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We introduce a novel set of observables associated to the rapidly developing field of persistent homology
for the quantitative characterization of nuclear collisions and their evolution. Persistent homology allows for
the identification of topological and homological characteristics of distributions in multidimensional spaces. We
demonstrate here how to apply the tool kit of persistent homology to the extraction of novel clustering signatures
and the identification of long-range flow correlations in the particle production process of nuclear collisions.
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I. INTRODUCTION

The field of relativistic nuclear collisions exists to explore
the properties of quantum chromodynamic (QCD) matter at
asymptotically large temperatures and densities [1,2]. In addi-
tion to creating a novel phase of deconfined matter known as
the quark-gluon plasma (QGP) [3], nuclear collisions provide
insights into the equation of state of nuclear matter [4–6],
conjectured topological characteristics of the QCD vacuum
[7–9], input into models of neutron star structure and mergers
[10–12], and much more [13–15]. To date, a vast number
of observables have been used to probe nuclear collisions,
including particle multiplicities [16,17], pT and rapidity dis-
tributions [18,19], anisotropic flow [20–24], jet quenching
[25–27], fluctuations and correlations of conserved charges
[28,29], interferometry and femtoscopy [30,31], and a litany
of others [32–35].

What all of these observables have in common is that they
are constructed from point clouds. A point cloud, as defined
in this paper, is simply a distribution of points in some d-
dimensional space (cf. Fig. 1). Point clouds generically arise
as finite samples from an underlying continuous distribution
and may reflect nontrivial topological structure present in the
latter. In the case of nuclear collisions, each collision (or
“event”) emits a number of particles which are detected, and
whose three-momenta can be measured experimentally. The
fundamental insight of this paper is to treat these emitted
particles as a point cloud in momentum space, where each
particle exists as a point with three-dimensional coordinates
given by its three-momentum �p as measured by the detector.
One therefore has access experimentally to an ensemble of
point clouds which can be mined for insights into the under-
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lying dynamics and properties of the nuclear collisions which
produced them.

The tool kit of persistent homology (PH) has been de-
signed for exactly this purpose. PH has developed rapidly in
recent years as one of the foremost techniques for nonpara-
metrically identifying important topological characteristics of
large datasets, including point cloud distributions. PH is best
suited to identifying topological or homological features of
a given point cloud, including clustering, bubbles, filaments,
holes, walls, and so on. It has been applied in a vast number
of other disciplines, including the description and evolu-
tion of cosmic structure [36–38], Bose-Einstein condensates
[39], phase diagrams [40], confinement in non-Abelian lattice
gauge theory [41], and even the assembly and disassembly of
multispecies ecological systems [42]. While PH yields access
to topological features at varying degrees of scales, it also
implicitly probes multiorder correlational structure. Indeed,
PH has strong connections to robust results in Morse theory
and quantifies large-scale structure much like the Minkowski
functionals for convex bodies, which can be interpreted in
terms of integrated connected correlation functions at all or-
ders [43–45]. Further, deep connections to the Gauss-Bonnet
theorem and the Euler characteristic [43] render PH a promis-
ing extension of traditional statistical methods for analyzing
discrete point clouds, and make it a natural candidate for
developing new ways of probing nuclear collisions.

Our topological approach complements and extends a re-
cent explosion of machine learning techniques in high-energy
physics, most prominently tools utilizing neural networks like
graph neural networks [46]. What is more, persistent homol-
ogy is easily folded into a machine learning pipeline and can
help identify the topological structure of information as it
passes through the layers of a neural network [47]. Developing
a formalism for applying PH to nuclear collision phenomenol-
ogy therefore broadens the possible avenues for connecting it
to the field of machine learning.
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FIG. 1. A toy example of a point cloud in two-dimensional mo-
mentum space. Each point represents a particle emitted from an
event, where the point cloud distributions of the solid blue points
clearly differ from that of the open red circles. These are the sort of
qualitative features which persistent homology is designed to access.

In this paper, we show how the PH tool kit can be applied
to the description of nuclear collisions and the momentum-
space point clouds they produce. For illustrative purposes, and
as a proof of concept, we use it to introduce novel ways of
quantifying both clustering effects and anisotropic collective
flow in realistic nuclear collision simulations. Our goal is to
exhibit some of the ways in which PH could be leveraged to
provide new insights into the evolution and phenomenology
of nuclear collisions.

The outline of this paper is as follows. In Sec. II, we
provide a brief review of the main results, tools, concepts,
and techniques employed in PH, and summarize the pipeline
by which we analyze a given point cloud in this work. Then,
in Sec. III, we discuss specifically how we apply these results
in the context of nuclear collisions, and introduce several
PH observables which are designed to probe familiar nuclear
collision phenomenology. Sections IV and V present an
illustrative proof of concept for the application of our novel
methods to realistic nuclear collisions, based on established
simulation packages for modeling the real-time evolution of
these systems. Finally, we conclude with an assessment of the
prospects for applying PH in nuclear collisions and suggest
further questions which our novel approach could help to
clarify.

II. CONCEPTS OF PERSISTENT HOMOLOGY

In this section we present an overview of PH, focusing
especially on its use as a tool to investigate higher-order
correlational structures. We begin with a brief description of
PH in general and introduce the pipeline we use to apply PH
to simulated nuclear collision data. For the sake of clarity, we
illustrate the most important concepts from our pipeline using

a toy dataset which contains artificial topological structures
that are naturally probed by PH.

