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Charge-symmetry-breaking effects on neutron β decay in nonrelativistic quark models
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A formalism for the study of charge-symmetry-breaking (CSB) effects is discussed and used to analyze the
effects of charge-symmetry breaking on neutron β decay. The effect of including CSB reduces the β-decay
matrix element by an amount on the order of 10−4, a value much larger than the previous estimate. The earlier
calculation used the neutron-proton mass difference as the CSB operator instead of the matrix element of the
sum of the individual terms between the ground and excited states. The electromagnetic and dynamic effects of
the up-down quark mass difference oppose the up-down quark mass difference leading to a small n − p mass
difference, but add coherently in computing the excitation matrix elements causing large enhancements. The
current uncertainty in the value of Vud is also on the order of 10−4. An improvement of that uncertainty by an
order of magnitude would require that charge-symmetry-breaking effects should be included in future analyses.
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I. INTRODUCTION

There is a great modern interest in precisely determining
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
This is particularly true of Vud , since it provides the great-
est contribution to the unitary condition |Vud |2 + |Vus|2 +
|Vub|2 = 1, which is a testing ground for searches for physics
beyond the standard model. The uncertainty of this condition
comes in comparable parts from Vud and Vus [1], meaning
stronger statements about the possibility of a nonunitary CKM
matrix can be made by reducing the uncertainty of Vud . Of
particular interest to this work are the measurements of Vud

via neutron β decay. A benefit of these experiments is a lack
of nuclear-structure-dependent corrections that add theoretical
uncertainty to a measurement. So the uncertainty in these
experiments is largely experimental in nature. This means
of measuring Vud is expected to reach levels of precision in
competition with superallowed decay experiments within the
next decade [1].

The need for greater precision impels us to re-examine the
connection between the standard model Lagrangian expressed
in terms of quarks and neutron β decay. The implicit assump-
tion is that the quark-level isospin operator is the same as
the nucleon isospin operator. This is only true if the nucleon
wave function is invariant under the isospin rotation known as
the charge-symmetry rotation. The accuracy of the implicit
assumption was examined by Behrends and Sirlin [2] who
found, using an order-of-magnitude estimate, very small cor-
rections on the order of 10−6. The present paper is aimed at
providing a more detailed estimate.

Neglecting the mass difference and electromagnetic ef-
fects of the up and down quarks leads to an invariance in
the QCD Lagrangian under the interchange of up and down
quarks. This invariance is called charge symmetry, which is
a more restrictive symmetry than isospin. The fundamental

reason why the neutron is more massive than the proton is
the fact that the down quark is more massive than the up
quark. This positive contribution to Mn − Mp is tempered by
electromagnetic effects and the influence of quark masses
on the one-gluon-exchange potential (see the reviews [3–5]).
The influence of charge-symmetry-breaking operators on the
proton wave function and the resulting electromagnetic form
factors is discussed in Ref. [6].

Here is an outline. Section II introduces the necessary
definitions and the perturbation theory that are the basis
for our understanding of the weak operator and charge
symmetry. The nonrelativistic quark model and the charge-
symmetry-breaking interactions are discussed in Sec. III. This
section includes the explicit definitions of our Hamiltonian,
charge-symmetry-breaking (CSB) operators, and all nucleon
states used in this work. The CSB effects are the mass dif-
ference between up and down quarks, its influence in the
kinetic energy and one-gluon-exchange operators, and elec-
tromagnetic effects. In Sec. IV, the parameters of the models
are determined by the need to reproduce the measured mass
difference between the neutron (n) and the proton (p). Sec-
tion V displays the relevant perturbation theory. Evaluations
are performed in Sec. VI, and the results are interpreted in
Sec. VII.

