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Extended random-phase-approximation study of the fragmentation
of the giant quadrupole resonance in 16O
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The damping of isoscalar giant quadrupole resonance in 16O is studied using extended random-phase-
approximation approaches derived from the time-dependent density-matrix theory. It is pointed out that the
effects of ground-state correlations bring strong fragmentation of quadrupole strength even if the number of
two-particle–two-hole configurations is strongly limited.
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Giant resonances are considered to be highly collective
states consisting of one-particle–one-hole (1p-1h) excitations
which can be treated in the random phase approximation
(RPA) based on the Hartree-Fock (HF) ground state. Most
observed giant resonances show strong fragmentation of
transition strength, as is the case for the giant quadrupole
resonance (GQR) in 16O [1]. This indicates that beyond
RPA approaches which include higher configurations and also
ground-state correlation effects are needed in a realistic de-
scription of giant resonances. The second RPA (SRPA) [2]
which is based on the HF ground state includes the coupling
of the 1p-1h states to 2p-2h states. In the particle-vibration
coupling or quasiparticle-phonon models [3] p-h correlations
among the 2p-2h configurations are expressed by phonons,
and the effects of ground-state correlations are included in
some versions of the particle-vibration coupling models [4].
My extended RPA (ERPA), which is formulated by using the
equation-of-motion approach [5] and a correlated ground state
in the time-dependent density-matrix theory (TDDM) [6–8],
includes both the coupling to higher configurations and the
effects of ground-state correlations. In ERPA the effects of
ground-state correlations are included through the fractional
occupation probability nα of a single-particle state α and the
correlated part C2 of a two-body density matrix. The small
amplitude limit of TDDM (STDDM) which has been used
for the study of giant resonances in oxygen and calcium
isotopes [9,10] also includes nα and C2, but some correlation
effects in two-body configurations space such as self-energy
contributions are missing in STDDM. In this paper ERPA is
applied to GQR in 16O and the obtained results in ERPA are
compared with those in STDDM. It is shown that both ERPA
and STDDM give highly fragmented quadrupole strength in
16O [1] and that ERPA improves STDDM. The correlations
among the two-body configurations included in ERPA and
STDDM have never been considered in the applications of
other extended RPA theories that incorporate the effects of
ground correlations through nα and C2 [2,11,12].
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The correlated ground state used to formulate ERPA is
given as a stationary solution of the TDDM equations. The
TDDM equations consist of the coupled equations of motion
for the one-body density matrix nαα′ (the occupation matrix)
and the correlated part of the two-body density matrix Cαβα′β ′

(C2). In general the equations of motion for reduced den-
sity matrices form a chain of coupled equations known as
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy, and C2 couples to the correlated part C3 of a three-body
density matrix. Approximations for C3 are needed to close
the equations of motion within nαα′ and C2. A few truncation
schemes of the BBGKY hierarchy have so far been proposed
[8]. In this work the simplest but reliable truncation scheme,
that neglects C3 and takes only the 2p-2h and 2h-2p compo-
nents of C2, is used. It has been shown [13] that this truncation
scheme gives the ground state of 16O, which can be com-
pared with the result in exact diagonalization approach (EDA).
The stationary solution of the TDDM equations can be ob-
tained by using either an adiabatic method or a usual gradient
method [8].

The ERPA equations for one-body amplitudes xμ

αα′ and
two-body amplitudes X μ

αβα′β ′ are derived from the equation-
of-motion approach [5] assuming the excitation operator

Q†
μ =

∑
αα′

xμ

αα′a†
αaα′ +

∑
αβα′β ′

X μ

αβα′β ′a†
αa†

βaβ ′aα′ (1)

destructs the ground state |0〉 as Qμ|0〉 = 0 and excites an
excited state |μ〉 as |μ〉 = Q†

μ|0〉. Here, a†
α (aα ) is the creation

(annihilation) operator of a nucleon at a single-particle state
α. The equations in ERPA are written in the matrix form(

