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Impacts of the U(1)A anomaly on nuclear and neutron star equation of state
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We examine the role of the U(1)A anomaly in a parity doublet model of nucleons which include the chiral
variant and invariant masses. Our model expresses the U(1)A anomaly by the Kobayashi-Maskawa-’t Hooft
(KMT) interaction in the mesonic sector. After examining the roles of the KMT term in vacuum, we discuss its
impacts on nuclear equations of state (EOS). The U(1)A anomaly increases the masses of the η′ and σ mesons
and enhances the chiral symmetry breaking. Also, the U(1)A anomaly enlarges the energy difference between
chiral symmetric and symmetry broken vacuum; in turn, the chiral restoration at high density adds a larger energy
density (often referred as a bag constant) to EOSs than in the case without the anomaly, leading to softer EOSs.
Including these U(1)A effects, we update the previously constructed unified equations of state that interpolate the
nucleonic EOS at nB � 2n0 (n0 = 0.16 fm−3; nuclear saturation density) and quark EOS at nB � 5n0. The unified
EOS is confronted with the observational constraints on the masses and radii of neutron stars. The softening
of EOSs associated with the U (1) anomaly reduces the overall radii, relaxing the previous constraint on the
chiral invariant mass m0. Including the attractive nonlinear ρ-ω coupling for the reduced slope parameter in the
symmetry energy, our new estimate is 400 MeV � m0 � 700 MeV, with m0 smaller than our previous estimate
by ≈200 MeV.

DOI: 10.1103/PhysRevC.106.065205

I. INTRODUCTION

The chiral SU(Nf )L ⊗ SU(Nf )R symmetry in quan-
tum chromodynamics (QCD) and its spontaneous symmetry
breaking (SSB) plays the key role in describing the low-
energy hadron physics, e.g., the soft pion dynamics and the
dynamically generated quark masses [1]. The chiral conden-
sates, as the order parameters of the chiral SSB, quantify the
degree of the chiral SSB and also are useful in characterizing
states of matter in QCD at finite temperature and/or density
[2,3].

In addition to the dynamical SSB, the current quark mass
and the quantum anomaly explicitly break the U(1)A symme-
try and assist the formation of the chiral condensates [4,5]. In
this paper we study the impact of the U(1)A anomaly on the
chiral symmetry breaking and examine how it influences nu-
clear matter equations of state (EOS). While there are many.
works on nucleonic EOS emphasizing the importance of in-
medium interactions among nucleons, in-medium changes of
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the Dirac sea structure and their impacts on EOS acquire much
less attention. We argue that the U(1)A anomaly increases the
discrepancy between the chiral symmetry broken and restored
phases. In other words, the anomaly increases the bag constant
associated with the chiral restoration as shown in Fig. 1. In the
context of EOS, a larger bag constant adds the energy density
but reduces the pressure, leading to softer EOS.

In the nuclear matter domain, we include the anomaly
effects in terms of the Kobayashi-Maskawa-’t Hooft (KMT)
interactions [6] for a three-flavor mesonic Lagrangian made
of scalar and vector mesons. The KMT interactions relate
up-, down-, and strange-quark Dirac sea even before the
strangeness appears in a matter. In fact, the chiral restora-
tion for the up- and down-quark sectors assists the chiral
restoration for the strange quark sector, possibly changing the
masses of hyperons in nuclear matter. Such structural changes
in hyperons are potentially important for matter composition
in neutron stars (NSs).

The baryonic part in this work is treated in a parity doublet
model (PDM) [7,8] for nucleons in which the ordinary nu-
cleon N (940) and its parity partner N (1535) form a doublet.
The novel feature of the PDM is that the nucleon masses
include not only the conventional chiral variant mass but
also invariant mass (m0) whose existence is supported by the
previous lattice QCD simulations [9]. Accordingly, nucleons
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FIG. 1. The Dirac sea in chiral symmetric (left) and symmetry
broken (right) phases. The particle-antiparticle pairs condense to
break the chiral symmetry and produce the mass gap M. The mass
gap is larger in the presence of the U(1)A anomaly. The energy
difference in the Dirac sea between the chiral symmetry restored and
broken phases defines (a part of) the bag constant.

in the PDM is less sensitive to the chiral condensate or σ

fields than in conventional linear σ models. The PDM for
vacuum physics has been studied in Refs. [7,8,10–17], and its
EOS in Refs. [18–37]. The parameters of the PDM, coupled
to the two-flavor mesonic sector without the U(1)A anomaly,
have been tuned to fit the vacuum and the nuclear saturation
properties at n0 (n0 � 0.16 fm−3; nuclear saturation density).
In this work we retune the parameters including the U(1)A

anomaly.
The key feature of the PDM, in the context of EOS, is

that a greater m0 leads to weaker σ couplings to nucleons,
because a nucleon does not have to acquire its mass entirely
from the σ fields. The couplings to ω fields are also smaller
because, at n0, its repulsive contributions must be balanced
with the attractive σ contributions. At densities larger than n0,
however, the σ fields reduce but the ω fields increase, and
these contributions no longer balance; the repulsive nature
of the ω is directly reflected in the stiffness of EOS. As a
consequence, a larger m0 weakens the ω fields and softens
EOS at supranuclear densities.

For applications to NS phenomenology, nuclear EOS in the
PDM is extrapolated to densities beyond n0. It has been simply
extrapolated [35] or combined with a quark model assuming
the quark-hadron crossover [2,11,33,36,38–40]. In the latter,
the PDM EOS is used up to 2n0 and interpolated with the
quark EOS at �5n0 via polynomial interpolants. Including
the charge neutrality and β-equilibrium conditions, the unified
EOS was confronted with NS constraints from the existence
of two-solar mass (2M�) NSs [41] and the gravitational waves
from the NS merger event GW170817 [42–44]. Based on
the upper bound for the NS radii constraint, we previously
constrained m0 to rather large values [36], 600 MeV � m0 �
900 MeV.