A. PH overview

At a high level, PH quantifies how topology persists with
respect to a variational parameter. This variational parameter
introduces a nesting (or filtration) of topological spaces. Each
of these topological spaces is typically triangulated, yielding
what is formally known as a simplicial complex [an example
is shown in Fig. 2(b)]. In turn, by making use of the tech-
niques of simplicial homology [48], each simplicial complex
in a filtration can be connected with a sequence of homology
groups. The key insight of persistent homology is to track how
these homology groups change as a function of the filtration
parameter, thus providing insight into the topological structure
reflected in the point cloud. The output of this process can be
usually represented by a plot known as a persistence diagram,
and may be analyzed further by means of various observables
designed to isolate relevant features of a given point cloud
ensemble.

There are several excellent reviews [49,50] which we en-
courage the reader to consult for further discussion of PH
in general. In the remainder of this section we provide a
description of the specific PH pipeline which we apply to the
output of simulated nuclear collisions. The pipeline consists
of three main steps, described below, with technical details of
each step deferred to Appendix A.

B. Summary of PH pipeline

We illustrate the results of our pipeline when applied to a
toy dataset in Fig. 2. The dataset itself is a two-dimensional
(2D) Euclidean point cloud, denoted X , and depicted in
Fig. 2(a). While X is a point cloud (and therefore has triv-
ial topological structure), it was sampled from a continuous
distribution consisting of two concentric annuli, and clearly
reflects the nontrivial topology of the latter. Some additional
points have also been added as noise. The topologically non-
trivial loop structures exhibited by this toy dataset can be
characterized by following three main steps: (1) perform-
ing a Delaunay triangulation and associated field estimation,
(2) conducting a superlevel set filtration, and (3) identifying
homological features of interest and evaluating relevant ob-
servables which quantify these features. We now discuss each
of these three steps in greater detail.

1. Delaunay triangulation and field estimation

First, we generate a Delaunay triangulation of X , as shown
in Fig. 2(b). The Delaunay triangulation is a nonparametric
triangulation such that, in Euclidean space, no points appear
in the circumcircle interior of any triangle [51]. The boundary
of the Delaunay triangulation is called the convex hull of the
point cloud.

After constructing the triangulation, we use a technique
known as Delaunay triangulation field estimation (DTFE) to
define a density field f (x) on the points x ∈ X [52]. The DTFE
assigns to each point a density which depends upon the area of
adjacent triangles and thus correlates closely with the density
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FIG. 2. PH pipeline used in this work. (a) Random point cloud with multiplicity n ≈ 2000. (b) The Delaunay triangulation; note the
prevalence of long “sliver” triangles at the boundary. (c) The DTFE with the color of any triangle roughly scaling with average density of
its vertices: warm (red) colors denote high-density regions, while cool (blue) colors denote low-density regions. The precise determination
of the densities is described in the main text. Superlevel set of the density field whereby (d) 95%, (e) 75%, and (f) 50% of the points have
density lower than the threshold ε. (g) The resultant persistence diagram for H0, H1. (h) Betti curve for zero dimensions. (i) Betti curve for one
dimensions.

of neighboring points in the vicinity (cf. Appendix A for more
details). The results of the DTFE are depicted in Fig. 2(c). The
density field has been normalized to the range [0,1], although
we use the unnormalized density when analyzing nuclear col-
lisions below. The colors of the triangles correspond roughly
to the average f (x) of the vertices of the triangle. The two
annuli reflect regions of higher density, and are thus denoted
by redder colors; lower-density regions are colored blue.

2. Superlevel set filtration

After constructing the Delaunay triangulation and perform-
ing the field estimation, we introduce a variational parameter
ε and consider the set of points L+

ε := {x| f (x) � ε}, which
is the collection of points in the cloud where the density is

greater than or equal to ε. This kind of set is referred to as
a superlevel set of the density field f (x). By definition, we
have L+

ε ⊆ L+
ε′ whenever ε′ � ε. L+

ε is thus a filtration, where
ε plays the role of the filtration parameter.

For a given value of ε, a simplicial complex Kε can be
constructed in the following way. First, the vertices (or 0-
simplices) in Kε are identified with the points x ∈ L+

ε . Once
the 0-simplices have been specified, the 1-simplices are identi-
fied as the edges in the triangulation that connect two vertices.
Similarly, any triangles are identified as 2-simplices, tetrahe-
dra as 3-simplices, and so on. Thus, for example, any triangle
which is formed by three edges (or 1-simplices) in Kε is “filled
in” and included in Kε as a 2-simplex. The same applies to
higher-order simplices.
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Figures 2(d)–2(f) show Kε for three values εd � εe � ε f .
The thresholds εd/e/ f in the figure correspond to points in,
respectively, the top 5%, the top 25%, and the top 50% of
the densities provided by the DTFE. Note that each simplicial
complex is a subcomplex of the subsequent complex. Note
also that the outer annulus is a fully connected component in
Fig. 2(d), and that the “loop” structure is clearly formed. A
particular filtration thus generates a corresponding sequence
of nested simplicial complexes which can reflect topological
structures underlying the original point cloud.