II. FORMALISM

The weak operator that dictates the decay n → p + e + νe

can be written in terms of operators acting on quarks using
first-quantized notation as

Hw := Vud

3∑
i=1

τ+(i) ≡ Vudτ+, (1)

where τ+|d〉 = |u〉 and τ+|u〉 = 0. The property is a statement
that the u, d system is a fundamental isospin doublet. If the

2469-9985/2022/106(6)/065502(7) 065502-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8364-284X
https://orcid.org/0000-0003-2443-3639
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.065502&domain=pdf&date_stamp=2022-12-12
https://doi.org/10.1103/PhysRevC.106.065502


JACOB W. CRAWFORD AND GERALD A. MILLER PHYSICAL REVIEW C 106, 065502 (2022)

same is true of the neutron-proton system we may state that
τ+|n〉 = |p〉, so that 〈p|Hw|n〉 = Vud . This expression is used
in all analyses that aim to extract the value of Vud .

However, the neutron and the proton are composite par-
ticles. The u and d quarks within have different masses and
undergo electromagnetic interactions. Thus the expression
τ+|n〉 = |p〉 must be modified. It is necessary to introduce the
isospin formalism [3] to understand the modifications.

The isospin rotation known as the charge-symmetry rota-
tion operator is used to obtain the nucleon matrix element.
The logic is as follows. The charge-symmetry operator is the
180◦ isospin rotation operator defined as

Pcs = eiπT2 , (2)

with

P†
csuPcs = d (3)

and

T2 = 1
2 q†τ2q, (4)

where q = u or d is the quark-field operator.
If charge symmetry holds, the neutron is obtained from the

proton by the Pcs isospin rotation. However, the Hamiltonian
H can be expressed in terms of a charge-symmetry-conserving
term, H0, and a breaking term, H1, with H = H0 + H1 and
[H0, Pcs] = 0. The eigenstates of H0 are denoted in a round
bracket notation, | · · · ) states, and | · · · 〉 is used to denote the
physical eigenstates of H . Then

H0|p, ms) =
√

M
2 + �p2|p, ms), (5)

with the label p, ms representing a proton of momentum �p
of spin ms and M is the average of the neutron and proton
masses. We treat the physical wave function using first-order
perturbation theory in H1:

|p, ms〉 ≈
√

Z|p, ms) + 1

M − H0
�H1|p, ms), (6)

where the projection operator � defined by

� := 1 − |p, ms)(p, ms| − |n, ms)(n, ms| (7)

projects out the ground-state degrees of freedom. The normal-
ization factor Z is defined so that

1 = Z + (p, ms|H1
�

(M − H0)2
H1|p, ms). (8)

The expression Eq. (6) is sufficient to account for terms of
order H2

1 in the β-decay matrix element. Second-order terms
in the wave function lead to higher-order contributions to the
matrix element.

Using charge symmetry, the neutron and proton states obey
the relation

|n, ms) = Pcs|p, ms). (9)

The charge-symmetry-breaking piece of our Hamiltonian is
H1 and in first-quantized notation contains operators τ3(i),
where i labels a quark. The use of the identity

P†
csτ3(i)Pcs = −τ3(i), (10)

along with Eqs. (8) and (9), informs us that Z of the neutron
is the same as Z of the proton.

It is also useful to define the quantity

�H := P†
csHPcs − H (11)

= P†
csH1Pcs − H1 = −2H1. (12)

The relation

(p|�H |p) = (p|P†
csHPcs|p) − (p|H |p)

= (n|H |n) − (p|H |p) = Mn − Mp (13)

will be used to fix the model parameters in Sec. IV.

III. NONRELATIVISTIC QUARK MODEL

In nonrelativistic quark models the spin and the momentum
of the proton are unrelated, so we can write our proton state
as |p, i) → |p,↑) for a spin up proton. The spin index will be
treated implicitly so that |p,↑) → |p).