In this work, we update the constraints by including the
U(1)A anomaly and also include the previously neglected
ρ2ω2 terms which are usually assumed to be attractive to
make EOS softer. Both effects soften EOS at low densities
�1–2n0, leading to smaller NS radii. As a result, we obtain
more relaxed constraints on m0, 400 MeV � m0 � 700 MeV,
reducing the previous range by ∼200–300 MeV. We also add
the radius constraint from the Pulsating Source of Radiation
(PSR) J0740+6620 for 2.08 ± 0.07M� NS, R2.08 = 12.35 ±
0.75 km [45], and 12.39+1.30

−0.98 km [46].

This paper is organized as follows. In Sec. II, we explain
the formulation of our model which based on parity doublet
structure. In Sec. III, we construct EOS in hadronic matter and
quark matter separately and the parameters are determined in
Sec. IV. Main results of the analysis are shown in Sec. VI and
Sec. VII. In Sec. VIII, we show a summary and discussions.

II. FORMULATION

In this section, we construct a model of symmetric nuclear
matter.

A. Scalar and pseudoscalar mesons

We first construct an effective Lagrangian for scalar and
pseudoscalar mesons based on the SU(3)L × SU(3)R chiral
symmetry [14–17] including the effect of U(1)A anomaly.
Quarks transform under SU(3)L × SU(3)R × U(1)A symmetry
as

qL → e−iθA gLqL,

qR → e+iθA gRqR, (1)

with gL,R ∈ SU(3)L,R and θA being the transformation param-
eters. Accordingly, we assign the U(1)A charge of the left and
right-handed quarks as −1 and +1, respectively. The chiral
representation of the left-handed quark is then given by

qL : (3, 1)−1, (2)

where these 3 and 1 in the bracket express the triplet and sin-
glet for SU(3)L symmetry and SU(3)R symmetry, respectively.
The index indicates the axial charge of the fields. On the other
hand, the chiral representation of the right-handed quark is
given by

qR : (1, 3)+1. (3)

We introduce a 3 × 3 matrix field � for scalar and pseu-
doscalar mesons as

�i j : (3, 3̄)−2. (4)

We adopt the meson part of the Lagrangian as

Lscalar
M = Lkin

M − VM − VSB + VAnom, (5)

where

Lkin
M = 1

4 tr[∂μ�∂μ�†], (6)

VM = − 1
4 μ̄2 tr[��†] + 1

8λ4 tr[(��†)2]

− 1
12λ6 tr[(��†)3] + λ8 tr[(��†)4]

+ λ10 tr[(��†)5], (7)

VSB = − 1
2 c tr[M†� + M�†], (8)

VAnom = −B[det � + det �†]. (9)

Here B is the coefficient for the axial anomaly term and c
is the coefficient for the explicit chiral symmetry-breaking
term with M defined as M = diag{mu, md , ms}. The above
Lagrangian for the meson part is U(1)A invariant except the
anomaly term. We note that we include only terms with one
trace in VM , which are expected to be of leading order in the
1/Nc expansion.
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FIG. 2. The potential for σs in the vacuum with m0 = 800 MeV;
λ′

8 = λ8 f 4
π , λ′

10 = λ10 f 6
π .

Compared with the previous model in Ref. [36], we not
only include the anomaly term but also introduce the λ8 and
λ10 terms to stablize the potential in the vacuum. In fact,
the σ 6 term is negative, and the potential is unbound at very
large σ unless we have higher-order terms. In the previous
studies we focused on the local minimum giving σ = fπ ,
while neglecting unphysical behaviors at large σ where we
distrust potentials limited to the σ 6 terms. For three flavors
with the ’t Hooft term, however, it turns out that the potential
is not only unbound for very large σs but does not even have a
local minimum, see Fig. 2. For this reason we need to fix our
descriptions for higher-order terms which we have neglected
in our previous studies. In this work we stablize the potential
by adding the λ8 and λ10 terms. Two terms are used just for
fine tuning purposes.

In this work we use a hadronic model only up to 2n0

neglecting hyperons. Within mean-field treatments adopted
in this paper, only the diagonal components are kept. So we
reduce � to

� =
(

M 0
0 φs

)
3×3

, (10)

where we keep the abstract notation M as a 2 × 2 matrix field
to keep track of the SU(2)L× SU(2)R× U(1)A structure of
our model. The meson field under chiral transformation in the
SU(2) case is

M → gLMg†
R, (11)

where gL ∈ SU(2)L and gR ∈ SU(2)R. Then the reduced La-
grangian is

Lscalar
M = 1

4 (tr[∂μM∂μM†] + ∂μφs∂
μφ†

s ), (12)

VM = − 1
4 μ̄2(tr[MM†] + φsφ

†
s )

+ 1
8λ4(tr[(MM†)2] + (φsφ

†
s )2)

− 1
12λ6(tr[(MM†)3] + (φsφ

†
s )3)

+ λ8(tr[(MM†)4] + (φsφ
†
s )4)

+ λ10(tr[(MM†)5] + (φsφ
†
s )5), (13)

VSB = − c

2
[tr[M2×2(M + M†)] + ms(φs + φ†

s )], (14)

VAnom = − B[det(M )φs + det(M†)φ†
s ]. (15)

where M2×2 = diag{mu, md}.

