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Crystallization in single- and multicomponent neutron star crusts
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We use molecular dynamics simulations to study the formation and stability of single- and multicomponent
lattices in the outer crust of neutron stars. Including an improved treatment for Gaussian charge distributions of
ions, we obtain the expressions for the potential and forces arising from electron screened Coulomb interactions
using the efficient Ewald sum procedure. Our findings show that. for baryon densities in the outer crust, a
pointlike ion treatment cannot fully describe the crystallization behavior. In our work, the usual Coulomb pa-
rameter, �C , along with the screening parameter from an electron polarizable background, κ , are complemented
with an additional parameter, η, providing information on the finite size of ions. In our approach we find that
including beyond-pointlike approaches in screened ion plasmas under the Thomas-Fermi approximation has a
strong impact on calculated lattice energetic stability, decreasing crystallization energies per baryon up to ≈40%
with respect to pointlike interaction and, as a consequence, melting point is displaced to lower temperatures.
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I. INTRODUCTION

Neutron stars (NSs) are compact stars that appear at the
end point of the evolutionary path of progenitor stars with
masses larger than about ≈8M�. These collapsed stars display
a rich internal structure with matter densities spanning many
orders of magnitude from the core to the outer crust. Some
of the complexity related to the microscopic modeling of
their interior relies on the fact that matter must be described
under different Lorentz regimes, from the relativistic nature of
fluid interacting matter in the core to the nearly classical ion
dynamics in the outer crust. Quantum effects arising from rel-
ativistic leptons, superconducting and superfluid components
[1], and correlated states [2] are also present.

In the crust, thermodynamical quantities are intimately
dependent on the composition and the microscopic model of
matter interaction. In this line, there is recent interest in study-
ing multicomponent systems arising from fully or partially
accreted crusts [3]. This originates from NS binary systems
hosting the process where matter from the companion star is
intermittently transferred to the NS surface and processed,
producing highly luminous bursts in x rays. Observing the
cooling of soft quiescent x-ray transients allows us to probe
our understanding of NS composition from remaining ashes
[4], arrangement [5–7], and the deep crustal heating mech-
anism [8]. Recall that the composition can impact not only
the generic equation of state (EOS), i.e., the relation pressure
versus energy density at a given temperature, p(ε, T ), but
specifically crust properties such as the thermal conductiv-
ity and shear modulus, with important consequences on the
cooling of the star, the evolution of the magnetic field, or the
seismic activity as described in, e.g., [3,9–12].

It is now well established that in the outer NS crust
matter arranges itself into periodic structures. An effective
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description of these very outer layers based on low density
ionic matter screened by electrons seems thus appropriate. As
established, for crustal densities beyond 106 g/cm3 electrons
are in the degenerate relativistic regime. It is in this scenario
that a first approach to the complex picture emerges, invoking
the presence of Coulomb crystals, in which atoms are fully
ionized and electrons form a neutralizing (polarizable) fluid
surrounding the periodic ion array. It has been thoroughly
studied in the literature; see [13–15] and references therein.

One particular realization is the one component plasma
(OCP), an idealized neutral plasma with a single species of
ions of charge Z (in units of electron charge e), mass mI , and
ion number density nI (or equivalently ρ mass density) where
the cold electron fluid is described by the relativistic param-
eter xr ≡ pF,e

me
= (3π2ZnI )1/3

me
≈ 0.01(ρ Z

mI
)1/3 � 1. pF,e, me are

the electron Fermi momentum and mass, respectively (we use
h̄ = c = 1).

A series of works have calculated the effect of electron
exchange correlations or polarizability, mostly within the lin-
ear response formalism; see for example [13,16,17]. These
calculations mainly focus, in the static regime, on the electron
longitudinal dielectric function ε(k) dependent on momen-
tum k in Fourier space. In the present work we will assume
that the full Debye screening at finite ion temperature, i.e.,
T ≡ TI , is characterized by k−1

D = λD ≈ k−1
T F , approximately

that due to cold degenerate electrons. For a system of ions
in the polarizable electron background it can be written [17],

to first-order corrections, of the form ε(k) = 1 + k2
T F
k2 ε2(k)

with kTF = (4πe2∂ne/∂μe)1/2 the Thomas-Fermi (TF) wave
number and ne, μe = me

√
1 + x2

r being the electron number
density and chemical potential, respectively.