3. Identify homological features

Once a filtration and sequence of simplicial complexes
have been defined, the associated homology groups follow
immediately. For any ε, we compute the simplicial homology
of Kε to obtain a direct sum of the homology groups (vector
spaces) reflected in Kε. The rank of each homology group is
known as its Betti number, βi, where i denotes the dimension.
Intuitively, βi counts the number of homological features of
dimension i: β0 is the number of connected components, β1 is
the number of nonhomologous loops, and so on. In Figs. 2(h)
and 2(i) we show the Betti numbers β0 and β1, respectively,
as a function of ε; these plots are known as Betti curves. The
nesting of simplicial complexes ensures a common basis to
track which homology groups persist through the filtration
{ε}ε∈[0,1].

Finally, by tracking the homology groups through the fil-
tration one obtains a persistence diagram (PD), shown in
Fig. 2(g). The abscissa (“birth” or b axis) is the filtration
value at which a homological feature first appears, while the
ordinate (“death” or d axis) indicates at which filtration value
the same homological feature vanishes. The blue markers,
denoted H0 to indicate the zero-dimensional (0D) homology
group, correspond to the point cloud’s connected components.
H1 denotes the one-dimensional (1D) homology group and
represents the loops (formally, cycles) present in the point
cloud. The distribution of points in the PD thus serves as a
“fingerprint” for the topology of the point cloud: the farther
points in the PD are from the diagonal, the “longer-lived” the
corresponding homological feature. We define the difference
d − b as the “lifetime” of the homological feature. Thus, long-
lived features correspond to large-scale structure, while short-
lived features correspond to noise and local curvature [47,53].

The example given here is identical to the PH pipeline
we apply to our simulated collision data, save a few caveats.
In this work we consider point clouds in (φ, y) coordinates,
where

px = pT cos φ, (1)

py = pT sin φ, (2)

pz = mT sinh y, (3)

and y is the rapidity mT ≡
√

m2 + p2
T . For consistency, we

must have periodic boundary conditions in the φ direction,
which complicates the Delaunay triangulation and tends to
generate spurious edge effects induced by the subsequent
DTFE. To avoid these complications, we impose a rapidity

cut |y| � 2, which implies that our observables outlined
below are defined within this rapidity interval. We discuss
this further in Appendix A.

Furthermore, the pipeline we present here is not the only
way PH could be applied to nuclear collisions. For instance,
although we have employed (φ, y) coordinates in this work,
one could also consider analyzing particle spectra in three
dimensions using coordinates �p = (px, py, pz ). Similarly, we
use a density-based filtration previously applied in the context
of cosmological models for galactic morphology [54], but
there are several alternative ways to perform PH on a point
cloud as well, as we discuss in Appendix B. We leave a more
in-depth analysis of these various possibilities and extensions
to future work.

III. OBSERVABLES

While in principle the PD contains a great deal of infor-
mation about a single point cloud’s persistent topology, in
practice it can be difficult to analyze its statistical properties
for an ensemble of point clouds. For this reason, it is often de-
sirable to introduce a scalar quantity or functional (known as a
topological summary), derived from the PD, for which one can
readily formulate and quantify relevant statistical properties.
Many ways to do this have been discussed in the literature, in-
cluding persistence landscapes [55], persistence images [56],
and statistics on the birth, death, and lifetime distributions
[57]. Each topological summary yields unique insights into
fluctuations of the intrinsic topology of an ensemble of point
clouds. In this work we focus on four such summaries, two
of which actually incorporate more information than the PD
alone. These summaries thus provide observables which can
be applied to an ensemble of nuclear collisions.

A. Fractal dimension

The first observable we consider is known as the fractal
dimension. While the birth and death distributions of homo-
logical features are interesting in their own right, the lifetime
distribution in particular quantifies how persistent topological
features are in the underlying point cloud. Moreover, we can
study how the lifetime distribution changes as the size (or
multiplicity) of a point cloud representing some dynamical
process increases. The scaling of persistent topology with
respect to multiplicity thus gives rise to a notion of fractality
which we can quantify, and which was formally described in
Ref. [58].

Given a point cloud with multiplicity n and its correspond-
ing PD, let PDi denote the restriction to homological features
of dimension i. Then let Ei

α := ∑
(b,d )∈PDi

(d − b)α denote a
sum of powers of the lifetimes in PDi. The fractal dimension
is then defined as

dim PHi := α

1 − β
, β = lim

n→∞
log

〈
Ei

α

〉
log n

. (4)

Here 〈·〉 denotes averaging over persistence diagrams with the
same multiplicity n [58]. Intuitively, Eq. (4) measures how
the sum of powers of the lifetimes scales with multiplicity.
Small values of α emphasize the small lifetime features (e.g.,
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local clustering), while large α probes more global features.
The homological fractal dimension defined here has close
connections to the box-counting and correlation dimensions,
and has been explored in the context of identifying critical
exponents and fractal dimensions for dynamical processes
[58]. Moreover, a notion of fractal dimension was recently
explored in the context of jet classification [59].

B. Betti curves

As noted above, the Betti number βn is simply the rank of
the nth homology group and reflects the number of important
topological features of dimension n at a given stage in the
filtration. While the Betti curve is insensitive to the relative
lifetimes of homological features, it does give an indication
of the point in the filtration at which homological features
are likely to exist. The structure of the Betti curve, in par-
ticular, the maximum, was recently used in the context of
identifying phase transitions in quantum many-body systems
[60]. As we explore in Sec. V, the Betti curve also serves
as a cluster distribution function with respect to scale, i.e.,
yielding the (unnormalized) probability of m clusters at scale
ε. These cluster distribution functions form an important set of
observables in cosmological studies of galactic morphology
[61], leading us here to consider their relevance for nuclear
collisions as well.