B. Nucleon parity doublet and vector mesons

While we treat the mesonic sector including three-flavors,
we discuss nucleons only up to 2n0 where we assume that
hyperons do not enter the system. In the PDM, we assume that
nucleons and the chiral partners belong to the representations
of (2, 1)+1 and (1, 2)−1 as

ψL
1 : (2, 1)−1, ψR

1 : (1, 2)+1, (16)

ψL
2 : (1, 2)+1, ψR

2 : (2, 1)−1, (17)

under SU(2)L× SU(2)R× U(1)A symmetry. In mean-field
treatments, these fields couple to the two-flavor part in the
three-flavor mesonic Lagrangian. Then the nucleon part con-
structed based on the SU(2)R× SU(2)L× U(1)A symmetry is
given by

LN =
∑
i=1,2

ψ̄iiγ
μDμψi

− g1
[
ψ̄L

1 τ 2(M†)T τ 2ψR
1 + ψ̄R

1 τ 2MT τ 2ψL
1

]
− g2

[
ψ̄L

2 τ 2MT τ 2ψR
2 + ψ̄R

2 τ 2(M†)T τ 2ψL
2

]
− m0

(
ψ̄L

1 ψR
2 − ψ̄R

1 ψL
2 − ψ̄L

2 ψR
1 + ψ̄R

2 ψL
1

)
, (18)

where τi(i = 1, 2, 3) are the Pauli matrices. The couplings g1,2

are the Yukawa couplings to the scalar fields for ψ1,2 and the
origin of the chiral variant masses. Meanwhile m0 is the chiral
invariant mass which originate from the coupling between ψ1

and ψ2. In the mean-field treatment of σ , the mass spectra are
given by

m± =
√

m2
0 +

(
g1 + g2

2

)2

σ 2 ∓ g1 − g2

2
σ, (19)

where + is for N (940) and − for N (1535) as the mixture of
ψ1 and ψ2 fields. For vanishing σ , the masses get degenerated,
m± → m0.

The coupling of vector mesons to nucleons is introduced in
the form of the covariant derivatives

DμψL,R
1,2 = (∂μ − iVμ)ψL,R

1,2 . (20)

with Vμ general external fields including ω and ρ mesons
coupled to baryon number and isospin densities, respectively.

The Lagrangian for vector mesons is based on the hidden
local symmetry (HLS) [47,48]. This part is not affected by the
U(1)A anomaly. We use the same form as the previous works
except addition of the following term:

Lωρ = λωρ (gωω)2(gρρ)2, (21)

where λωρ is assumed to be positive, meaning the attractive
correlation between the ω and ρ fields. This term assists the
appearance of ρ fields as ω fields develop. The ω-ρ correla-
tions play important roles in the symmetry energy, as will be
discussed in the following section.
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III. NUCLEAR AND QUARK EQUATIONS OF STATE

In this section, we construct neutron star matter EOS in
both hadronic matter part and quark matter part.

A. Nuclear matter EOS

Following Ref. [36], we apply the mean-field approxima-
tion to the Lagrangian in the last section, and then calculate
the thermodynamic potential in the hadronic matter as

�PDM = V (σ, σs) − V (σ0, σs0) − 1

2
m2

ωω2 − 1

2
m2

ρρ
2

− λωρ (gωω)2(gρρ)2

− 2
∑

i=+,−

∑
α=p,n

∫ k f d3p
(2π )3

(
μ∗

α − Ei
p

)
. (22)

Here i = +,− denote for the parity of nucleons and Ei
p =√

p2 + m2
i is the energy of nucleons with mass mi and momen-

tum p. The crossing term ω-ρ interaction is tuned to adjust the
slope parameter, see Sec. IV. The potential V (σ, σs) of σ and
σs mean fields is given by

V (σ, σs) = −1

2
μ̄2

(
σ 2 + 1

2
σ 2

s

)
+ 1

4
λ4

(
σ 4 + 1

2
σ 4

s

)

− 1

6
λ6

(
σ 6 + 1

2
σ 6

s

)
+ λ8

(
2σ 8 + σ 8

s

)
+ λ10

(
2σ 10 + σ 10

s

) − 2Bσ 2σs

− (2cmuσ + cmsσs). (23)

The total thermodynamic potential for the NS is obtained
by including the effects of leptons as

�H = �PDM +
∑

l=e,μ

�l , (24)

where �l (l = e, μ) are the thermodynamic potentials for lep-
tons,

�l = −2
∫ kF d3p

(2π )3

(
μl − El

p

)
. (25)

The mean fields here are determined by following stationary
conditions:

0 = ∂�H

∂σ
, 0 = ∂�H

∂ω
, 0 = ∂�H

∂ρ
. (26)

We also need to impose the β equilibrium and the charge
neutrality conditions,

μe = μμ = −μQ, (27)

∂�H

∂μQ
= np − nl = 0, (28)

where μQ is the charge chemical potential. We then have the
pressure in hadronic matter as

PH = −�H . (29)

B. Quark matter EOS

Following Refs. [2,49], we use the NJL quark model to
describe the quark matter. The model includes three-flavors
and U(1)A anomaly effects through the quark version of the
KMT interaction. The coupling constants are chosen to be
the Hatsuda-Kunihiro parameters which successfully repro-
duce the hadron phenomenology at low energy [2,50]: G�2 =
1.835, K�5 = 9.29, with � = 631.4 MeV, see the definition
below. The couplings gV and H characterize the strength
of the vector repulsion and attractive diquark correlations
whose range will be examined later when we discuss the NS
constraints.

