutrons in the decay of the above primary
fragments of Os, Re, W, and Ta. The average numbers of
neutrons evaporated from per primary fragment of Os, Re,
W, and Ta are presented in Fig. 7. Figure 7 shows a similar
distribution to the excitation energies presented in Fig. 6. The
largest excitation energies around ξ = 0.5 lead to the evapora-
tion of more than ten neutrons. Fewer neutrons are evaporated
in the decay of PLFs with larger ξ or TLFs with smaller ξ ,
both of which contribute to the survival of new neutron-rich
nuclei. Figure 7 also indicates that the projectilelike fragments
play a significantly important role in the production of these
nuclei.

To summarize, the underlying mechanism responsible for
the enhanced production of neutron-rich N ≈ 126 nuclei with
Z � 78 in the reaction 238U + 198Pt at an incident energy of
8 MeV/nucleon has been investigated by using the ImQMD
model. In addition to TLFs, the contribution from PLFs to the
production cross sections for these fragments has been found.
Distinct dynamical processes are revealed in the production of
PLFs and TLFs. Sequential transfer of nucleons plays a key
role in producing TLFs, while massive transfer of nucleons
plays a key role in producing PLFs. The difference between
them manifests itself not only in the dynamical processes
but also in the angular and kinetic energy distributions. The
latter originated from PLF and TLF components can be dis-
tinguished in the experimental measurements.
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