Studies in Earth laboratories provide information on the
mass, charge, and stability of nuclei [18]. Some of the known
neutron rich isotopes are expected to appear in this NS envi-
ronment. Typical values of ion density in the outer crust are
below the neutron drip density ρND ≈ 4 × 1011 g/cm3 such
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FIG. 1. Polarization coefficient |Cε | ≡ |ε−1 − 1| as a function of
y = k/2kF,e in the electron polarization energy [14] in the Thomas-
Fermi and Jancovici [20] approximations. See text for details.

that the screening parameter kT F l � 1, where l = n−1/3
I /ξ

is the mean interparticle distance and ξ = (4π/3)1/3. Un-
der these conditions the linear response approximation can
account for electron polarization to describe the system. At
slightly higher densities the neutron gas may distort lattice
stability [19].

Different approximations for the responsive electron sea
are encoded in the form of ε2(k), as we will discuss in what
follows. Using [17], ε2(k) = 0 corresponds to the case of a
rigid background, being finite in the polarizable case. Typi-
cally, the relativistic approach of Jancovici [20] for degenerate
electrons recovers, in the nonrelativistic limit xr � 1, the fa-
miliar Lindhard form, while for small momentum k � 2kF,e it
yields the widely used Thomas-Fermi approximation ε2(k) =
1. We must note that although the Thomas-Fermi approach is
widely used in ion dynamics, even in the context of previous
NS crust calculations [7], the reliable polarizable electron
background is recovered from a more general, relativistic
treatment such as that from the random phase approxima-
tion by Jancovici [20]. The reason for this is the fact that at
larger values of the screening parameter κ ≡ kT F l the linear
response approach fails. At larger xr the screening in the
ultrarelativistic electron gas is only determined by the ion
charge number Z , and this behavior is not captured by the
simplified TF model [14].

Calculations using Monte Carlo and molecular dynam-
ics (MD) simulations [7,21,22] with a prescribed Yukawa
potential are consistent with a TF polarizable electron gas.
However, more refined estimates of electrostatic energy in
Coulomb systems [17] find structural differences in the lat-
tices when TF or Jancovici models are used, finding bcc
lattices as the ground state for systems with kT F l < 1.0657.
Although the TF model has been widely used, calculations
using Jancovici models in degenerate electron backgrounds
can yield significant electrostatic energy corrections for small
Z; see Fig. 1 in that same Ref. [17].

In this work we are interested in exploring additional
energetic corrections derived within the TF approximation
but including beyond-pointlike approaches both in OCP and
multicomponent plasmas (MCPs). In this scenario, species
population at low temperatures has been calculated in [23,24],
being most likely an ion distribution peaking at given baryon
mass A with some spread; see [25].

This paper is organized as follows. In Sec. II we discuss
our formalism, including the molecular dynamics setup used
and the efficient procedure for energetics and force calculation
using the Ewald sum for screened OCP and MCP systems
with Gaussian finite-size charge spread. In Sec. III we present
our results arising from our computational simulations and
discuss our findings in light of other existing calculations.
Finally in Sec. IV we summarize and conclude.

II. SCREENED OCP AND MCP SYSTEM WITH GAUSSIAN
CHARGE DISTRIBUTION

We aim to describe in detail the screened OCP or MCP, a
charge-neutral system with ion density nI = ∑

i XinI,i, com-
posed of i ion types, each carrying electric charge Zi and
mass number Ai in the sample of NI ions. Number fractions
are defined as Xi = NI,i/NI . As mentioned, at crustal densities
beyond 106 g/cm3 electrons have been stripped off the atoms,
forming a relativistic degenerate Fermi sea, thus the potential
created at distance r by the ith ion at position �ri is not the bare
Coulomb one but, for the screening conditions considered,
where kT F l � 1, it will be approximated in the linear response
by the so-called Debye potential.

In terms of the static dielectric function ε(k) the energetic
correction due to the electron polarization response [14] will
depend on ε−1(k) − 1 so that for y ≡ k/2kF,e � 1/4 a clear
departure arises among TF and Jancovici models [15], see
Fig. 1, involving important consequences, such as a robustly
less bound bcc lattice in the ground state for the relativistic
model. Note that this limit of large y corresponds to typical
small distances 1/r ∼ k ∼ y.