We can then write down the thermodynamic potential as

�CSC = �s − �s
[
σ f = σ 0

f , d j = 0, μq = 0
]

+ �c − �c
[
σ f = σ 0

f , d j = 0
]
, (30)

where the subscript 0 is attached for the vacuum values, and

�s = − 2
18∑

i=1

∫ � d3p
(2π )3

εi

2
, (31)

�c =
∑

i

(
2Gσ 2

i + Hd2
i

) − 4Kσuσdσs − gV n2
q, (32)

with σ f are the chiral condensates, d j are diquark condensates,
and nq is the quark density. In Eq. (31), εi are energy eigen-
values obtained from inverse propagator in Nambu-Gorkov
bases,

S−1(k) =
(

γμkμ − M̂ + γ 0μ̂ γ5
∑

i �iRi

−γ5
∑

i �
∗
i Ri γμkμ − M̂ − γ 0μ̂

)
, (33)

where

Mi = mi − 4Gσi + K
∣∣εi jk

∣∣σ jσk,

�i = −2Hdi,

μ̂ = μq − 2gV nq + μ3λ3 + μ8λ8 + μQQ,

(R1, R2, R3) = (τ7λ7, τ5λ5, τ2λ2). (34)

S−1(k) is 72 × 72 matrix in terms of the color, flavor, spin,
and Nambu-Gorkov basis, which has 72 eigenvalues; Mu,d,s

are the constituent masses of u, d, s quarks and �1,2,3 are
the gap energies. The μ3,8 are the color chemical potentials
which will be tuned to achieve the color neutrality. The total
thermodynamic potential including the effect of leptons is

�Q = �CSC +
∑

l=e,μ

�l . (35)

The mean fields are determined from the gap equations,

0 = ∂�Q

∂σi
= ∂�Q

∂di
. (36)

From the conditions for electromagnetic charge neutrality and
color charge neutrality, we have

n j = −∂�Q

∂μ j
= 0, (37)
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TABLE I. Physical inputs in vacuum in unit of MeV.

mπ mK fπ fK mω mρ m+ m−

140 494 92.4 109 783 776 939 1535

where j = 3, 8, Q. The baryon number density nB is deter-
mined as

nq = −∂�Q

∂μq
, (38)

where μq is 1/3 of the baryon number chemical potential.
After determined all the values, we obtain the pressure as

PQ = −�Q. (39)

IV. PARAMETER DETERMINATION

In this section, we determine the parameters in the PDM
by fitting with the normal nuclear matter properties and the
decay constants for different m0 (summarized in Table I and
Table II). It is notified that, for B = λ8 = λ10 = 0, the present
model is exactly the same as Refs. [34,36] and the model
parameters can be determined in the same way. As in the
previous works, we use the vector masses mρ = 776 MeV and
mω = 783 MeV. The parameters cmu = cmd and cms are fixed
by the following relations with fπ and fK given in Table I,

2cmu = m2
π f 2

π , c(mu + ms) = m2
K f 2

K . (40)

We are left with 11 parameters which will be tuned in the
presence of the U(1)A anomaly. The mesonic part contains

μ̄2, λ4, λ6, λ8, λ10, B, λωρ, (41)

and the nucleonic Lagrangian contains

m0, g1, g2, gωNN , gρNN . (42)

In this paper, we treat m0 as a given input and then fix the other
parameters. When we present results for m0 different from the
values in this section, those results are obtained after retuning
the above parameters to achieve the same quality of fitting as
in the present section, unless otherwise stated.

The mesonic part is constrained by the vacuum physics
and nuclear saturation properties. In vacuum, the couplings
(g1, g2), for a given m0, are fixed by demanding mvac

+ = 939
MeV and mvac

− = 1535 MeV through the relation,

mvac
± =

√
m2

0 +
(

g1 + g2

2

)2

σ 2
0 ∓ |g1 − g2|

2
σ0. (43)

TABLE II. Saturation properties used to determine the model
parameters: The saturation density n0, the binding energy B0, the
incompressibility K0, symmetry energy S0, and the slope parameter
L0.

n0 (fm−3) EBind (MeV) K0 (MeV) S0 (MeV) L0 (MeV)

0.16 16 240 31 57.7

FIG. 3. Restricted combination of λ8 and λ10 after fixing the
value of σs with m0 = 800 MeV. λ′

8 = λ8 f 4
π , λ′

10 = λ10 f 6
π .

where the σ fields in vacuum are given by

σ0 = fπ , σs0 = fK − fπ
2

. (44)

In order to satisfy these relations on σ0 and σs0, a proper range
of the mesonic parameters in Eq. (41) must be chosen.

There is still large degeneracy among the mesonic pa-
rameters. We can break the degeneracy by demanding the
mesonic parameters and (gωNN , gρNN , λωρ) to reproduce the
saturation properties listed in Table II. Then we are left with
the degeneracy related to the choice of parameters λ8, λ10,
and B. We show the degeneracy related to λ8 and λ10 in
Fig. 3 by showing the range to reproduce the above-mentioned
saturation properties.