C. Cluster entropy

While the 0D Betti curve is a useful indicator for the
distribution of clusters with respect to filtration value, the Betti
number is insensitive to the multiplicity of individual clusters.
For instance, given a point cloud of n points with three clus-
ters, the Betti number β0 does not distinguish between three
clusters with equal numbers of n/3 points each, versus one
cluster with n − 2 points and the other two clusters with one
point each.

To access this cluster multiplicity information, we ex-
ploit the fact that our density-based filtration amounts to a
parametrized hierarchical clustering scheme due to the Delau-
nay triangulation. This hierarchical clustering is quite similar
to the clustering scheme used to identify jets [62]; indeed,
some collinear, infrared-safe jet clustering algorithms also
make use of the Delaunay triangulation in (φ, y) space [63].
The output of hierarchical clustering is an object known as a
dendrogram (or merge tree), wherein the lengths of branches
between merges indicate the filtration interval in which a
given cluster exists. The number of leaves of a branch yields
the multiplicity of the cluster at that filtration level. Figure 3
shows a small illustrative example; note that the heights of
the leaves are nonuniform because, in our filtration, the leaves
appear at values related to the density. The dendrogram thus
provides a way of quantifying the distribution of cluster mul-
tiplicities as a function of filtration.

Given the number of points in each cluster as a function
of the filtration parameter, we introduce a novel observable
which we refer to as the cluster entropy, which acts as a
topological summary of agglomerative clustering. For a point

FIG. 3. A pictorial representation of a merge tree, or dendro-
gram. The filtration from leaves to root runs up the page, with the
height of a leaf corresponding to the value at which a hadron appears
in the filtration. The length of the green bars from the lowest leaf to
the root indicate the lifetimes of the clusters that include the lowest
leaf. The set of these lifetimes for each leaf i forms the vector t i.

cloud of multiplicity n, at each filtration level ε we define

H (ε) = −
∑

Ci∈C(ε)

pi log pi, (5)

where i ∈ C(ε) is the set of clusters at ε and pi = |Ci|/n(ε).
Here n(ε) is the number of points that exist at filtration value
ε, so that n(ε) � n. Note that pi is a proper probability distri-
bution, and so the cluster entropy defined here is the Shannon
entropy [64] of the cluster probability distribution. The cluster
entropy indicates the degree of “mixedness” in the distribution
of points among clusters. This statistic naturally generalizes to
the Rényi and Tsallis entropies, which explore the “rarity” or
heavy tails of a distribution [64].

D. Local clustering statistics

A particularly important phenomenon frequently studied in
nuclear collisions is that of local clustering, which can arise
in a variety of contexts, including Bose-Einstein correlations
[65], the QCD critical point [66–68], jet identification [69],
and n-body correlations arising from collective flow [70]. By
“local clustering,” we mean any significant deviation from a
uniformly distributed point cloud which may be correlated
with position within the point cloud. In this sense, local clus-
tering provides a generalized notion of ordinary clustering,
which implies deviations from a uniform distribution but need
not specify where the clustering takes place. Since we wish to
characterize nonuniform point cloud distributions using PH in
a way which can depend on the specific region of momentum
space (e.g., for anisotropic flow), it is therefore essential to
have a way of quantifying local clustering as well.

However, while persistence diagrams provide structural
statistics on point clouds, PH alone does not retain informa-
tion regarding other, nontopological degrees of freedom, such
as whether or not clustering behavior is more likely in one part
of the point cloud than another. While PH has been used to
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identify anisotropy in point cloud distributions and to quantify
local curvature [53], PH does not explicitly retain positional
degrees of freedom.

However, the form of PH we pursue in this work comes
with an object that does retain positional degrees of free-
dom: the dendrogram. Each leaf in a dendrogram corresponds
to a point in the point cloud, and the lengths of branches
between merges indicate how long a cluster persists before
being merged into another cluster. To each leaf (point) we
identify a vector t i, the components of which are the lengths
of the branches along the path from the leaf i to the root of
the dendrogram. We depict a simple dendrogram in Fig. 3,
wherein the green bars denote the relevant branches from
the leaf i (bottom of the plot) up to the root. Every leaf
in the dendrogram therefore has a corresponding vector t i.
Taking the p-norm of each t i then yields a novel statistic
f (t i ) := ||t i||p (which we refer to as the leaf’s p-norm) on
the point cloud that reflects the local clustering statistics: for
large p the p-norm emphasizes large-scale clustering, while
small p < 1 (technically a seminorm) targets local clustering
and local curvature. Here the p-norm for t i = (t0, . . . , tm) is
defined as

||t i||p =
⎛
⎝∑

j

t p
j

⎞
⎠

1/p

. (6)

This novel clustering statistic has to our knowledge not
appeared in the topological data analysis literature, though
recent approaches to merge trees that incorporate higher-
dimensional homological information (known as decorated
merge trees) have touched on similar ideas [71–73]. Given the
importance of anisotropy in higher-order correlation functions
in the context of flow, we see the local clustering statis-
tics observable as a reasonable step towards bridging the
gap between persistent homology and traditional correlational
metrics in nuclear collisions.

We thus have introduced four observables—the fractal di-
mension, the Betti curves, the cluster entropy, and the p-norm
associated to dendrogram leaves—which can be readily ap-
plied to the analysis of nuclear collisions. These observables
are designed to characterize different aspects of point clouds
typically produced in nuclear collisions. In the next section we
discuss the simulation framework to which these observables
will be applied.