The Hamiltonian is specified by the terms

H = K + Vcon + Vem + Vg, (14)

which are the kinetic energy K , the confining potential Vcon

(which respects charge symmetry), the electromagnetic in-
teraction Vem, and the gluon-exchange interaction Vg. The
charge-symmetry-breaking part of the Hamiltonian is then

�H = �K + �Vem + �Vg, (15)

with each of the terms defined as in Eqs. (13) and (14).
We proceed to determine the individual contributions to

�H . The first step is to define the quark masses: mi = m +
�m

2 τ3(i) and �m = mu − md . Then the nonrelativistic kinetic
energy [7] is given as

K =
∑

i

(
mi + p2

i

2mi

)
, (16)

and

�K = �m
∑

i

τ3(i) + �m

m

∑
i

p2
i

2m
τ3(i). (17)

The first term of �K does not contribute to any excitations and
may be neglected in the calculation of the β-decay amplitude.
The electromagnetic interaction is given by [8]

Vem = α
∑
i< j

qiq j

[
1

ri j
− π

2m2 δ(�ri j )

(
2

m2 + 4

3
�σ (i) · �σ ( j)

m2

)]
,

(18)

where qi = 1
6 + 1

2τ3(i) and ri j = |�ri − �r j |. The charge-
asymmetric contribution from this operator is [6]

�Vem = −α

6

∑
i< j

[τ3(i) + τ3( j)]

×
[

1

ri j
− π

2m2 δ(�ri j )

(
1 + 2

3
�σ (i) · �σ ( j)

)]
. (19)
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The gluon-exchange operator is taken to be

Vg = −αs

∑
i< j

λi · λ j

[
π

2
δ(�ri j )

(
1

m2
i

+ 1

m2
j

+ 4

3
�σ (i) · �σ ( j)

mimj

)]
,

(20)

where for three-quark baryons λi · λ j = − 2
3 [7,8]. The long-

range 1/ri j term of Vg respects charge symmetry and so is
not included. The charge-symmetry-breaking piece of this
interaction is given by [6]

�Vg = αs
2π

3

�m

m3

∑
i< j

[τ3(i) + τ3( j)]δ(�ri j )

[
1 + 2

3
�σ (i) · �σ ( j)

]
.

(21)
We use an SU(6) space-spin wave function along with os-
cillator confinement to represent the charge-symmetric wave
functions. Then we write

|p) = |ψ0〉 1√
2

(|φs〉|χs〉 + |φa〉|χa〉), (22)

where

〈�ri|ψ0〉 = ψ0(ρ, λ) = Ne
− ρ2+λ2

2β2 . (23)

Here �ρ = 1√
2
(�r1 − �r2), �λ = 1√

6
(�r1 + �r2 − 2�r3), and the

center-of-mass dependence is not made explicit. The standard
mixed-symmetry flavor (φs,a) and spin (χs,a) wave functions
are used [9].

IV. MODEL PARAMETERS

The parameters of the nonrelativistic quark model shall
be determined from the neutron-proton mass difference and
a consideration of pionic effects. These parameters are β,
αs, and m̄, and these are constrained by values of the pro-
ton’s charge radius, the magnetic moment, and the �-nucleon
mass splitting. The model does not include the explicit ef-
fects of the pion cloud because those are charge symmetric
if the pion-nucleon coupling constant is taken (consistent
with observations) to be charge symmetric. However, any
consideration of the values of parameters must take implicit
account of the pion cloud. Here we follow the ideas of the
cloudy bag model [10–12] in which a perturbative treatment
of pions as quantum fluctuations converges for bag radii (con-
finement radius) greater than about 0.6 fm. The importance
of pionic effects decreases as the confinement radius of the
model increases. The effects of the pion cloud contribute to
the magnetic moment and to the �-nucleon mass splitting.

The quark contribution to the root-mean-square charge ra-
dius is β. The measured value is 0.84 fm. The proton magnetic
moment is 2.79 nm, and the gluon-exchange contribution (g)
to the �-nucleon mass splitting of about 303 MeV is given by

(M� − MN )g = 2

3

√
2

π

αs

m̄2β3
. (24)

We use three separate models to evaluate the effects of
charge-symmetry breaking on β decay. We start with a large
confinement radius of β = 0.837 fm, with small pionic effects

TABLE I. Model parameters adjusted from Ref. [6].

