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The 16F nucleus is situated at the proton drip line and is unbound by proton emission by only about 500 keV.
Continuum coupling is then prominent in this nucleus. Added to that, its low-lying spectrum consists of narrow
proton resonances as well. It is therefore a very good candidate to study nuclear structure and reactions at the
proton drip line. The low-lying spectrum and scattering proton-proton cross section of 16F were calculated with
the coupled-channels Gamow shell model framework in this case using an effective Hamiltonian. Experimental
data are very well reproduced, as were those of its mirror nucleus 16N. Isospin-symmetry breaking generated by
the Coulomb interaction and continuum coupling explicitly appears in our calculations. In particular, the different
continuum couplings in 16F and 16N involving s1/2 partial waves allow one to explain the different ordering of
low-lying states in their spectra.
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Introduction. The area of the nuclear chart in which A ≈ 20
possesses interesting features from many aspects. On the one
hand, it can be reached from proton to neutron drip lines
with current facilities, so that comparison with experimental
data can be conveniently effected [1–4]. On the other hand,
nuclei in this region can be theoretically studied with shell
model frameworks, and in particular with the shell model
including continuum coupling [5–7]. Thus, nuclear structure
at drip lines can be precisely assessed, because the presence
of a complex nuclear structure in weakly bound and unbound
nuclei demands the inclusion of continuum coupling.

16F is a light nucleus at the proton drip line and has been
studied experimentally in several situations. 16F could be gen-
erated in transfer reactions involving light nuclei (see Ref. [8]
and references therein) and the cross section of the 15O(p, p)
reaction has been measured as well [9]. 16F, as well as its mir-
roring nucleus 16N, are also important from an astrophysical
point of view, as nearby nuclei such as 15N, 15–18O, and 17–19F
enter CNO cycles [10].

However, due to the fact that it is unbound at the ground
state level, 16F is difficult to study theoretically with standard
approaches, such as the harmonic oscillator shell model. In
fact, the model of choice for that purpose is the Gamow
shell model (GSM), because GSM can treat unbound nuclei
bearing a complex nuclear structure [7,11–28]. Added to that,
the coupled-channels GSM (GSM-CC) allows one to calcu-
late reaction cross sections in the GSM framework using the
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same Hamiltonian, so that both nuclear structure and reaction
observables can be assessed at the same time [28–32]. Isospin-
symmetry breaking can then be quantitatively considered, as
has been done, for example, in oxygen and carbon isotopes
and isotones in Refs. [33,34]. We will therefore use GSM and
GSM-CC to calculate the spectrum of 16F, that of its mirror
nucleus 16N, and the excitation function of the 15O(p, p)
reaction.

This Letter is structured as follows. We will first present the
basic features of GSM and GSM-CC. Then, we will depict
the model spaces and Hamiltonian used for the theoretical
description of the spectra of 16F and 16N and the calculation of
the cross section of the 15O(p, p) reaction. We will then show
obtained results and comment on the isospin asymmetry ob-
tained in the spectra of 16F and 16N, in particular. Conclusions
will be made afterwards.

GSM and GSM-CC models. The fundamental equation in
GSM is the one-body Berggren completeness relation of a
given partial wave of quantum numbers �, j [35]. It reads

∑
n

un(r)un(r′) +
∫

L+
uk (r)uk (r′) dk = δ(r − r′), (1)

where un(r) is a bound or resonance state and uk (r) is a
scattering state belonging to the complex contour of one-body
momenta L+. The L+ contour must encompass all the reso-
nances present in the discrete sum of Eq. (1) (see Refs. [7,28]
for details).

In order to be able to use Eq. (1) in numerical calculations,
its integration contour must be discretized. For this, one uses
the Gauss-Legendre quadrature, which has been seen to con-
verge quickly, as about 15 points per contour are sufficient
to obtain convergence for energies [36]. Then, one obtains the
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discretized Berggren completeness relation, which is formally
identical to the harmonic oscillator completeness relation.
Consequently, one can build Slater determinants from the
discretized Berggren completeness relation to obtain a basis of
many-body states similarly to harmonic oscillator shell model.
The main difference is that the GSM Hamiltonian matrix
becomes complex symmetric, where numerous many-body
scattering states are present. Special numerical techniques had
to be devised to diagonalize the GSM Hamiltonian matrix,
which are based on the use of the Jacobi-Davidson and the
overlap methods [7,28,37,38]. As these techniques have been
thoroughly explained in these citations, we refer the reader to
these papers and book for details.