IV. NUCLEAR COLLISION SIMULATIONS

We now present our approach to generating realistic sim-
ulations of Pb+Pb collisions at LHC energies. In addition to
applying PH to the simulated Pb+Pb events themselves, it is
also crucial to establish a suitable background as a reference
against which to compare any proposed signals. Clearly for
PH a suitable background should also account for the intrinsic
topology of the ambient space in which a point cloud is
situated, such as the cylindrical topology of the (φ, y) co-
ordinate system. As noted previously, the periodicity in the
φ coordinate introduces some technical complications which
we discuss more fully in Appendix A. Below we discuss the
details of our simulation framework and describe how we

FIG. 4. Box plot showing the distribution of multiplicities as a
function of centrality class.

construct backgrounds for the PH observables we consider
here.

A. Hydrodynamic simulations

In this study, we have considered an ensemble of
10 000 Pb+Pb collision events at

√
sNN = 2.76 TeV, simu-

lated using the Duke Bayesian tune of the iEBE-VISHNU
framework to LHC p+Pb and Pb+Pb data [74–76]. This
approach couples together TRENTo initial conditions [77]
with a conformal, prehydrodynamic free-streaming phase
[78,79], a boost-invariant hydrodynamic phase [74,80] us-
ing the Denicol-Niemi-Molnar-Rischke (DNMR) formalism
[81], and a hadronic afterburner UrQMD [82,83]. We use
the maximum-likelihood parameters [76] for the transport
coefficients. The hydrodynamic evolution is terminated at a
hypersurface of constant TFO = 150 MeV, corresponding to
an energy density of eFO ≈ 0.265 MeV/fm3. After the hy-
drodynamic phase is completed, particles are sampled from
the freeze-out hypersurface and fed into URQMD. For each
collision event, URQMD yields a list of particles which were
emitted by that collision, together with their momentum space
coordinates, after all rescattering has finished. The particle
lists generated by URQMD are then used as input to the PH
pipeline described in Sec. II. Since our focus in this work is
on PH observables, we do not explore more standard nuclear
collision observables here, such as those which have already
been extensively studied and compared with data elsewhere
[75,76].

B. Centrality classes and background construction

To study the centrality dependence of PH observables, we
divide the ensemble of events into ten deciles. The multiplicity
distribution is shown versus centrality class in Fig. 4. We
exclude collisions with output multiplicity less than 50 parti-
cles, as the PH statistics are rendered highly unstable for very
small point clouds. Smaller event multiplicities can be probed
by considering a sufficiently large number of events, a task we
defer to future work.

Once the simulated nuclear collision data have been gen-
erated, we construct a background against which to compare
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the PH observables extracted from individual events. The way
we do this is similar in spirit to the usual “mixed event”
approach employed in experimental analyses (e.g., Ref. [84]):
we combine all simulated events in the same centrality class
into a single large, uncorrelated event, where each event has
been rotated by a different random angle δφ ∈ [0, 2π ]. We
then sample uniformly from this combined event to obtain an
event in the same centrality class as the original events. The
original events are referred to as “signal” events, while the
mixed events are referred to as “background” events. Within
each centrality class we generate background events matching
the empirical multiplicity distribution of signal events. This
procedure thus provides a reference against which to test the
significance of our PH observables.

C. PH analysis

Each signal or background event includes a list of discrete
particles with momentum-space coordinates. Each event is
individually supplied as input to our PH pipeline, so that our
analysis is carried out on an event-by-event basis. This yields
an ensemble of signal PH observables and another ensemble
of background PH observables, where the latter are used to
establish a baseline for the former.

For the PH calculations themselves we use the open-source
computational package giotto-ph [85]. The treelib pack-
age is used for generating the dendrograms. With these
tools we construct and analyze the four different PH observ-
ables discussed above: (i) fractal dimension, (ii) Betti curves,
(iii) cluster entropy, and (iv) local clustering statistics. Once
the observables are constructed for both sets of events, either
the ratio or the difference between the signal and background
is taken, depending on the specific observable under consider-
ation (as discussed below).

V. RESULTS

In this section we describe our results obtained by applying
PH to point clouds generated from Pb+Pb collisions and
compare our PH observables in signal events to those gener-
ated from background events. We employ the novel statistical
summaries outlined in Sec. II and present our results within
each centrality class unless otherwise specified.

For several observables we compute the difference between
the signal and background events rather than the ratio. Our
reasoning is that several topological summaries describe the
number or magnitude of homological features as a function
of filtration, and therefore the difference in topology is func-
tionally more appropriate than the ratio. This is in contrast
to n-point correlation functions, wherein “dividing out” the
background is a more natural procedure [84].

For our PH pipeline we employ a sublevel set filtration of
the functional �(v) = (

∑
t∈	(v) Area(t ))1/2; here v is a vertex

(point) in the Delaunay triangulation, 	(v) is the set of trian-
gles adjacent to v, and Area(t ) denotes the area of the triangle
t in the (φ, y) plane. As discussed in Appendix A, this sublevel
set filtration is equivalent to a superlevel set filtration of a
density functional; the square root ensures units of (angular)
distance. Put more plainly, filtering from small to large values

of � is equivalent to (up to a monotonic map) filtering from
large to small density.

To assess the effect of nontopological density fluctuations,
we also consider some of the observables under a modified
filtration �̃ := �/〈�〉, where 〈�〉 denotes the mean value of
� within an event. This filtration modification is performed
for all events in a centrality class prior to computing an
observable, and we explicitly note both in the text and in
figures which filtration we use.