A B
C D

)(
xμ

X μ

)
= ωμ

(
S11 T12

T21 S22

)(
xμ

X μ

)
, (2)

where ωμ is the excitation energy of an excited state |μ〉,
A, B, C, and D are the ground-state expectation values of
the double commutators between the Hamiltonian and either
one-body or two-body excitation operators, while S11, T12 (=
T †

21), and S22 are the ground-state expectation values of the
commutators between either one-body or two-body excitation
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operators. Each matrix element in Eq. (2) is given explicitly
in Ref. [14]. As mentioned above, the effects of ground-state
correlations are included in Eq. (2) through nα and C2. The
equation in SRPA is derived from Eq. (2) by simply assuming
the HF ground state where nα is either 1 or 0 and C2 = 0. The
equations in STDDM can also be expressed in matrix form
similar to Eq. (2) but there is a difference in D: The matrix D
in STDDM does not contain the terms corresponding to the
self-energy contributions to two-body configurations [5]. Let
me explain this point in more detail. From the small-amplitude
limit of the TDDM equations that do not include C3, the
coupled equations in STDDM are obtained for the one-body
transition amplitudes x̃μ

αα′ = 〈0|a†
α′aα|μ〉 and the two-body

transition amplitudes X̃ μ

αβα′β ′ = 〈0|a†
α′a

†
β ′aβaα|μ〉. They are

written in matrix form as(
a b
c d

)(
x̃μ

X̃ μ

)
= ωμ

(
x̃μ

X̃ μ

)
. (3)

The matrices a, b, c, and d are also given in Ref. [14]. With
the use of (

x̃μ

X̃ μ

)
=

(
S11 T12

T21 S22

)(
xμ

X μ

)
, (4)

Eq. (3) can be transformed to another matrix form similar to
Eq. (2) as(

A B
C D′

)(
xμ

X μ

)
= ωμ

(
S11 T12

T21 S22

)(
xμ

X μ

)
, (5)

where A = aS11 + bT21, B = aT12 + bS22, C = cS11 + dT21,
and D′ = cT12 + dS22. The matrices A, B, and C are the same
as those in Eq. (2) but D′ �= D. In order to express D that is
the ground-state expectation value of the double commutators
between the Hamiltonian and two-body excitation operators,
an additional term eT32 is needed, where e depicts the cou-
pling of the two-body transition amplitudes to the three-body
transition amplitudes and T32 is the expectation value of the
commutator between the three-body and two-body excitation
operators [14]. Thus ERPA includes the three-body effects
that are not considered in STDDM. The terms in eT32 express
self-energy contributions and various vertex corrections [5].
One of the self-energy contributions to the 2p-2h configura-
tions is written as

�(p1p2h1h2 : p3p4h3h4) = −δp1p3δp2p4δh1h3 nh1

×
∑
pp′h

〈pp′|v|h2h〉Ch4hpp′ , (6)

where 〈pp′|v|h2h〉 is the matrix element of the residual inter-
action v.

The single-particle states in the one-body and two-body
amplitudes in Eqs. (2) and (5) can be both hole and particles
states, but, in the realistic applications of STDDM [9,10],
X μ

αβα′β ′ has been restricted to the 2p-2h and 2h-2p types to
facilitate numerical calculations. To investigate the validity
of such a treatment of the two-body amplitudes, the frag-
mentation of the quadrupole strength in 16O is first studied
by using a small single-particle space consisting of the pro-
ton and neutron 1p1/2, 1p3/2, and 1d5/2 states, for which
the comparison with the EDA results can easily be made.

TABLE I. Single-particle energies εα and occupation probabili-
ties nα calculated in TDDM for 16O. The results in EDA are given in
parentheses.

εα (MeV) nα

Orbit Proton Neutron Proton Neutron

1p3/2 −18.2 −21.8 0.907 (0.910) 0.908 (0.910)
1p1/2 −12.0 −15.6 0.879 (0.883) 0.879 (0.883)
1d5/2 −3.8 −7.2 0.102 (0.099) 0.102 (0.099)

In this single-particle space no 1p-1h quadrupole transitions
are allowed and the quadrupole strength can be carried by
the 2p-2h configurations. Therefore, the comparison with the
EDA result tests the validity of ERPA and STDDM in the
2p-2h configuration space. RPA and SRPA, which are based
on the HF ground state, cannot give the quadrupole transitions
in this single-particle space.