While GSM allows one to calculate the many-body halo
and resonances, it is not sufficient if one aims at evaluating
reaction cross sections. This arises because the many-body
scattering eigenstates of the GSM matrix do not have a well
defined asymptotic behavior, i.e., they consist of a complex
linear combination of reaction channels of a given energy. As
it is necessary to deal with well defined reaction channels to
be able to calculate reaction observables, GSM-CC has been
developed for that purpose [28–32].

In GSM-CC, the many-body resonant or scattering
coupled-channels states |�JA

MA
〉 to determine are built from

targets and projectiles issued from a GSM calculation:

∣∣�JA
MA

〉 =
∑

c

∫ +∞

0

(
uc(r)

r

)
|(c, r)〉 r2dr , (2)

where |�JA
MA

〉 is the resonant or scattering state of A nucleons,
uc(r) is the radial channel wave function to determine, and
|(c, r)〉 is the reaction channel:

|(c, r)〉 = Â{∣∣�JT
T

〉 ⊗ |r� j〉}JA

MA
, (3)

where |r� j〉 is a nucleon projectile state of fixed quantum
numbers �, j and |�JT

T 〉 is the A − 1 target state, an eigenstate
of the GSM Hamiltonian, both being coupled to JA, MA, so
that c embodies all the quantum numbers of the considered c
channel.

The coupled-channels equations of GSM-CC are derived
from the Schrödinger equation H |�JA

MA
〉 = E |�JA

MA
〉, with E

the energy of the many-body coupled-channels state:

∑
c

∫ +∞

0
(Hcc′ (r, r′) − E Ncc′ (r, r′))uc(r′)dr′ = 0 , (4)

with

Hcc′ (r, r′) = rr′ 〈(c, r)| Ĥ |(c′, r′)〉 , (5)

Ncc′ (r, r′) = rr′ 〈(c, r)|(c′, r′)〉 . (6)

The matrix elements of the GSM-CC coupled-channels
equation in Eqs. (5), (6) are conveniently calculated by ex-
panding |r� j〉 in the Berggren basis in Eq. (3):

Â[|�T〉 ⊗ |r� j〉]JA
MA

=
∑

n

un(r)

r

{
a†

n� j

∣∣�JT
T

〉 }JA

MA
. (7)

Indeed, as |�T〉 is a linear combination of Slater determi-
nants expressed in the same Berggren basis as projectiles,
antisymmetry is straightforward to impose in Eq. (7) with

creation and annihilation operators. GSM-CC matrix elements
are then obtained via Slater determinant algebra [28].

As c channels are nonorthogonal, it is more convenient to
deal with orthogonalized channels. Orthogonalized channels
are obtained by diagonalizing the overlap matrix Ncc′ (r, r′)
of Eq. (6) in the Berggren basis [28]. Let us then denote by
wc(r) the channel radial wave functions associated to orthog-
onalized channels. The channels functions wc(r) then proceed
from coupled-channels equations, whose structure is the same
as those occurring in standard reaction theory:[

h̄2

2μ

(
− d2

dr2
+ �c(�c + 1)

r2

)
+ V (loc)

c (r)

]
wc(r)

+
∑

c′

∫ +∞

0
V (non−loc)

cc′ (r, r′) wc′ (r′) dr′

= (E − ETc )wc(r) , (8)

where μ is the effective mass of the projectile, �c is the
channel orbital momentum, ETc is the channel target en-
ergy and V (loc)

c (r), V (non−loc)
cc′ (r, r′) are the local and nonlocal

coupled-channels potentials resulting from Eqs. (5) and (6),
respectively.