In the TF approximation for the dielectric function in
Fourier space, the space dependent potential displays a
Yukawa-like form,

φi(�r) = Zi

|�r − �ri|e− |�r− �ri |
λe , (1)

where λe ≡ λT F = k−1
T F is the TF screening length. In the rela-

tivistic limit it fulfills kTFl ≈ 0.185Z1/3 (1+x2
r )1/4

x1/2
r

for degenerate
electrons. Electron number density is parameterized in the

charge neutral system as ne = ∑
i ZinI,i = k3

F,e

3π2 .
At this point it is worth discussing how the thermody-

namical quantities of interest will be calculated from the
crystal/fluid configurations found in equilibrium as dictated
by molecular dynamics in an interacting system of ions in the
presence of a polarizable electron background. In this setup,
widely used in many-body systems (see for example [26,27]
for Yukawa or Lenard-Jones systems), we solve the equa-
tions of motion for ions considering dynamical oscillations
will be much smaller, ω � ωp, than their associated plasma
frequency, ωp = (4πe2nIZ2/mI )1/2, so that the screening is
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instantaneous and the dielectric function ε(k, ω) 	 ε(k) only
depends on momentum k. This fact is responsible for modi-
fying the effective forces (and dynamics) in the screened ion
system.

Thus in our treatment we will not follow the dynamics of
relativistic electrons in the charge neutralizing gas, with the
screening of the ionic Coulomb interaction being the result of
the responsive electron gas. Ion positions and momenta, even
in crystallized states, are used to obtain subsequent magni-
tudes resulting from the simulation after reaching long-term
stable equilibrium starting from the initially randomized ion
phase space at the designated NV T ensemble.

As stated in [9] thermal de Broglie wavelengths of free
ions, λdB,I = ( 2π

mI kBT )1/2, allow sizing the importance of quan-
tum effects on their motion, i.e., when λI � l or at T � Tp,
where Tp ≡ ωp (we set kB = 1 from now on) is the effective
temperature of ion plasma frequency. As the typical simulated
temperatures are T � 108 K, in our case only classical effects
will be relevant.

A. Ewald sums in screened Gaussian ion systems

To efficiently sum force and energetic contributions in our
system we implement the Ewald technique [28], usually ap-
plied when dealing with the Coulomb potential or finite range
potentials in general [29,30]. This allows an accurate evalu-
ation of electrostatic potentials (forces) along with periodic
boundary conditions (PBCs).

Briefly, Ewald decomposition is used to split the problem
into real-space and Fourier-space parts as it greatly accelerates
computation, yielding an improved energy evaluation [31].
Other alternative approaches use sums over neighboring sim-
ulation replicas [6,7].

We will focus our study of OCP and MCP systems likely
appearing in the outer NS crust, thus in order to illustrate typi-
cal conditions we will focus on ion densities in the range nI ≈
10−6–10−4 fm−3, corresponding to baryon densities nB ≈
0.0001–0.01 fm−3.

We now describe the species simulated in our work. First,
inspired by [32] and latter updated by [23] we consider a
OCP with a single species Z = 38, A = 124 and two MCP
mixtures, see [24], that we label as M1, M2. For the latter we
particularly use the composition from [4,7] and set five species
with a common global lepton fraction Ye|M1 ∼ Ye|M2 = 0.43
and impurity parameters Qimp|M1 = ∑

i Xi(Zi − 〈Z〉) = 21.48
and Qimp|M2 = 10.69.

More specifically for mixture M1 we take {Z, A, Xi}|M1 =
{(30,69,0.407), (28,64,0.352), (42,100,0.111), (32,76,0.074),
(40,96,0.056)}. We will also consider an alternative mixture,
M2, differing from M1 in just two ion species, in order to study
the effect of the variation of the most frequent ion species
in the crystallization, i.e., {Z, A, Xi}|M2 = {(32,69,0.407),
(28,64,0.352), (36,100,0.111), (32,76,0.074), (40,96,0.056)}.
At this point we are aware that especially for OCP the chosen
species may retain some underlying model dependence; later
we will comment how our results are robust in this respect.