The single-particle energies and wave functions are calcu-
lated from the Skyrme III force [15]. A simplified interaction
that contains only the t0 and t3 terms of the Skyrme III force
is used as the residual interaction [9]. It has been shown [9]
that this simple force induces ground-state correlations which
are comparable to the results of other theoretical calculations
[16–18]. The ground state is obtained by using the adiabatic
method, which is explained in Ref. [19] in some detail. The
2p-2h and 2h-2p amplitudes in ERPA and STDDM are de-
fined by using the same single-particle states as those used
in the ground-state calculation. The occupation probabilities
calculated in TDDM are shown in Table I. The results in
EDA which are obtained by using the same single-particle
states and interaction as those used in TDDM are given in
parentheses. The results in TDDM agree well with the EDA
results. The deviation of nα from the HF values (nα = 1 or
0) is close to 10%, indicating that the ground state of 16O
is highly correlated. The total energy in TDDM is 7.9 MeV
lower than that in HF: The correlation energy is −22.8MeV
but it is largely compensated by the increase in the mean-field
energy due to the relaxation of the occupation probabilities
from the HF values, as explained in Ref. [9]. As pointed out
in Ref. [19], a few percent reduction of the Skyrme parameters
would be needed to reproduce the HF total energy in TDDM.

In Fig. 1 the isoscalar quadrupole strength distributions
calculated using ERPA (solid lines), STDDM (dotted lines),
and EDA (dot-dashed lines) are shown. The quadrupole tran-
sition strengths in ERPA and STDDM are calculated from the
one-body transition amplitude x̃μ

αα′ given by

x̃μ

αα′ = 〈0|a†
α′aα|μ〉 = S11xμ + T12X μ. (7)

In the single-particle space used here the quadrupole transi-
tion strength is given by the second term, and its process is
depicted in Fig. 2, where the horizontal line indicates Cpp′hh′ ,
the square box connected to the four vertical lines indicates
X μ, the dot shows x̃μ

hh′ and the dotted line with a cross at
the left end represents the external field. In SRPA the 2p-2h
quadrupole configurations cannot make the one-body transi-
tion amplitudes because T12 = 0 in Eq. (7). The quadrupole
strengths in ERPA and STDDM are largely fragmented, which
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FIG. 1. Isoscalar quadrupole strength distributions calculated in
ERPA (solid lines), STDDM (dotted lines), and EDA (dot-dashed
lines) for 16O.

agrees with the EDA result, though there is some difference in
the location and strength of each state. The excitation energy
of the main peak in ERPA is 8.1 MeV higher than that in
STDDM and is close to the EDA result. This upward shift
of the ERPA strength is explained by the self-energy con-
tributions included in ERPA through eT32. Since the 1p-1h
transitions are not allowed in the small single-particle space,
the energy-weighted-sum-rule (EWSR) values exhausted by
the quadrupole states shown in Fig. 1 are small: They are
6.7%, 4.5%, and 5.7% in ERPA, STDDM and EDA, respec-
tively. Figure 1 clearly shows that ERPA reasonably well
describes the correlations among the two-body configura-
tions.

The results of realistic ERPA and STDDM calculations,
that include a large number of single-particle states for xμ

αα′
and thus can be compared with experiment, are presented
below. The one-body amplitudes xμ

αα′ are defined with a
large number of single-particle states including those in the

FIG. 2. Coupling of the h-h transition amplitude to the 2p-2h
amplitude (square box) through Cpp′hh′ . The horizontal line indicates
Cpp′hh′ and the vertical lines with arrows either a hole state or a
particle state. The dotted line with a cross at the left end depicts the
external field and the dot indicates the 1h-1h transition amplitude.