Model parameters

Model β2 (fm2) m (fm−1) αs �m (MeV) γ

1 0.7 2 6.1 −6.9 0.9
2 0.6 2.1 4.7 −5.3 0.8
3 0.5 2.2 3.5 −4.5 0.7

so that γ , the fraction of the �-nucleon mass difference aris-
ing from gluon exchange is large, 0.9, and the quark mass is
taken to be 2 fm−1, accounting for about 84% of the proton
magnetic moment with the pion-cloud accounting for the re-
mainder. The other two models are obtained by increasing the
value of m̄, decreasing the value of β, and thus decreasing the
value of γ . Then the value of �m is chosen so that according
to Eq. (13)

(p|�H |p) = Mn − Mp ≈ 1.29 MeV. (25)

Evaluating the individual terms yields

(p|�K|p) = �m

(
1

2m2β2
− 1

)
, (26)

(p|�Vem|p) = − α

3β

√
2

π

(
1 − 5

12m2β2

)
, (27)

(p|�Vg|p) = 5αs�m

9m3β3

√
2

π
. (28)

Then the sum of each term yields approximately the desired
mass difference in each nonrelativistic quark model.

The parameter values of each of our models can be found
in Table I.

V. β-DECAY MATRIX ELEMENT

We compute the matrix element of τ+ using the perturbed
state of Eq. (6) and the related one for the neutron. The result
is

〈p|τ+|n〉 = Z +
(

p|H1
�

M−H0
τ+ �

M−H0
H1|n

)
, (29)

in which the terms of first order in H1 above vanish because
the resolvent �

M−H0
has the states |p) and |n) projected out,

and τ+ can only take nucleons to other nucleons. Moreover,
the matrix element of τ+ between the bare neutron and the
state is unity.

The operator H1 conserves spin angular momentum, so that
(�|H1|N ) = 0, and there is no contribution due to � baryons.
There is also no way for H1 to mix in states containing strange
or heavy quarks, so the only contributions are due to spatial
excitations of nucleons. Further, recall that τ+|n) = |p) and
τ+|p) = 0, and that H1 introduces no units of angular momen-
tum, so the only excitations can be s waves. This means that
the intermediate states appearing in Eqs. (29) and (8) are of
the form form |n∗)(n∗| of |p∗)(p∗|, in which the ∗ notation
refers to radial excitations.
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TABLE II. The function F (1)
1 is the confluent hypergeometric function of the first kind.

Relevant integrals

(ψk | 1
ρ
|ψ0 )

�(k+ 1
2 )

β
√

π

√
2

k!
√

π�(k+ 3
2 )

(ψk |δ(�ρ )|ψ0) 1
π3/2β3

√
2�(k+ 3

2 )
k!

√
π

(ψk |p2
ρ |ψ0 ) 3

4β2

√
π

�( 3
2 )�(k+ 3

2 )
(δk0 + δk1)

√
6

qβ3

∫
λdλ sin

(√
2
3 qλ

)(
λ2

β2

)i+l
e
− λ2

β2 �
(
i + l + 3

2

)
F (1)

1

(
i + l + 3

2 , 3
2 , − Q2β2

6

)

With this notation for radial excitations the normalization
factor Z of Eq. (8) can be written as

Z = 1 −
∑
k �=0

〈p|H1|p∗
k〉〈p∗

k|H1|p〉
(M − Mk )2

, (30)

= 1 +
∑
k �=0

〈p|H1|p∗
k〉〈n∗

k |H1|n〉
(M − Mk )2

. (31)

The second term of this equation is equal to the second
term of Eq. (29). The net result is that

〈p|τ+|n〉 = Z +
∑
k �=0

(p|H1|p∗
k )(n∗

k |H1|n)

(M − Mk )2
. (32)

The deviation of Z from unity is the same as that seen in the
second term of the above equation. Note that the correction
to unity is negative because the neutron and proton matrix
elements have opposite signs.