Finally, for the fractal dimension calculations we omit any
infinitely long-lived homological features. In zero dimensions
this omission corresponds to the largest connected compo-
nent, while in one dimension we omit the topological loop
indicative of the topology of the cylinder.

A. Persistence diagrams

We begin our analysis by examining how the persis-
tence diagrams from the signal collisions differ from those
of the background events. For each event type (signal or
background) we aggregate the persistence diagrams within
each centrality class and compute a count-normalized 2D
histogram. We then compute the difference in histograms
between the signal events and the background events, the
results of which for homological dimension zero and one
are depicted in Figs. 5 and 6, respectively. Each subplot for
centrality classes 0–10% through 70–80% depicts by color
where the persistent homology of the two event types substan-
tially differ: red regions indicate where the signal events have
a stronger concentration of persistent topological features,
while the blue regions indicate where the signal events have
fewer persistent features with respect to the background.

We first note that there is a strong tendency for the signal
collisions to have a concentration of persistence features at
earlier filtration values, as most easily seen in Figs. 5(c)–5(e).
As we travel up the diagonal, we notice that the concentration
of signal persistence features gives way to a suppression of
persistent features relative to the background (the blue “stripe”
running perpendicular to the diagonal). This stripe is less
prominent for 50–60% and higher centrality classes. This is
consistent with the presence of stronger elliptic flow v2 in
mid-central collisions than in central collisions [86], which
produces more points in plane than out of plane and thus leads
to a more rapid formation of structure as a function of filtration
than an event with vanishing v2.

Similar to the 0D case, we also compare the 1D persis-
tence diagrams in Fig. 6. We see again the striping behavior
(predominance of the signal lifetimes early in the filtration,
followed by a suppression relative to the background). The
1D PDs display a different overall shape from the 0D PDs:
the 0D PDs show a broader distribution of death values early
in the filtration, while the 1D PDs exhibit a distribution of
death values that broadens later in the filtration. This implies
that loops born later in the filtration persist over a larger range
of filtration values. Note as well that, due to our density-based
filtration, the 1D PD is effectively measuring the propensity
and relative scale of high-density regions surrounding low-
density regions. These fluctuations can be interpreted in terms
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FIG. 5. Differences in 0D PDs for each of the centrality classes. Note that the abscissa and ordinate are in terms of �̃.

of local curvature and quantified through fractal dimensions,
as we explore next.

B. Fractal dimensions

As noted above in Sec. III, the fractal dimension can serve
as a measure of fractality and local curvature. Recall that the
fractal dimension effectively measures how the p-norm (here
we use α instead of p) of the PD lifetimes scales with the
multiplicity of the underlying point cloud. A small α probes
local curvature, while large α probes more global structure.

In Fig. 7(a) we depict the fractal dimension of the 0D ho-
mology as a function of α, both for the signal and background

events. The standard error is estimated from a linear regres-
sion of the slope β and then propagated through to the fractal
dimension. Figure 7(b) shows the difference in fractal dimen-
sions between signal and background events. We first note
that, for small α, the difference in fractal dimension between
signal and background is quite substantial, indicating that the
persistent homology identifies a higher degree of clustering
and fractality in the signal collisions for zero dimensions.
Given that the ambient space is effectively a closed cylinder,
it is perhaps not surprising that the fractal dimensions are
∼2. For larger values of α both the signal and background
collisions steadily converge and become statistically hard to
distinguish. Given that our analysis is for midrapidity observ-

FIG. 6. Differences in 1D PDs for each of the centrality classes. Note that the abscissa and ordinate are in terms of �̃.
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(a)

(b)

FIG. 7. (a) Fractal dimension dim(PH0) as defined in Eq. (4) as a
function of α. (b) Corresponding fractal dimension for 1D homology.

ables |y| � 2, this lack of distinction follows from the limited
volume of our bounded cylinder.

In Figs. 7(c) and 7(d) we show the fractal dimension for
the 1D homology and the difference in fractal dimension
between the signal and background events. Curiously, for one-
dimensional PH both the signal and background events have
the same monotonic decrease in dimension, though the fractal
dimension differences widen as a function of α. Moreover,
in both zero and one dimension the fractal dimension for the
signal events is higher than the background. A simple explana-
tion is that the higher degree of clustering in the signal events
tends to form shorted-lived loops. As the α-norms for α < 1
emphasize small features, this implies the fractal dimension
for one dimension is larger for the signal events, though the
gap appears to close for sufficiently large α.

C. Betti curves

While the fractal dimension yields important distinctions
between the signal and background events, the fractal di-
mension is insensitive to when in the filtration homological
features are most prominent. The Betti curve, described in
Sec. III, gives more precise insight into the distribution of
homological features as a function of filtration.

1. Mean of βi(�)

In Figs. 8(a)–8(h) we show the mean and standard error of
the Betti curves βi(�) and βi(�̃) for signal collisions in each
centrality class.