Finally, the parameter B is strongly correlated with the
η and η′ masses whose experimental values in the vacuum
are

mexp
η � 547.9 MeV , mexp

η′ � 957.8 MeV. (45)

We fix the parameters to reproduce the above-mentioned
vacuum and saturation properties for a given B. We repeat this
procedure while increasing B until the parameters reproduce
η and η′ masses correctly. The behaviors of η and η′ masses
as functions of B are displayed in Fig. 4. The width attached

FIG. 4. The B dependence of masses of η and η′ mesons in the
vacuum with unit MeV.
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TABLE III. Values of model parameters determined for several
choices of λ′

8 = λ8 f 4
π . When B = 600 MeV, we only find solutions

which satisfy the saturation properties in the range 0 � λ′
8 � 2.64;

here we list the boundary values as a typical example. λ′
8 = 0 is the

minimum boundary and λ′
8 = 2.64 is the maximum boundary.

m0 = 800 (MeV) λ′
8 = 0 λ′

8 = 2.64

g1 6.99 6.99
g2 13.4 13.4

μ̄2/ f 2
π 24.83 38.15

λ4 63.52 115.27
B = 0 (MeV) λ6 f 2

π 45.27 117.99
λωρ 0.52 0.69

λ10 f 6
π 0.44 0.04

gωNN 5.12 4.85
gρNN 10.25 10.27

g1 6.99 6.99
g2 13.4 13.4

μ̄2/ f 2
π 7.22 25.89

λ4 102.8 166.02
B = 600 (MeV) λ6 f 2

π 66.23 145.23
λωρ 0.66 0.81

λ10 f 6
π 0.44 0.04

gωNN 4.17 3.82
gρNN 9.31 9.21

to the curves reflects the different combinations of λ8 and λ10.
For B = 600 MeV, the masses of η′ and η are calculated as

mPDM
η = 542 ± 15 MeV, mPDM

η′ = 962 ± 20 MeV. (46)

In this paper, we take B = 600 MeV as the physical value.
Table III shows one example for the parameter determination.

V. EFFECT OF ANOMALY IN MESON
SECTOR FOR HADRONIC MATTER

To study the effect of the anomaly, we perform linear
analysis with respect to the variation of B; we weakly vary
the value of B around our physical choice B = 600 MeV,
leaving the other parameters unchanged. (Within this linear
analysis, the results other than B = 600 MeV do not satisfy
the saturation properties.)

The vacuum value of σ and σs change as shown in Fig. 5.
The vacuum values of σ and σs increase as B does. This indi-
cates that the anomaly enhances the chiral symmetry breaking,
as discussed in the previous sections. The energy density in
vacuum is reduced more by the stronger chiral symmetry
breaking. When the chiral symmetry is restored, this energy
reduction in vacuum is lost, and we have to add more energy
density or a bag constant to the EOS in the chiral restored
phase.

Another important effect of the anomaly is the increase
of σ meson mass, as shown in Fig. 6. In the context of
nuclear forces, the heavier σ meson mass reduces the range of
attractive force and weakens the overall strength; this in turn
requires weaker repulsive ω interactions to balance with the
σ attraction to satisfy the saturation properties. The resultant
reduced repulsion leads to a softer nuclear EOS at suprasatu-

FIG. 5. The B dependence of σ and σs for m0 = 500 MeV.

ration densities where ω dominates over σ . In summary, the
U(1)A anomaly effects softens nuclear EOS at suprasaturation
densities.

In Fig. 7, we show the density dependence of the energy
density for B = 580, 600, and 620 MeV with m0 = 800 MeV.
The energy density overall increases as B does in whole den-
sity region, and the saturation points shift to higher densities.
This can be understood by the competition between the σ

attraction and ω repulsion. In the present linear analyses,
increasing B does not change the vector meson mass but
increases the mass of σ . As a result, the range of σ attrac-
tion, ≈1/mσ , decreases as B increases, reducing the attractive
contributions to the energy density. We also show the energy
dependence of the pressure in the Fig. 8 is obtained through

P = μBnB − ε, (47)

which indicates that the effect of anomaly softens the equa-
tion of state.

VI. EFFECT OF ANOMALY IN NJL-TYPE
MODEL FOR QUARK MATTER

In the NJL-type model introduced in Sec. III B, the coeffi-
cient K represents the strength of anomaly. Here we gradually
decrease the value of K from K�5 = 9.29 toward 0 with
fixing other parameters to study the effect of anomaly. For
simplicity, we first set H = 0 to avoid diquark condensate.

FIG. 6. The B dependence of mσ for m0 = 500 MeV.
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FIG. 7. Density dependence of the energy for m0 = 500 MeV.

The chiral condensates in the vacuum have the anomaly de-
pendence as in Fig. 9.

Chiral condensates in vacuum increase with increasing K ,
which is similar to the PDM. This result indicates that the
anomaly enhances the chiral symmetry breaking and reduces
the ground-state energy in vacuum.

In Fig. 1 we show dispersion relations of quarks in the
chiral symmetry broken vacuum (left panel) and in the chiral
symmetric vacuum (right panel). The approximate chiral sym-
metry is spontaneously broken by the chiral condensate, and
quarks of different chiralities are connected with each other.
Then the condensation opens a gap M in the quark dispersion
relation. As a result, the structure of the Dirac sea is changed
to generate a nonperturbative QCD vacuum. The difference
in energy density between the chiral symmetric Dirac sea and
symmetry-broken Dirac sea defines the bag constant [51],

εbag = ε(Meff = mq) − ε(Meff = M ), (48)

where Meff is the effective mass of quarks, mq is the bare quark
mass, and M is the constituent quark mass.

The density dependence of εtotal and εbag are calculated
separately as shown in the Fig. 10 for two cases, K = 0 and
K = 9.29/�5. This indicates that εbag > εK=0

bag at the same
density, which implies that the effect of anomaly enhances the
bag constant and finally increases the total energy.

From the analysis of the chiral condensates in the vacuum
in Fig. 9, the anomaly effect lowers the ground-state energy of

FIG. 8. The energy dependence of pressure for m0 = 500 MeV.