VI. EVALUATION

We next compute the individual contributions to the cor-
rection. This will first be done using the assumption that the

proton is stationary after the decay, after which we include a
nonzero momentum transfer.

We use the notation

|p∗
k ) = |ψk〉 1√

2
(|φs〉|χs〉 + |φa〉|χa〉) (33)

to reference the kth radial excitation, where

〈ρ|ψk〉 = Rk0(ρ) :=
√

2(k!)

β3�(k + 3
2 )

exp

(−ρ2

2β2

)
L1/2

k

(
ρ2

β2

)

(34)

is the radial wave function Here, L1/2
k is a generalized La-

guerre polynomial [13]. So the quantity to be calculated is
the second term of Eq. (32), and the mass denominator can be
written

Mk − M = 2k

mβ2
, (35)

which is just the energy added due to the harmonic oscillator
excitation.

A. Zero recoil

We first turn our attention to the electromagnetic interac-
tion matrix element:

(p∗
k|�Vem|p) = −α

2
(p∗

k|[τ3(1) + τ3(2)]

(
1√
2

1

ρ
− π

m2
√

2
δ(�ρ)

[
1 + 2

3
�σ (1) · �σ (2)

])
|p)

= − α

2
√

2

2

3

(
(ψk| 1

ρ
|ψ0) − π

m2

5

3
(ψk|δ(�ρ)|ψ0)

)
. (36)

Then the gluon-exchange term is calculated analogously to the
electromagnetic contact term, so we can simply write

(p∗
k|�Vg|p) = 20παs

9
√

2

�m

m3 (ψk|δ(ρ)|ψ0). (37)

Last, we must calculate the kinetic energy term,

(p∗
k|�K|p) = �m

3m2 (ψk|p2
ρ |ψ0). (38)

The necessary integrals to complete the above expressions can
be found in Table II.

The series of Eq. (32) is evaluated simply by taking the sum
of all of the terms, so we explain why the series converges.

The large-k values of the contact potential are controlled by
the factor

√
�(k + 3/2)

k!
∼ k1/4. (39)

This function increases without bound, but the mass differ-
ence in the denominator is linear with k, so the series is

convergent. The factor
�(k+ 1

2 )
β
√

π

√
2

k!
√

π�(k+ 3
2 )

associated with the

Coulomb correction falls as 1/k3/4, so it yields a convergent
series. The kinetic energy term only enters for k = 1. The net
result is that the perturbation series is convergent.
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TABLE III. Results for the three models of Table I are presented.
The first column shows the ground-state matrix element of the dif-
ferent contributions to �H = −2H1. The second column shows the
connection between the ground state |0) and the first excited state |1).
The column labeled “importance” assesses the importance of each
term as determined by setting each individually to zero and checking
the change in the total correction.

Source (0|�H |0) (MeV) (1|�H |0) (MeV) Importance

Model 1
�K 5.667 86 −1.006 04 Second
�Vem −0.389 73 −0.103 47 Least
�Vg −3.984 75 −4.880 30 Most

Model 2
�K 4.298 49 −0.817 73 Second
�Vem −0.416 67 −0.106 52 Least
�Vg −2.591 11 −3.173 45 Most

Model 3
�K 3.570 25 −0.759 14 Second
�Vem −0.448 47 −0.106 93 Least
�Vg −1.837 50 −2.250 47 Most

The significance of each contribution obtained with differ-
ent models is displayed in Table III. The kinetic energy term
which contains the effect of the mass difference between up
and down quarks controls the sign of the neutron-proton mass
difference. The relative importance of each term of �H is
also displayed and depends on the value of β. It is noteworthy
that there are cancellations between the separate terms of �H
that result in the n − p mass difference of 1.29 MeV for each
model. However, the contributions of the separate terms to the
dominant matrix element (1|�H |0) all have the same sign.
This is mainly because the quark mass difference term does
not involve the spatial wave function and so cannot convert
the ground state to any excited state. Note especially that the
sum of the three terms is much larger than the individual terms
and the square that enters in computing the β-decay matrix
element.