The crystallization is characterized by two dimension-
less parameters. The first one is the Coulomb parameter
�C = Z2/lT . The second one is the screening parameter

κ = l
λe

≡ kT F l . We note here that, although generically κ = 0
corresponds to the unscreened Coulomb case, in the relativis-
tic theory it cannot be smaller than (kTFl )min = 0.185Z1/3.

In order to study this system we will be using computa-
tional techniques, MD, to solve the equations of motion of
NI = nIV ions in a cubic box with volume V = L3. Each ion is
modeled as a finite-size Gaussian charge density distribution
[33] in the form ρi,ai (r) = Zi(

ai
π

)
3
2 e−air2

, where ai = 3
2〈R2〉 and√

〈R2〉 = (0.8A1/3 + 2.3), reasonably describing the A > 60
nuclear size we consider and their binding energies when
compared to more refined treatments of Xu et al. [34]; see
Fig. 2.

In what follows we will define another dimensionless pa-
rameter, ηi = 1/

√
ail , to characterize the charge spread of a

given ith species in the OCP/MCP. This picture thus aims to
size the effect of ions when compared to previous attempts
using pointlike charges (η = 0) [29,35]. We must note that
previous works, see [13], partially incorporated ion-ion corre-
lations in the periodic pointlike ion arrays using the structure
factor of the particular lattice S(q) and fitting the q → 0 be-
havior. They used, in the elastic part of S(q) the point-proton
form factor given by the Debye-Waller approximation where
in the classical limit T � Tp, e−W (q,�,0) ≈ e−〈r2〉q2/6. This ap-
proximation mitigates the unphysical nuclear pointlike nature
although does not fully incorporate the refinement due to the
proton charge form factor nor the Tassie-Barker correction,
see [36] for a discussion. As mentioned, this treatment some-
what corrects the pointlike behavior being its usability limited
to small momentum, q, for nuclear radii, R, fulfilling qR � 1.

In our calculation, our simulations incorporate the ion
Gaussian charge distribution description for each species as
the source of the screened fields [see Eq. (2)], creating the
potentials and forces in the dynamical equations being solved
in real space-time.

Arising from this treatment, the new resulting ionic poten-
tial is thus a superposition of those from individual screened
Gaussian ions ρi,ai (r) so that when solving the Poisson equa-
tion we must replace Eq. (1) by

φZi,ai (�r) = Zi

2|�r − �ri|e
1

4aiλ
2
e

[
e− |�r− �ri |

λe erfc

(
1

2
√

aiλe

−√
ai|�r − �ri|

)

− e
|�r− �ri |

λe erfc

(
1

2
√

aiλe
+ √

ai|�r − �ri|
)]

, (2)

with erfc the complementary error function.
In order to implement the screened interaction from

Eq. (2) using the Ewald summation technique [28] we
must introduce spurious screening charges with opposite
sign: −Zi to screen the real ones and +Zi in the form
ρ−Zi,αEwald = −Zi(

αEwald
π

)
3
2 e−αEwaldr2

with αEwald a characteristic
width parameter. To maintain the electrical charge neutrality,
compensating charges ρZi,αEwald must be also considered.

The interaction energy is thus efficiently obtained from fast
converging contributions of short- and long-range terms, mi-
nus an extra term to exclude self-interactions and properly set
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FIG. 2. Charge density distribution from [34] together with Gaussian functions used in this work for four representative ions used in OCP
(first left) and mixtures M1, M2.

a meaningful ground state value as explained in [29]. Contri-
butions can be written as U = Ushort-range + Ulong-range − Uself ,
and we detail them in what follows.

This novel calculation for potentials and forces in the case
of Gaussian ions in screened OCP and MCP is described
below. First, a short-range part describes the interaction be-
tween the real charges and the potential created by the sum
of real plus screening charges, φshort-range,i(�r) = φZi,ai (�r) +
φ−Zi,αEwald (�r).