To construct the mean and standard error of the signal Betti
curves, we compute the average (or standard error) over all
events while holding the filtration value fixed. Repeating this
process for a large number of filtration values yields Fig. 8.
The mean βi curves both start at zero and end at one. For
the β0 curve, we begin the filtration with no clusters and end
with the cluster representing the entire point cloud. For the

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 8. (a) Mean β0 calculated by averaging within a centrality class while holding a set of sampling filtration values fixed. The same
procedure was performed for β1 in (b). [(c) and (d)] The same statistics for the �̃ filtration. [(e) and (f)] The standard error of β0 and β1,
respectively, and [(g) and (h)] identical statistics for the �̃ filtration.
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β1 curve, we begin with no loops and end with no loops
apart from the topological loop represented by the closed
cylinder. However, this loop has infinite lifetime and is there-
fore ignored in the persistence diagram and fractal dimension
calculations. Due to the DTFE construction and our filtra-
tion definition, clusters can appear at any point during the
filtration.

Figure 8(a) shows that each centrality class possesses a
single peak, located at a value of � which increases with
decreasing multiplicity. This has a straightforward interpre-
tation: events with large multiplicity have a smaller average
interparticle spacing than events with small multiplicity,
which distribute a smaller number of particles over the same
region in momentum space. Consequently, large multiplicity
events will establish connections at smaller values of the
filtration parameter, and conversely for small multiplicities.
Similarly, the merging of separate clusters (and eventual re-
duction of β0 to zero) also proceeds more rapidly with � at
high multiplicity than low multiplicity. As a result, the peak is
reached first by the most central collisions and last by the most
peripheral collisions. We note in passing that the Betti curve
of each centrality class in Fig. 8(a) is very well described by
a Weibull distribution, which has been shown elsewhere to
reproduce well the distribution of cluster sizes and nearest-
neighbor distributions in random point clouds [87]. Although
we do not further explore this issue here, we speculate that
measuring deviations of β0 curves from a Weibull distribution
may provide a useful way of quantifying nontrivial correla-
tions in point clouds in general. We defer a careful discussion
of this possibility to future work.

In Fig. 8(c) we depict β0(�̃); note that under this rescal-
ing the peaks of the Betti curve all roughly coincide. This
supports the conclusion that the rate of cluster formation and
interparticle spacing distributions should depend strongly on
multiplicity and therefore the density; thus, rescaling the fil-
tration removes some, but not all, of this effect.

Figure 8(b) shows the mean β1(�) curve, wherein we ob-
serve similar behavior as the β0(�) curve: the maximal number
of nonhomologous loops existing at any point in the filtration
steadily decreased with multiplicity, while the location of the
peak increases in filtration value as a function of centrality
class. Rescaling to �̃ yields Fig. 8(d); again we see the peaks
β1(�̃) all roughly coincide across centrality classes.

2. Standard error of βi(�)

In Fig. 8(e) we show the standard deviation of the Betti
curve β0(�) (i.e., the fluctuations about the mean Betti curve)
for each centrality class. The σ (β0) in each centrality class
exhibits two distinctive peaks which are most prominent in
the most central collisions. We note also that the second peak
is typically slightly smaller than the first. This can again be
straightforwardly understood in terms of event-by-event fluc-
tuations in the scale and location parameters of the underlying
Weibull distribution extracted from a single nuclear collision.
The slightly smaller second peak is then a consequence of the
resulting fluctuations in the shallower slope as 〈β0〉 descends
from its peak value. Both properties of the complete β0 dis-
tribution shown in Fig. 8 are thus consistent with fluctuations

of the average density within a single centrality class. As a
confirmation of this analysis, the bimodality disappears under
the rescaled �̃ filtration, as shown in Fig. 8(g).

We show the standard error for the β1(�) and β1(�̃) curves
in Figs. 8(f) and 8(h). Quite similar to the β0(�) standard error,
we observe a bimodality that disappears under the rescaling
� → �̃.

3. βi(�) difference

In Fig. 9 we show the difference between the signal and
background events in mean βi(�̃): the left panel shows β0(�̃)
while the right shows β1(�̃).

Beginning with β0, we note for all centrality classes com-
mon behavior: a small peak in the signal β0, followed by a
large dip wherein the signal β0 is lower than the background
β0, followed by a final larger peak in the signal β0 relative to
the background.

The initial uptick in β0 and large dip at �̃ ≈ 1 is of course
consistent with our expectation, already reflected in Figs. 5
and 6, to have more clustering earlier in the filtration, and
thus a lower number of clusters and a smaller Betti number
than the corresponding background. However, the tendency
to have more clustering at the beginning of the filtration
appears to drop off for larger centrality classes (see the
50–60% and 60–70% centrality classes). This characteristic
rise-and-dip pattern observed in the mid-central collisions im-
plies an initial enhancement of clustering in the signal events
as compared with the background which is a direct conse-
quence of enhanced local clustering resulting from collective,
anisotropic flow. The final peak in β0(�̃) implies that, late in
the filtration, there is a resurgence of clusters in the signal
events relative to the background. Since late filtration corre-
sponds to low-density regions of the point cloud, the signal
events have a preference for stronger fluctuations in den-
sity within low-density regions, particularly in low centrality
classes.

For the β1(�̃) difference we observe a similar rise-and-dip
behavior, though for the 0–10% and 10–20% centrality classes
the initial peak is stronger than the final peak. Furthermore,
the locations of the peaks and dips occur considerably later
in the �̃ filtration than the corresponding features in the β0

curves. This is consistent with the onset of loop formation
occurring somewhat later than the beginning of cluster for-
mation, relative to the background events.