In particular the ratio R, given by

R ≡
(

(1|�H |0)

(0|�H |0)

)2

, (40)

varies between about 6 and 22 as one changes the models from
3 to 1.

B. Nonzero proton recoil

The next step is to endow the Hamiltonian Hw to take the
momentum transfer �q to the final proton into account. This is
done by making the operator substitution τ+ → τ ∗

+(�q):

τ ∗
+(�q) =

∑
j

τ+( j)ei �q·�r j . (41)

The second-order quantity to be calculated now is the matrix
element 〈 �q|τ ∗

+|�0〉 with

〈 �q|τ ∗
+|�0〉 ≡ Z (p|e−i

√
2
3 �q·�λ|n)

+1

4

∑
j,k �=0

(p|�H |p∗
j )(p∗

j |e−i
√

2
3 �q·�λ|p∗

k )(n∗
k |�H |n)(

M − Mj
)(

M − Mk
) .

(42)

The correction to the β-decay matrix element is defined to be
�(| �q|) > 0 with

〈 �q|τ ∗
+|�0〉 = 1 − �(| �q|). (43)

Before calculating the remaining matrix element, we need
the average momentum transfer to the proton during β decay.
This is accomplished by using the recoil spectrum found on
page 14 of the Ph.D. thesis of Konrad [14], originally derived
by Nachtmann [15]. The spectrum and related functions are
written as follows:

wp(T ) ∝ g1(T ) + ag2(T ), (44)

g1(T ) =
(

1 − x2

σ (T )

)2√
1 − σ (T )

[
4

(
1 + x2

σ (T )

)
− 4

3

(
1 − x2

σ (T )

)
[1 − σ (T )]

]
, (45)

g2(T ) =
(

1 − x2

σ (T )

)2√
1 − σ (T )

[
4

(
1 + x2

σ (T )
− 2σ (T )

)
− 4

3

(
1 − x2

σ (T )

)
[1 − σ (T )]

]
, (46)

σ (T ) = 1 − 2T Mn

�2
, (47)

x = me

�
, � = Mn − Mp = 1293.333(33) keV. (48)

Note that this spectrum does not take into account Coulomb
or radiative corrections, but that level of precision is not nec-
essary for the current application. We use the first moment of
a normalized wp to get the mean kinetic energy of the recoiled

proton:

〈T 〉 =
∫

T wp(T )dT∫
wpdT

= 357.177 eV, (49)

where the domain of the given integral is taken as (0, 751 eV).
This can then be converted into the average wave number 〈Q〉
of the recoiled proton:

〈Q〉 =
√

2Mp〈T 〉
h̄c

= 4.1 × 10−3 fm−1. (50)

We use | �q| = 〈Q〉 in the following calculations.
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TABLE IV. Computed changes to the value of the β-decay ma-
trix element caused by charge-symmetry-breaking effects.

Results

Model �(0) (×10−4) �(〈Q〉) (×10−4)

1 4.0297 4.0101
2 1.4668 1.4500
3 0.6146 0.6005

The effect of a nonzero value of 〈Q〉 in the first term
of Eq. (50) is given by the deviation between the fac-

tor e− Q2β2

6 and unity, which is of the order of magnitude
10−6. To compute the analytic expression for the matrix el-

ement 〈ψ j |e−i
√

2
3 �q·�λ|ψk〉, the closed form for the Laguerre

polynomials,

L(α)
j (x) =

j∑
i=0

(−1)i

i!

(
j + α

j − i

)
xi, (51)

must be used [16]. The final result contains a double sum
due to Eq. (51) over the final integrated expression found in
Table II. The second term of Eq. (42) contributes only at the
level of 10−10.