Equation (8) is an integrodifferential coupled-channels
equation and is strongly nonlocal. It cannot be integrated in
coordinate space with iterative methods, such as the equiv-
alent potential method [39,40], due to numerical instability.
Thus, we developed a technique of resolution based on
Berggren basis expansion [28,30]. Equation (8) then reduces
to a matrix diagonalization problem for bound and resonance
states and to a linear system to solve for scattering states, so
that Berggren basis expansion is hereby very stable. Initial
uc(r) functions are then obtained from wc(r) functions via
the matrix transformation induced by Ncc′ (r, r′). For a more
thorough presentation of GSM-CC, we refer the reader to
Ref. [28].

Hamiltonian and model space. The framework we used
is that of the core + valence nucleons picture, where the
core consists of the 12C nucleus. The 12C core is mimicked
by a Woods-Saxon (WS) potential. Valence nucleons interact
via the Furutani-Horiuchi-Tamagaki (FHT) nuclear interac-
tion [18,41,42], to which the Coulomb interaction is added
for protons. The model space is constructed from spd partial
waves. Note that this model has been successfully used for the
description of the reaction 14O(p, p) reaction, which was the
subject of a recent experiment [22].

As the neutron part is well bound in 16F, it only con-
sists of the harmonic oscillator shells 0p1/2, 0d5/2, 1s1/2, and
0d3/2, whose oscillator length is b = 2 fm. The proton part
is represented by the Berggren basis, so that it consists of
the S-matrix poles 0p1/2, 0d5/2, 1s1/2, and 0d3/2, to which
complex-momentum scattering contours of orbital angular
momentum � � 2 are added. The latter all start at k = 0, are
peaked in k = 0.2 − i0.1 fm−1, return to the real k axis in
k = 0.4 fm−1, and end in k = 2 fm−1. They are discretized
with 15 points each. Not more than three nucleons are allowed
to occupy nonresonant shells.

As we consider the core + valence nucleons approach, the
most natural framework to define particle coordinates is the
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TABLE I. The optimized parameters of the FHT interaction
consist of central (V ST

c ) and tensor (V ST
T ) coupling constants [18].

S = 0, 1 and T = 0, 1 are the spin and isospin of the two nucleons,
respectively. Parameters are given in MeV for the central part and in
MeV fm−2 for the tensor part. The spin-orbit component of the FHT
interaction was arbitrarily put to zero.

Parameter V 11
c V 10

c V 00
c V 01

c V 0
T V 1

T

Value 12.371 −15.934 −0.362 −15.248 −0.091 −21.207

cluster orbital shell model (COSM) [43]. All valence nucleons
coordinates are defined with respect to the center of mass
of the core, so that they are translationally invariant and no
center-of-mass excitation can occur. The recoil of the core
is taken into account in the Hamiltonian by an additional
two-body kinetic term (see Ref. [28] for more details about the
COSM framework applied to GSM). The COSM Hamiltonian
then reads

H =
∑

i

(
p̂2

i

2μi
+ Ûi

)
+

∑
i< j∈val

(
V̂i j + p̂i · p̂ j

Mcore

)
, (9)

where μi is the effective mass of the nucleon i, Ûi is the core
potential acting on the nucleon i, V̂i j is the FHT + Coulomb
interaction, and the last term is the recoil term, inversely
proportional to the mass of the core Mcore.

The parameters of the Hamiltonian of Eq. (9) were fitted
from the low-lying spectra of 14N (0+ and 1+ states), 15O
(1/2−, 1/2+, and 5/2+ states), and 16F (0−−3− and 1+ − 3+
states). For this, we first fitted the WS core potential depths
and FHT interaction parameters on these states by having
two nucleons at most in scattering shells. This resulted in
residues of typically 500 keV to 1 MeV per considered state.
Afterwards, we refitted the WS core potential depths only by
letting three particles occupy nonresonant basis states, thus
focusing only on 16F separation energy and spectrum. Doing
this, their typical residues could reach 100-200 keV.