It is given by the integral expression

Ushort-range = 1

2

NI∑
i=1

NI∑
j �=i=1

2Zj

(a j

π

) 1
2 e−a j r2

i j

ri j

×
[∫ ∞

0
r′φshort-range,i(r

′)e−ar′2
sinh(2a jri jr

′)dr′
]

− 2π

V

NI∑
i=1

NI∑
j=1

Zj

∫ ∞

0
r′2φshort-range,i(r

′)dr′, (3)

where ri j = |�ri − �r j | is the distance between the i j particles.
This contribution has a dependence in the interparticle dis-
tance that tails off quickly, so that it converges very rapidly in
real space.

A long-range part of the interaction is created by the
compensating charges and the background average charge,
ρavg =

∑
i Zi

V , under the prescription
∑

i ρZi,αEwald − ρavg . Ex-
plicitly, this is done by transforming Poisson’s equation from
the coordinate space to the Fourier k-space and including
a summation over reciprocal lattice vectors so that the sum
converges to a finite value of the form

φlong-range(�r) =
N∑
j

∑
�k �=0

4πZj

V
(

k2 + 1
λ2

e

)e
−k2

αEwald ei�k(�r−−→r j ), (4)

where �k = 2π
L (nx, ny, nz ) and nx, ny, nz ∈ Z.

The associated energy term, Ulong-range, is thus

Ulong-range = 1

2

NI∑
i, j=1

∑
�k �=0

4πZiZ j

V
(

k2 + 1
λ2

e

)

×
[

e
−k2

4

(
1
ai

+ 1
αEwald

)
ei�k(�ri− �r j )

]
. (5)

Finally, it remains to subtract the interaction between the real
charge and its own compensating charge as it is included
spuriously in the long-range part. It is given by

Uself = 2π

NI∑
i=1

(ai

π

) 3
2
Zi

∫ ∞

0
r′2φZi,αEwald (r′)e−air′2

dr′. (6)

In our approach using MD simulations the pairwise force
computation �Fi j arises from the gradient of Eqs. (3) and (5)
and takes the form

�Fi j,short-range = 2
(a j

π

) 1
2 Zje

−a j r2
i j

r2
i j

( �ri j

ri j

)

×
{ ∫ ∞

0
r′φshort-range,i(r

′)e−a j r′2

× [(
1 + 2a jr

2
i j

)
sinh

(
2a jr

2
i j

)

− 2a jri jr
′ cosh

(
2a jr

2
i j

)]
dr′

}
, (7)

�Fi,long-range = 1

2

∑
j

∑
�k �=0

8πZiZ j

V
(
k2 + 1

λ2

)e
−k2

4αEwald

×
[

e− k2

4ai ei�k·(�ri−�r j ) − e
− k2

4a j e−i�k·(�ri−�r j )
] �k

2i
. (8)

III. MD SIMULATIONS OF SCREENED OCP AND MCP
WITH GAUSSIAN CHARGE SPREAD

We performed our simulations using a multicore computer
infrastructure along with our original code USALMDGI using
Fortran+OpenMP. We numerically solved the ionic motion
while interacting via the Debye potential in Eq. (2) incor-
porating Ewald sums and PBC in the NIV T ensemble. Up
to NI = 1024 ions were used in this work and we verified
that our energy (T) control was good to δU/U ≈ 10−5. When
computing averages over directions in k-space a maximum
number of nk,max > 7 was imposed as dictated by efficiency
[31] in the Ewald procedure, resulting in 2nk,max + 1 replicas
in each Cartesian direction.

In our simulations we considered either a screened OCP
with a single ion density, nI , or a mixture, M1, M2, with
impurity parameter Qimp = 0, 21.48, 10.69, respectively. The
size of the simulation box was L = V 1/3. The kinetic energy
(or temperature T ) was rescaled during the time evolution
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FIG. 3. Potential energy per baryon as a function of the
Coulomb parameter � for ions with Z = 38, A = 124 at nI = 2.06 ×
10−6 fm−3. Bottom panel: nonscreened OCP as obtained in point-
like Coulomb fluids [16] (solid red line) and our results from MD
simulations using pointlike ion distributions (black points). Upper
panel: screened OCP with finite-size ion charges as obtained in MD
simulations in our work (solid blue lines). Vertical grey bands depict
the region where our simulations predict solid-fluid phase transition
and system melts.

until equilibrium was achieved (typically ≈106 fm/c with
variable time step dt ≈ 10–60 fm/c) starting from a random
distribution that we anneal when needed to the requested
thermodynamical conditions. It is worth mentioning that al-
ternative procedures to maintain constant temperature, such
as thermostats, are available, but since they involve additional
parameters associated to the heat bath we do not expect much
gain from their use; see previous works [37–39] using that of
Nosé-Hoover in nuclear systems.