The numerical results of this and the preceding section can
be found in Table IV.

For all of the models the change in the β-decay matrix
element is a reduction of the order of 10−4. Table III shows us
that this change is about an order of magnitude larger than that
caused by any one of the terms of �H . The model dependence
arises from the different values of the length parameter and
the quark masses. These affect the energy denominator. The
table shows that the effect of including the nonzero value of
the momentum transfer is of the presently negligible order
of 10−6.

The current value [17] of Vud is given by

|Vud | = 0.973 73 ± 0.000 31, (52)

so the size of the charge-symmetry-breaking effect is of the
order of the current uncertainty.

VII. DISCUSSION AND ASSESSMENT

A general formalism for including the effects of charge-
symmetry breaking (CSB) is discussed and applied to
computing neutron β-decay matrix elements. CSB effects
are known to enter only at second and higher order [2].
The known CSB effects are the quark mass differences, the
effect of quark mass differences on the kinetic energy and
gluon-exchange potentials and electromagnetic effects. These
are evaluated using three nonrelativistic quark models using
oscillator confinement. Our second-order result is that in-
cluding CSB effects reduces the β-decay matrix element by
about 10−4. Thus higher orders need not be included. The
calculations involved summing over many intermediate states,
but the dominant terms arise from including the first radial

excitation. This task was made simpler by the acquisition
of analytic results for each matrix element, taking as many
terms as necessary for a sufficiently converged result. Three
nonrelativistic quark models were compared in the analysis,

Calculations were done with and without including the
effects of proton recoil [14]. The latter effect is on the order
of 10−6 and currently negligible, justifying that the proton
can be considered a body at rest in the context of neutron
β decay.

It is interesting that our result is about 100 times larger
than that of the original work of Behrends and Sirlin [2].
There it was predicted that effects due to charge-symmetry
breaking on neutron β decay should be on the order of 10−6.
Their schematic calculation correctly used the square of the
ratio of a matrix element divided by an energy denominator:
( (p|H1|p)

M
)2 ≈ ( 1.3

940 )2 ≈ 2 × 10−6. They used the n − p mass
difference as a matrix element instead of the matrix ele-
ment of the sum of the individual terms between the ground
and excited states. While the individual terms tend to cancel
in computing the n − p difference, they add coherently in
computing the excitation matrix elements. This gives rise to
enhancements of between about 6 and 21, as seen in Eq. (40).
Furthermore, the relevant energy denominator is not the nu-
cleon mass, but the excitation energy which is about half
of that. Our lowest and most important energy denominator
�M = 2(h̄c)2

mβ2 varies between 280 and 360 MeV. The values,
determined by using the correct approximate size of the nu-
cleon, are lower than the 500 MeV difference between the
nucleon mass and its first excited state. This reflects a long-
standing problem of the nonrelativistic quark model.

The value of β2 could be decreased by a factor of about
50–60% to increase the energy difference to about 500 MeV,
but the matrix element of, for example, the gluon-exchange
term (which is the most important one for each of the models)
varies as 1/β3, so the net result would be an increase the size
of the CSB effect by 1/β2, an increase of 50–60%. Thus we
regard the results in Tables III and IV to be reasonable first
semirealistic estimates. The general conclusion regarding the
order-of-magnitude of the CSB effect of 10−4 is independent
of the model used. Indeed, this value is corroborated by the
earlier bag model calculation of Ref. [18].

We summarize by saying that the size of the CSB effects
are to decrease the value of the β-decay matrix element by
a factor of about 10−4. This is of the order of the current
uncertainty in the measurements. An improvement of that
uncertainty by an order of magnitude would require that
charge-symmetry-breaking effects be included in future anal-
yses. The present effort is only a first step. An increased
experimental precision would require that a more controlled
approximation, such as using lattice QCD or effective field
theory, be used.
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