Let us now enumerate the parameters fitted with the above
fitting procedure. The WS core potential has a diffuseness
d = 0.65 fm, a radius R0 = 2.907 fm, and potential depths
that depend on both nucleon type and orbital angular momen-
tum: for protons one has Vo = 34.716, 22.598, and 37.032
MeV, respectively for � = 0, 1, 2, whereas for neutrons one
has Vo = 56.699, 57.851, and 61.815 MeV, also respectively
for � = 0, 1, 2. Spin-orbit potential depths are, for protons,
Vso = 9.514 and 4.8 MeV, respectively for � = 1, 2, while for
neutrons one has Vso = 8.885 and 7.129 MeV, respectively for
� = 1, 2. The parameters of the FHT interaction are listed in
Table I.

The spin-orbit component of the FHT interaction is equal
to zero (see Table I). We suppressed it because its overall
effect was seen to be redundant in the Hamiltonian. Indeed,
along with the spin-orbit part of the WS core potential, spin-
orbit degrees of freedom are present via the tensor part of the
FHT interaction. Hence, we could put the spin-orbit compo-
nent of the FHT interaction to zero while still retaining almost
all spin-orbit degrees of freedom in the Hamiltonian.
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FIG. 1. Low-lying energy spectra of the 16F and 16N nuclei ob-
tained with GSM and GSM-CC and compared to experimental data
(Exp). The proton-emission widths are indicated by filled squares
and their numerical values are also indicated above. Excitation ener-
gies Ex and proton-emission widths are given in keV. Experimental
data are taken from Ref. [44].

From a theoretical point of view, i.e., without model space
truncation and including all reaction channels, the Hamil-
tonians used in GSM and GSM-CC are the same. Thus,
eigenstates should have identical energies when calculated
either with GSM or GSM-CC. Nevertheless, this is not the
case in practice due to the different truncation schemes used
in the two model spaces. In order to compensate for this differ-
ence, and also for GSM-CC results to reproduce experimental
data as closely as possible, the two-body matrix elements of
the nuclear interaction are multiplied by factors close to 1 in
GSM-CC. They are equal to 1.006, 1.009, 1.003, and 1.004 for
the channels of quantum numbers Jπ = 0−, 1−, 2− and 3−, re-
spectively. The induced change is minimal and obviously does
not modify the initial physical properties of the Hamiltonian
fitted with GSM. No corrective factor is introduced for other
channels.

As 16F and 16N are mirror nuclei, the model space and
Hamiltonian used for 16N are obtained from those of 16F by
exchanging protons and neutrons. Thus, the neutron part of
the model space of 16N consists of partial waves represented
by the Berggren basis, whereas its proton part consists of
harmonic oscillator shells. The parameters of the WS core
neutron potential of 16N are then those of the WS core proton
potential of 16F (similarly for the WS core proton potential
of 16N). This Hamiltonian definition allows one to assess
the Thomas-Ehrman shift because 16F and 16N would have
the same wave functions and energies up to proton-neutron
exchange in the absence of Coulomb interaction (see also
Refs. [33,34] for studies of isospin-symmetry breaking with
GSM).

Calculations and discussions. The spectra of 16F and 16N
are shown in Fig. 1. A good description of eigenenergies is
obtained with GSM in both systems, as the maximal deviation
from experiment is around 200 keV. While the ordering of 16F
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excitation energies is reproduced with GSM, the 1− and 3−
energies are inverted in 16N. However, one can see that the
Coulomb interaction is responsible for the different orderings
of the 0−, 1−, and 2− states in 16F and 16N. Indeed, the
ground state and first excited states of 16N are found to be
2− and 0− states, respectively, as is the case experimentally.
Nevertheless, the proton-emission widths of 16F eigenstates
are almost zero with GSM. The reason for this probably
comes from model space truncation and contour discretization
effects, as a very large model space would be necessary to
obtain a precision of 1–5 keV for complex energies.

As excitation energies are shown in Fig. 1, ground state
energies are put to zero, so that one cannot assess the error
made on the 16N ground state binding energy. In fact, it is
about 830 keV too bound with respect to experimental data,
which results from the proton-neutron interchange defining its
Hamiltonian. But, as 16N is well bound, this does not change
any of its physical properties.