FIG. 9. The dependence of chiral condensates on the value of K .
The horizontal axis shows the value of K normalized as K�5.

the vacuum. In Fig. 1, we show a schematic view of vacuum
structure. The released energy after chiral symmetry restora-
tion is larger with anomaly than without it, and then at the
same density εbag > εK=0

bag .
We also calculate the density dependence of the relevant

pressures in Fig. 11, where Pbag is calculated from εbag using
the thermodynamic relation,

Pbag = −εbag + μqnq. (49)

This shows that for same density, Ptotal < PK=0
total , which is

mainly caused by the difference of Pbag, In summary, at a given
density

εtotal > εK=0
total , Ptotal < PK=0

total , (50)

so EOS with a positive K is softer, i.e., P is smaller at a given
ε, as shown in Fig. 12.

VII. STUDY OF PROPERTIES OF NS

In this section, following Ref. [36] we construct a unified
EOS by connecting the EOS obtained in the PDM introduced
in Sec. III A and the EOS of NJL-type quark model given in
Sec. III B and solve the TOV equation [52,53] to obtain the
NS mass-radius (M-R) relation. As for the interplay between
nuclear and quark matter EOS, see, e.g., Ref. [54] for a quick
review that classifies types of the interplay.

FIG. 10. The density dependence of εtotal and εbag with
(H, gV )/G = (0, 0.1).
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FIG. 11. Density dependence of Ptotal and Pbag with (H, gV )/G =
(0, 0.1).

A. Construction of unified EOS

In our unified equations of state as in Table IV, we use
the Baym-Pethick-Sutherland EOS [55] as a crust EOS for
nB � 0.5n0. From nB � 0.5n0 to 2n0 we use our PDM model
to describe a nuclear liquid. We limit the use of our PDM up
to 2n0 so that baryons other than ground-state nucleons, such
as the negative parity nucleons or hyperons, do not show up
in matter. Beyond the nuclear regime, we assume a crossover
from the nuclear matter to quark matter and use a smooth
interpolation to construct the unified EOS. We expand the
pressure as a fifth-order polynomial of μB as

PI (μB) =
5∑

i=0

Ciμ
i
B, (51)

where Ci (i = 0, . . . , 5) are parameters to be determined from
boundary conditions given by

dnPI

(dμB)n

∣∣∣∣
μBL

= dnPH

(dμB)n

∣∣∣∣
μBL

,

dnPI

(dμB)n

∣∣∣∣
μBU

= dnPQ

(dμB)n

∣∣∣∣
μBU

, (n = 0, 1, 2), (52)

with μBL being the chemical potential corresponding to nB =
2n0 and μBU to nB = 5n0. That is, we demand the matching up

FIG. 12. The energy dependence of pressure for H/G =
0, gV /G = 0.1.

TABLE IV. Unified EOS composed of four part

0 � nB < 0.5n0 0.5n0 � nB � 2n0 5n0 < nB < 2n0 nB � 5n0

Crust PDM Interpolation NJL

to the second-order derivatives of pressure at each boundary.
The resultant interpolated EOS must satisfy the thermody-
namic stability condition,

χB = ∂2P

(∂μB)2
� 0, (53)

and the causality condition,

c2
s = dP

dε
= nB

μBχB
� 1, (54)

which means that the sound velocity is less than the light
velocity. These conditions restrict the range of quark model
parameters (gV , H ) for a given nuclear EOS and a choice of
(nL, nU ).

We exclude interpolated EOSs which do not satisfy the
above-mentioned constraints. Similar surveys for the range of
(gV , H ) and (nL, nU ) have been carried out first for APR EOS
[56] in Refs. [51,57], and more systematically for Togashi
EOS [58] in Ref. [49] and for ChEFT EOS [59] in Ref. [60].
The range explored in the present work is largely consistent
with the previous works using different nuclear EOSs. Finally,
we note that the estimate based on nonpetrubative massive
gluon exchanges favor the estimate of gV ≈ G and H ≈ 1.5G
[61].

It is important to note that the constraints become sev-
erer for the combination of softer nucleonic EOS and stiffer
quark EOS. The rapid growth of the stiffness, together with
the requirement of c2

s → 1/3 in the high-density limit, gen-
erally leads to a peak in the sound velocity, as first found
phenomenologically in Refs. [39,40] and later explained mi-
croscopically in Refs. [62,63] with the emphasis on the
quark degrees of freedom. The growth of the stiffness in the
crossover model is in general quicker than in purely hadronic
models, and such features may be studied in gravitational
waves from neutron star merger events [64], or in QCD-like
theories, e.g., two-color QCD, for which analytical [65] and
lattice calculations [66] suggest the rapid stiffening in the
crossover domain.

B. Mass-radius relation

In this section, we study the M-R relations of NSs from
the unified EOS constructed above. In Ref. [36], where the
anomaly in the nuclear EOS is neglected, the chiral invariant
mass is constrained to be 600 MeV � m0 � 900 MeV. In the
present analysis, we improve the analyses in three aspects: (i)
We include the anomaly in the nuclear EOS, (ii) we newly
include the ω2ρ2 term for flexible tuning of the slope pa-
rameter L in the symmetry energy (here we adopt the value
L = 57.7 MeV as a baseline suggested by Ref. [67]), and (iii)
we include a new constraint from the NICER on the radius of
2.1M� neutron stars.
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FIG. 13. Allowed combinations of (gV , H )/G values for different m0 choices. The circles indicate that the combinations are allowed and
other regions are excluded by the causality condition. The color of the circle shows the maximum mass of NS obtained from the corresponding
parameters setting.