FIG. 3. Isoscalar quadrupole strength distributions calculated in
ERPA (solid line), STDDM (dotted line), RPA (dashed line)and
SRPA (dot-dashed line) for 16O. The distributions are smoothed with
an artificial width � = 0.5 MeV.

continuum: The continuum states are discretized by confining
the wave functions in a sphere with radius 15 fm, and all
the single-particle states with εα � 50 MeV and jα � 9/2h̄
are included. Since the simple residual interaction which is
also used here is not consistent with the full Skyrme III in-
teraction, it is necessary to reduce the strength of the residual
interaction in the one-body channels when the large single-
particle space is used for xμ

αα′ . The reduction factor f is
determined so that the spurious mode corresponding to the
center-of-mass motion comes at zero excitation energy in
RPA. It is found that f = 0.62. This factor is used in the
A, B, and C parts of Eqs. (2) and (5). The 2p-2h and 2h-
2p amplitudes are defined by using the same single-particle
states as those used in the ground-state calculation. The re-
sults of the ERPA and STDDM calculations for the isoscalar
quadrupole excitation in 16O are shown in Fig. 3 with the solid
and dotted lines, respectively. The dashed and dot-dashed
lines depict the results in RPA and SRPA, respectively. The
distributions are smoothed with an artificial width � = 0.5
MeV. The peak in RPA corresponds to GQR. The EWSR
values exhausted by RPA and SRPA are 104% while those
in ERPA and STDDM are 106% and 105%, respectively. To
fulfill EWSR completely, the self-consistent use of the resid-
ual interaction and better treatment of the continuum states
would be needed. Due to the coupling to the 2p-2h configu-
rations, GQR is fragmented in SRPA, ERPA, and STDDM.
However, the SRPA result has no visible strength below 10
MeV. Figure 3 shows that the inclusion of the ground-state
correlations significantly increases the fragmentation of the
quadrupole strength below GQR. In ERPA and STDDM the
coupling of the 1p-1h amplitudes to the 2p-2h amplitudes
is enhanced due to the ground-state correlations through the
process depicted in Fig. 4(b). SRPA only includes the pro-
cesses shown in Fig. 4(a). The two peaks seen around 5.5
MeV in the STDDM and ERPA results are due to the 1p-1p
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FIG. 4. Coupling of the 1p-1h amplitude to the 2p-2h amplitude.
The horizontal line indicates Cpp′hh′ , the two and four vertical lines
with arrows indicate xμ

ph and X μ

pp′hh′ , respectively, and the dotted line
indicates the residual interaction. ERPA and STDDM include both
processes (a) and (b) while SRPA includes only processes (a).

transitions from the partially occupied 1d5/2 states. The bumps
between 7 and 11 MeV in STDDM and ERPA are due mainly
to the transitions from the 2p-2h configurations as depicted in
Fig. 2. These states correspond to the low-lying states seen
in Fig. 1. The small peak at 2 MeV in the STDDM result
mainly consists of the 2p-2h configurations. It disappears in
ERPA because the self-energy contributions [Eq. (6)] push it
into higher energy regions, as is the case of the STDDM and
ERPA calculations shown in Fig. 1. The quadrupole strength
in ERPA is more strongly fragmented between 12 and 25 MeV
than that in STDDM. This is another effect of the eT32 term
that enhances the correlations among the 2p-2h configura-
tions, though it is difficult to show which term in eT32 is most
important. The large fragmentation in ERPA is comparable to
the quadrupole strength distribution observed above 10 MeV
[1] as shown in Fig. 5, though ERPA cannot fully reproduce
the position and height of each peak. Figure 5 depicts the

FIG. 5. Isoscalar quadrupole strength distribution calculated in
ERPA (solid line) for 16O is shown as a ratio to the EWSR value and
compared with the observed quadrupole strengths above 10 MeV [1]
(vertical bars).

ratio to the EWSR value. The quadrupole strength observed
between E = 11 and 40 MeV accounts for 53 ± 10% of
EWSR [1].

In summary, the damping of isoscalar giant quadrupole
resonance in 16O was studied by using beyond RPA ap-
proaches, the extended RPA (ERPA) and the small amplitude
of the time-dependent density-matrix theory (STDDM), both
derived from TDDM. It was found that the effects of ground-
state correlations bring strong fragmentation of quadrupole
strength even in a small single-particle space used for two-
particle–two-hole configurations. It was pointed out that
self-energy contributions included in ERPA improve the re-
sults in STDDM.
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