Corrective factors were introduced at GSM-CC level to
reproduce experimental data in 16F, so that the energy spec-
trum of 16F is almost exactly reproduced with GSM-CC (see
Fig. 1). Interestingly, the ordering of excited states of 16N is
also recovered at GSM-CC level, even though the 2− and 0−
states are close to being degenerate (see Fig. 1). This was
rather unexpected as the same corrective factors are used in
16F and 16N. GSM-CC excitation energies in 16N are also
close to experimental data, as the typical error is about 150
keV. The proton emission widths of 16F eigenstates are very
well reproduced, as only the width of the 1− state is larger by
a little more than 10 keV compared to experiment, the others
differing by at most 3 keV. This shows that the wave functions
of 16F eigenstates consist principally of channels made of well
bound 15O states plus an unbound proton.

The most striking consequence of isospin-symmetry break-
ing in weakly bound and resonance nuclear states is the
Thomas-Ehrman shift, i.e., the different excitation energies
of the nuclei belonging to the same isospin multiplet in the
absence of Coulomb interaction [45,46]. The Thomas-Ehrman
shift is clearly visible in the low-lying spectra of 16F and 16N
(see Fig. 1). It is generated by two factors: the presence of
the additional Coulomb interaction in 16F and the unbound
character of 16F, whereby 16N is well bound. The Thomas-
Ehrman shift is especially well reproduced in GSM-CC, and
the effect of the Coulomb interaction plus continuum coupling
is also present in GSM.

In order to further determine the origin of the Thomas-
Ehrman shift in 16F and 16N, we calculated the average values
of the different kinetic, nuclear, and Coulomb parts entering
the GSM Hamiltonian. We could see that the expectation val-
ues of the kinetic operator and nuclear interaction for protons
in 16F are about 8 MeV smaller in the 0− and 1− states than in
the 2− and 3− states. Conversely, this value is close to 5 MeV
in 16N for its neutron part. The expectation values of the other
operators entering the Hamiltonian are close for all 16F states
(same for 16N states).

This indicates that the Thomas-Ehrman shift is mainly due
to the Hamiltonian matrix elements pertaining to s1/2 partial
waves in GSM and GSM-CC. Indeed, as the 1s1/2 proton state

in 16F is above particle-emission threshold, both its average
kinetic energy and radial wave function inside the nucleus
are smaller in magnitude than those of the well bound 1s1/2

neutron state in 16N. Consequently, kinetic and nuclear matrix
elements associated to the 1s1/2 proton state in 16F can be
expected to be smaller in magnitude than those related to the
1s1/2 neutron state in 16N. Added to that, we observed a larger
continuum coupling in the 0− and 1− states in 16F than in its
2− and 3− states, as it is about 0.35 in the former and 0.2 in the
latter. This accentuates the differences between configurations
containing s1/2 partial waves involving either protons in 16F
or neutrons in 16N. Consequently, the 0− and 1− states are
close in 16F because of their similar structure, whereby the
average proton occupation of the s1/2 partial wave is close to
1. Conversely, it is about 0.1 in the 2− and 3− states of 16F.
This also explains why the 0− and 1− states are below the
2− and 3− states. Indeed, as continuum coupling is stronger
in the 0− and 1− states, they can gain more binding energy
compared to the 2− and 3− states. This is directly seen in the
GSM energy differences of these states in 16F and 16N, as it is
about 6 MeV for the 0− and 1− states and 6.3 MeV for the 2−
and 3− states.

It is also interesting to consider the expectation value of the
T̂ 2 operator in 16F and 16N. However, the present definition of
16F and 16N model spaces is not suitable to evaluate isospin-
symmetry breaking with T̂ 2, in contrast to Thomas-Ehrman
shift. Indeed, as proton-neutron spaces are asymmetric in
16F and 16N, a spurious isospin mixture would occur, which
would blur the physical deviation of T̂ 2 expectation values
from integers. Hence, we fitted a GSM Hamiltonian in a
symmetric proton-neutron space for 16F and 16N in order
to have a proper estimate of isospin expectation values. We
obtained that T 	 1 for all eigenstates of 16F and 16N, where
deviations are of the order of 10−3 or less. Isospin-symmetry
breaking is thus mainly of dynamical character [47,48], i.e.,
the Hamiltonians and spectra of 16F and 16N differ because of
the Coulomb force and different wave function asymptotes,
while the isospin of many-body eigenstates is almost T = 1.