We first examine the effects of the NJL parameters
(gV , H). For simplicity, we fix parameters in the PDM to
B = 600 MeV, λ′

8 = 0, λ′
10 = 0.44, and tune λωρ to reproduce

L = 57.7 MeV. We then vary the value of m0 and examine
the range of (H, gV ) which is allowed by the causality and
thermodynamic stability conditions. The band shown in the
Fig. 13 specifies such domains, while the blank part is not
allowed. A larger gV requires a larger H . For m0 = 800 MeV,
the maximum masses for all the combinations are below 2M�,
leading to the conclusion that m0 = 800 MeV should be ex-
cluded within the current setup of the PDM parameters.

Next we fix m0 = 500 MeV and vary the value of λωρ or L
while the rest of hadronic parameters is kept unchanged. The
resultant M-R relation is shown in Fig. 14, thick curves in the
low (high)-mass region indicate the central density of the NS
is smaller than 2n0 (larger than 5n0), and the NS is made from
hadronic matter (quark matter). The thin curves on the other
hand show that the core is in the crossover region. From the
figure one sees that the EOSs are softened by the effect of the
ω2ρ2 term and the radius for L = 57.7 MeV, M � 1.4M� is
about 11.2 km in comparison with the result of L = 80 MeV
about 12.1 km. There is still a large ambiguity about the
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FIG. 14. Mass-radius relations for m0 = 500 MeV with different
slope parameter. Red curves are connected to the NJL parameters
(H, gV )/G = (1.55, 1.0), (1.5, 0.9); blue curves to (1.55, 0.9), (1.5,
0.8); black curves to (1.55, 0.8), (1.5, 0.7).

values of slope parameter and small slope parameters usually
soften the NS EOS, shifting the radius toward smaller values.
Precise determination of slope parameter in the future will
help us further constrain the NS properties.

In following analysis, we fix the value L = 57.7 MeV
and examine the effects of anomaly on the M-R relation. In
Fig. 15(a), we show how the M-R curves change under the B
effect. The (λ′

8, λ
′
10) parameters from m0 = 400 to 800 MeV

are fixed to the boundary values in the following analysis,
λ′

8 = 0 and λ′
10 = 0.44. The NJL parameter (H, gV ) are cho-

sen to have the stiffest two M-R curves. In the Fig. 15(a),
because of the softening effect of the anomaly, after we set
B = 600 MeV, the stiffest connection for m0 = 800 MeV is
unable to satisfy the maximum constraints. In Fig. 15(b), we
show the final results in this work after setting B = 600 MeV
for different m0 values. We find the final constraints to the
chiral invariant mass is changed to be smaller by ≈100 MeV
in comparison with the previous constraints in Ref. [36].

VIII. SUMMARY AND DISCUSSION

In this work, we construct an effective hadronic model in
which the effect of strange quark condensate is included in the
mesonic sector through the KMT-type interaction reflecting
the U (1) axial anomaly. We then study the impact of U(1)A

anomaly on the chiral symmetry breaking in both hadronic
and an NJL-type quark modes. In both models the U(1)A

anomaly enhances the chiral symmetry breaking. In the PDM,
the anomaly effects increases the effective mass of σ , and the
heavier σ meson mass reduces the range of attractive force,
weakening the overall strength; this in turn requires weaker
repulsive ω interactions to balance with the σ attraction to sat-
isfy the saturation properties. The resultant reduced repulsion
leads to a softer nuclear EOS at suprasaturation densities. In
the NJL-type model, the anomaly effects lead to a large bag
constant. Since a larger bag constant adds the energy density
but reduces the pressure, the corresponding EOS is softened.
We expect that it is a general feature that U(1)A anomaly
softens the NS EOS.

More details about the chiral restoration at finite density
are examined in Appendix A for the chiral condensates and in
Appendix B for the σ and η′ meson masses.

The EOS plays an essential role when determining the
NS properties. The NICER analyses of the most massive NS
known, PSR J0740+6620, with M/M� = 2.08 ± 0.07 and the
radii R2.08 = 12.35 ± 0.75 km [45], together with the updated
estimate for R1.4 = 12.35 ± 0.75 km [45], disfavors strong
first-order phase transitions in the region between 1.4M� and
2.1M�.

In this case, we assume the hadronic and quark matter
are not distinctly different and construct unified EOS for
neutron star matter. In the present work, we interpolate the
EOS obtained in the hadronic model based on the parity dou-
blet structure (nB � 2n0) and the one in the NJL-type quark
model (nB � 5n0) with crossover in the intermediate region.
We found that the unified EOS is also softened by the effect
of anomaly due to the softening of the EOS in both hadronic
and quark matters. The resultant M-R curves are compared

FIG. 15. Mass-radius relations for different m0 in different parameter setting.
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FIG. 16. Density dependence of the chiral condensate 〈ūu + d̄d〉/〈ūu + d̄d〉0 (left) and 〈s̄s〉/〈s̄s〉0 (right) in the PDM. We use the
same parameter choices in Fig. 15(b). In (a), two dotted lines show the density dependence in the linear density approximation with
�N = 45, 90 MeV as typical examples. In (b), the colored bands are drawn in the linear density approximation where the value of �sN is
taken from the lattice QCD results shown in Table V with error bars included: JLQCD (gray band), RQCD (green band), ETM (red band), and
χQCD (orange band).

with the constraints from GW170817 (LIGO and VIRGO)
and PRS J0030+0451 (NICER) as well as the constraint from
PRS J0740+6620. From the constraints we restrict the chiral
invariant mass as

400 MeV � m0 � 700 MeV. (55)

Compared with results without anomaly, 500 MeV � m0 �
800 MeV, we find that the anomaly softens the EOS, shifting
the range of chiral invariant mass toward lower values by
100 MeV. Another new ingredient we added is the ω2ρ2 term
which is not forbidden by symmetry. Recalling that the role
of m0 is correlated to the balance between σ attraction and ω

repulsion, it is also natural to examine the ω-ρ correlations
in the context of symmetry energy and then check how it
impacts on our previous estimate on m0. Since the coupling
λωρ is strongly correlated with the slope parameter L [68],
we show the impact on EOS or M-R relations in Fig. 14 as
functions of L. The curves with L = 80 MeV corresponds
to λωρ = 0, and L becomes lower as we increase λωρ (more
attractive correlations). The range of L = 30–80 MeV [69,70]
is the standard.