In Fig. 3 (bottom panel) we show the energy per baryon,
U/A, as a function of the Coulomb parameter � ≡ �C for
a screened OCP with Z = 38, A = 124 and nI = 2.06 ×
10−6 fm−3. The realistic charge distribution along with our
Gaussian approximation is shown in the left panel in Fig. 2.
We depict with vertical grey bands the region where our sim-
ulations predict solid-fluid phase transition and system melts.
The transition involves a jump in (potential) energy for our
fixed NV T ensamble.

Recall that, once the NV T thermodynamical conditions in
our MD simulation are initially fixed, the equilibrated sys-
tems results in a determined solid or fluid state. Melting in
the pointlike Coulomb case, κ = 0, is recovered at �m(κ =
0) ≡ �m ≈ 175 and accommodated in the interval we find to
be �m ∈ [171, 177], while that from the screened OCP we
find to be �m ∈ [181, 200]. Previous works using Yukawa
fluids [40] have provided a phenomenological fit given by
�m,κ ≡ �m(κ ) = 172eξκ

1+ξκ+ 1
2 ξ 2κ2 that consistently predicts �m,κ =

187 for our simulated systems. From this expression, the un-
screened value is predicted at �m,κ=0 = 172 instead of 175,
but this has no impact on our results as we let the ion dynam-
ics in our simulated system evolve towards the stable final

FIG. 4. Potential energy per baryon for OCP cases at nI =
(1, 2, 4) × 10−4 fm−3, plotted against charge spread η. η = 0 corre-
sponds to pointlike charges. Solid lines depict the obtained lattice
region while dashed ones correspond to melted configurations as
obtained in our MD simulations. Large dots indicate the η value
corresponding to the ion, Z = 38, A = 124; see left panel in Fig. 2.

configuration. Note that the fact that the melting parame-
ter for our simulated screened ion system in the relativistic
polarizable electron background is larger than the canonical
Couloumb value does intimately depend on the ion species
composition (Z, A) and ion-electron correlation, previously
shown to have no monotonic behavior with pressure (density);
see Fig. 4 in [24]. In Fig. 3 in that same work [24] at T = Tm

and P � 5 × 10−7 MeV fm−3, 〈Z〉 � 27, a decreasing �m ten-
dency was shown while it was reversed afterwards up to 〈Z〉 ≈
42, to jump over the canonical Coulomb value �m = 175 and
slightly decrease from that value onward. Correspondingly, in
the case we depict in Fig. 3, with Z = 38, A = 124, we are
above P ≈ 10−4 MeV fm−3, 〈Z〉 ≈ 26 and thus the �m that
we find is larger than the canonical unscreened value.

Our simulations nicely reproduce previous Coulomb fluid
calculations [16,22] for the pointlike unscreened case using
the expressions provided in Sec. II with κ = 0, as shown in
Fig. 3, bottom panel. In the top panel we consider the screened
case, obtaining a reduction up to ≈40% in potential energies
resulting in a distorted melting diagram with a clear shift
towards lower temperatures, i.e., higher �, with the melting
parameter being predicted [40] around �m(κ ) = 187. The ef-
fect of Gaussian charge distribution for this low ion density
case does not cause any qualitative change, as η ≈ 0.11.

In Fig. 4 we show the energy per baryon, U/A, as a function
of the charge spread parameter η = 1/

√
al for a screened

OCP (Z = 38, A = 124) and nI = (1, 2, 4) × 10−4 fm−3.
Pointlike ions correspond to η = 0. We set � = 190 and
for this case melting is approximately predicted [40] at
�m,κ = 187.

In order to size the corrections introduced when varying
charge spread, we use the following procedure. We fix the ion
species to Z = 38, A = 124, since by doing this we can ex-
plore the change in ion finite size (or equivalently, A) without
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variation of �. We see that as charge distributions are realis-
tically described having a finite spread the lattice energies are
monotonically less stable.