Following the very satisfactory reproduction of the spec-
trum of 16F in our calculations, the excitation function of the
15O(p, p) scattering reaction was evaluated in GSM-CC. Note
that the experimental cross section was not part of the fitting
process, so that its calculation is fully predictive. GSM-CC
results are depicted in Fig. 2 along with experimental data [9].
One can see that the experimental cross section is accurately
reproduced for the whole range of projectile energies. For this,
an almost exact fit of excitation energies had to be obtained in
GSM-CC, and proton-emission widths had to be reproduced
up to few keV compared to experimental data. Note, however,
that experimental errors are fairly large, and that the GSM-CC
cross section typically lies at the upper end of experimental
error bars. Added to that, the GSM-CC cross section peak
at the 2− state is about 1.5 higher than that of the R-matrix
fit of Ref. [9]. It was checked that an overall 0.85 renor-
malization factor allows for the GSM-CC cross section to be
situated around the middle of the experimental error bars. This
probably indicates that the neglected reaction channels in the
GSM-CC Hamiltonian might have an influence on the cross
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FIG. 2. Excitation function of the 15O(p, p) scattering reaction
calculated with GSM-CC and compared to experimental data. En-
ergies and cross section are defined in the laboratory frame. The
cross section angle is defined in the center-of-mass frame and is
equal to 180◦. The low-lying resonance states of 16F are indicated
on the figure next to their associated projectile excitation energy.
Experimental data are taken from Ref. [9].

section and would have slightly decreased it. Nevertheless,
the GSM-CC calculation clearly reproduces the experimental
cross section overall and shows that the used model space
recaptures all its most important physical features.

Summary. Nuclei of the A ≈ 20 region are interesting from
many aspects. First, they are accessible with current acceler-
ator facilities from proton to neutron drip lines. Second, their
theoretical study can be very accurate as associated nuclear
states can be treated with shell model frameworks including
continuum degrees of freedom. Added to that, the Coulomb
barrier is still low in this region, so that continuum effects
exist at proton and neutron drip lines, which allow one to study
the nucleon-nucleon interaction and isospin-breaking effects
at the limit of stability. These nuclei are also of astrophysical
interest, as the nuclei entering CNO cycles belong to this
region of the nuclear chart.

For those purposes, we studied the mirror systems 16F and
16N. While they are complex systems, the structure of their
low-lying states can be described in sizable model spaces.
Nevertheless, as 16F is unbound by proton emission, contin-
uum coupling must be included for its proper description, so
that GSM and GSM-CC are the models of choice in this case.

We have thus shown that the low-lying spectrum of 16F
and 16N, as well as the 15O(p, p) scattering reaction cross
section, can be reproduced using GSM and GSM-CC with an
effective Hamiltonian, consisting of a 12C core and valence
nucleons interacting with an effective nuclear interaction. Ob-
tained results are indeed very satisfactory, especially for 16F at
GSM-CC level, where the GSM-CC cross section recaptures
the most important physical features of experimental data.
However, it lies at the upper limit of its large error bars, which
indicates the possible influence of neglected emission chan-
nels, whose overall effect would be to slightly decrease the ex-
citation function by the same factor at each projectile energy.

The isospin-symmetry breaking induced by both the
Coulomb interaction and coupling to the continuum can be
seen in the GSM and GSM-CC spectra of 16F and 16N. In
particular, in our calculation, the observed Thomas-Ehrman
shift occurs because of the special role played by the proton
s1/2 partial wave in 16F. On the one hand, as the 0− and
1− states of 16F have similar s1/2 proton content, they are
consecutive in its spectrum. On the other hand, the stronger
continuum coupling in these states, being about twice as large
as in the 2− and 3− states of 16F, provides them more binding
energy. Thus, the origin of the different ordering of low-lying
states in 16F compared to 16N could be identified using the
GSM framework.
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