Small values of L not only decrease the total radius but also
lead to smaller maximum mass. Future constraints on L from
the experiments will help us to better constrain the values of
chiral invariant mass.

In this paper, we included the U(1)A breaking only in
the mesonic sector where the anomaly significantly affects η′
mass and the vacuum energy. In the baryonic sector, there may
be Yukawa interactions with the U(1)A breaking, but we are
not aware of which part of physics is strongly affected by such
terms. Presumably the U(1)A effects in the Yukawa couplings
are largely masked by the uncertainties of those couplings.
We leave this problem for future studies. Another important
ingredient we omitted is hyperons. We assumed that they do
not show up at nB � 2n0, but they may still affect the Dirac
sea structure by the mass modification through the change of
σ and σs. We leave these analyses as future works.
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APPENDIX A: CHIRAL CONDENSATES

We calculate the chiral condensates in the PDM by dif-
ferentiating the thermodynamic potential with respect to the
current quark masses [11]:

〈(ūu + d̄d )〉 ≡ ∂�PDM

∂mq
. (A1)

Then, using the Gell-Mann-Oakes-Renner relation, we obtain

〈(ūu + d̄d )〉
〈(ūu + d̄d )〉0

= σ

fπ
. (A2)

Similarly, we obtain

〈s̄s〉 ≡ ∂�PDM

∂ms
, (A3)

and
〈s̄s〉
〈s̄s〉0

= σs

σs0
. (A4)

where σs0 is the mean field σs at the vacuum.

TABLE V. Values of �sN obtained by recent from lattice QCD
simulations.

Collaboration �sN (MeV)

χQCD 40.2(11.7)(3.5) [71]
ETM 41.1(8.2)(7.8) [72]
RQCD 35(12) [73]
JLQCD 17(18)(9) [74]
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FIG. 17. The density dependence of the η′ mass in the PDM for
various m0. The curves are extrapolated from � 2n0, where we trust
the PDM, to higher density.

In the linear density approximation, the density depen-
dence of the condensates are given by

〈q̄q〉 � 〈0|q̄q|0〉 + nB〈N |q̄q|N〉 = 〈0|q̄q|0〉 + nB
�N

2mq
, (A5)

〈s̄s〉 � 〈0|s̄s|0〉 + nB〈N |s̄s|N〉 = 〈0|s̄s|0〉 + nB
�sN

ms
, (A6)

where �N is the πN sigma term and �sN is the strange quark
sigma term.

In Fig. 16(a), we show the density dependence of 〈(ūu +
d̄d )〉/〈(ūu + d̄d )〉0 determined from the PDM in the neutron
star matter. We also plot typical examples of the density de-
pendence of the condensate determined in the linear density
approximation where the πN sigma term is taken as �N =
45, 90 MeV [11]. This shows that in the low-density region,
the density dependence of chiral condensate obtained in our
model is consistent with the linear density approximation,
while there is some deviation in density region nB/n0 � 0.5
due to the higher-order correction.

In Fig. 16(b), we show the density dependence of strange
quark chiral condensate compared with the linear density ap-
proximation shown by colored bands. In the linear density
approximation, we use the value of �sN determined by the
lattice QCD simulations shown in Table V as typical exam-
ples. The colored bands in Fig. 15(b) are written by taking
account of all the errors, e.g., �sN = 40.2 ± 15.2 MeV for

FIG. 18. The density dependence of the effective mass of the σ

meson in the PDM for various m0.

χQCD [71]. Figure 16(b) shows that the ambiguity of �sN

is too large to give a constraint to our model. However, we
expect that the precise determination of �sN in the future will
constrain the chiral invariant mass.

APPENDIX B: MESON MASSES

In addition to the chiral condensates it is useful to examine
meson masses at finite density. Here we present the η′ and σ

meson masses calculated within the PDM.
Shown in Fig. 17 is the η′ mass computed in the PDM for

various m0. It drops from �960 MeV in vacuum to �700–
780 MeV at nB = 2n0. The reduction of the η′ mass should be
related to the chiral and U(1)A restoration.

Naïve extrapolation of the PDM result to high density leads
to a relatively large η′ mass, �650–700 MeV at nB � 5n0

where we expect the presence of quark matter. Meanwhile,
the NJL calculations in the CFL quark matter [75–77] suggest
a much smaller mass of �100 MeV. Some general formulas
and treads have been discussed in Refs. [78–82]. The large
mismatch between the PDM extrapolation and quark mat-
ter calculations at 5n0 suggests that the PDM misses some
physics relevant at �2n0. As discussed in Ref. [11], the PDM
with a fixed m0 unlikely describes the modification of the
quark Dirac sea and would deviate from predictions based on
quark models.

Finally, we also diagnose the density dependence of the σ

meson mass, mσ , for several m0 as in Fig. 18. For m0 = 400
MeV, the mσ drops drastically toward 2n0. Meanwhile, for a
larger m0, such dropping becomes milder so that conventional
nuclear descriptions are rather persistent to ≈2n0.
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