In addition, to evaluate the robustness of our finding we
vary η indicating on each line with a large dot that corresponds
to the size assigned according to our prescription for Gaussian
spread (as it is A and density dependent) and determine the
change with respect to pointlike description, finding �U/U ≈
16%, 24%, 36% for nI = (1, 2, 4) × 10−4 fm−3, respectively.
We note that uncertainty on this prescription does not change
the behavior.

The solid (dashed) line shows where the lattice, although
less stable, manages to exist (melts) when increasing the
spread for fixed � = 190 > 187, i.e. above the quoted melting
parameter value. Thus for increasing values of the density
(yet in the outer crust) an ionic pointlike description is not
appropriate when describing the energetics or the melting be-
havior, as it may overpredict the existence of periodic lattices.
However for densities corresponding to values of η � 0.5 this
effect is no longer critical to the melting parameter but it does
affect the energetic stability of the lattice.

In order to analyze the effect of having species contam-
ination, possibly due to an accretion episode and further
processing, we consider ion mixtures M1, M2. Note that
for multicomponent systems the fraction averaged �MCP =∑

i Xi�i [7], where �i are those of Coulomb theory for each
ion component with fraction Xi and 〈Z〉 = ∑

i XiZi is the av-
erage charge density of the system.

Thus to understand the effect of both the balance of the
individual ion population weights and charge spread we have
performed simulations fixing nI . For mixture M1 at nI = 1 ×
10−4 fm−3 we find there is a change in energy �U/U ≈ 11%
for �MCP ∈ [190, 214] when considering pointlike compared
to finite-size ions. However, despite a modest correction, there
is an important difference: while in the scanned range �MCP >

�m,κ we would expect a crystallized sample, we find this only
happens for �MCP > 214, where there is a qualitative change
for the most frequent ion (Z = 30, A = 69) in M1 whose �i >

�m,κ . Therefore we find that crystallization is affected by the
individual �i of population fractions (in the pointlike or finite
charge spread), because it is a robust effect when increasing
plasma densities.

If we now compare M1 and a slightly different mix-
ture M2 (where only two ion species are different) we find
that for this same density nI = 1 × 10−4 fm−3 at the same
Xi, �MCP = 195 and �m,κ = 187, a dramatic change arises
leading to lattice formation in M2, with a decrease of
≈14% in energy per ion while M1 stays as a fluid, irre-
spective of whether we use a pointlike or Gaussian charge
distribution.

IV. CONCLUSIONS

We have simulated finite-size ionic systems immersed in
a relativistic degenerate electron background using molecular
dynamics in a fixed NV T ensemble. With this technique we
effectively solve the dynamical equations for ions having a
Gaussian charge spread that depends on their mass number, A.
We have obtained expressions for pairwise forces appropriate
to use with efficient Ewald sums. This procedure is valid
for single or multiple species plasmas, i.e., OCP or MCP. In
addition, potential energy U is also obtained in this setting.

We find that for densities of interest in the outer crust
of NSs, where electrons are in the degenerate relativistic
regime, the static Thomas-Fermi approximation yields results
in agreement with relativistic Jancovici expressions at low
momentum, k � 2kF,e and this is consistent for low density
crystals. Ion species population and ion-electron correlations
obtained analytically in previous works in the literature from
free energy minimization find melting parameters whose
trends, for the cases we analyze, are in agreement with those
found. A careful evaluation of energetic stability of crystal-
lized systems should include not only screened interaction
by means of the screening parameter, κ , but also effects of
sizing the charge spread, η. We improve previous works using
approximations where nuclei are treated as pointlike objects
by considering instead their finite size, being able to follow
the dynamics in real time. We find that incorporating these
refinements leads to a steady decrease of energetic stability of
the lattice and it may lead to melting at lower temperatures
than when calculated with pointlike approaches. In addition,
for MCP systems special care must be taken when using
effective values of the Coulomb parameter, as the fractions (or
equivalently the individual �i) play a critical role in crystalliz-
ing the system. We expect that this could somewhat influence
the binding energy, leading to less stable configurations with
possible impact on the mechanical properties derived from the
stress tensor.
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