D. Cluster entropy

As noted above, the Betti curve is indifferent to the rel-
ative distribution of points between clusters at each level of
the filtration. Since our filtration amounts to a hierarchical
clustering scheme, we can access the number of points per
cluster and calculate a “cluster entropy,” defined in Sec. III.
To reiterate, the cluster entropy H (�̃) is given by

H (�̃) = −
∑

Ci∈C(�̃)

pi(�̃) log pi(�̃), (7)

where i ∈ C(�̃) is the set of clusters at value �̃ and pi(�̃) =
|Ci|/n(�̃), n(�̃) being the number of points that exist at value
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FIG. 9. Left: Difference in β0(�̃) between the signal and background for each centrality class. Right: Difference in β1(�̃) for each centrality
class.

�̃ (recall that, by our DTFE, points enter during the filtration
and thus do not exist at the beginning of the filtration).

In what follows we also compute the mean number of
points per cluster, p(�̃) = 1

|C|
∑

Ci∈C pi(�̃). To ensure fair com-
parison of events within the same centrality class but different
multiplicity, we divide by the multiplicity N and compute
p(�̃)/N .

In Fig. 10(a) we show the mean cluster entropy H (�̃) for the
signal events as a function of filtration and centrality classes.
Note for each centrality class the curve begins at the formation
of the first cluster, as the entropy is undefined prior to this
point. We observe across all centrality classes a rise in the
cluster entropy to a peak that scales in magnitude with the
average multiplicity of the centrality class, followed by a steep

descent to a vanishing cluster entropy which coincides with
the merging of all points into one connected component.

In Fig. 10(b) we show the difference in cluster entropy
between the signal and background events. Strong fluctuations
in the cluster entropy for small �̃ evolve into a consistent
suppression in signal cluster entropy around �̃ ≈ 1.0, followed
by an increase at �̃ ≈ 1.25 before the signal and background
cluster entropies converge to a common value of zero.

In Fig. 10(c) we depict the p(�̃)/N for the signal events
and plot the difference in p(�̃)/N between the signal and
background in Fig. 10(d). Note that for all centrality classes
save the 70–80% class the difference in p(�̃)/N is positive
early in the filtration, indicating signal events have more
points per cluster. This reflects our expectation that, early
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(a) (b)

(d) (e)

(c)

FIG. 10. Cluster statistics as a function of centrality class and filtration. Each plot is computed by averaging over events in a centrality
class with a set of sampling filtration values fixed. (a) Average cluster entropy H (�̃) for the signal events. (b) Difference in cluster entropy
between the signal and background events with enhanced resolution in the inset (c) (the uncertainty bands have been removed from the inset
to enhance visibility). (d) Mean number of points per cluster, dividing by the multiplicity. (e) Difference in mean number of points per cluster
(dividing by the multiplicity) between the signal and background events.

in the filtration, more local clustering implies more clusters
to start relative to the background. At �̃ ≈ 1.25 the mean
points per cluster are strongly suppressed for the signal events
relative to the background. Note that by this time in the filtra-
tion the cluster entropies of the signal and background have
largely converged. This sharp reduction in mean points per
cluster coincides with the uptick in β0(�̃) in Fig. 9 around
1.0 � �̃ � 1.5, which indicates the signal point clouds have
a late-filtration increase of clusters with small multiplicities.
These small clusters drive down p(�̃). Due to the small size of
these new clusters, the cluster entropy is relatively unchanged,
as the largest size cluster dominates.

E. Local clustering statistics

Each of the observables explored so far does not explicitly
depend upon the relative spatial degrees of freedom in the
point cloud, i.e., the interparticle angular correlations. This is
unfortunate, as one might expect some dynamical processes
to introduce anisotropies, the spatial statistics of which would
be of interest. This is particularly true for hydrodynamical
flow, the effects of which we have seen above are implicit in a
number of the observables discussed previously.

As noted in Sec. III, however, one benefit of the PH
pipeline is a dendrogram which reflects local degrees of
freedom in the system and captures which clusters merge
when in the filtration. Using the local clustering statistic intro-
duced in Sec. III, we calculated, for each 0D PD, the p-norm
of the t i for each hadron. To recall, t i for hadron indexed i
has as components the lengths of branches between merges of
clusters containing i (cf. Fig. 3). Our process for computing

the local clustering statistics is as follows. First, we computed
for each dendrogram the p-norm ||ti||p as a function of leaf
i, which we define as fp(φi ). Second, we determined the
mean p-norm within a centrality class and within equal-sized
bins (width 0.01 rad) of the azimuthal angle φ. Note that we
integrate over the rapidity range |y| � 2, by our DTFE con-
struction. We denote the average p-norm as 〈 fp(φ)〉X , where
X denotes averaging over either the signal (sig) or background
(bkg) events and φ now denotes a bin. Third, we took the
ratio g(φ) := 〈 fp(φ)〉sig/〈 fp(φ)〉bkg. Finally, we extracted the
v2 Fourier coefficient of g(φ), normalized by the average of
g(φ); in particular, we follow standard practice [88] and define
the complex quantity

V2 ≡ v2e2i�2 =
∫ 2π

0 g(φ)e2iφdφ∫ 2π

0 g(φ)dφ
. (8)

We emphasize that, despite using notation similar to that
which is normally used in nuclear collision phenomenology,
the quantity in Eq. (8) should not be confused with the usual
measure of elliptic flow, which is computed in a completely
different way [70].

We evaluated Eq. (8) for p = {0.25, 0.5, 0.75, 1.0, 1.5} and
within each centrality class. Figure 11 shows the extracted v2

coefficient as a function of centrality class and p-norm. The
distinctive peak in the flow magnitude v2 in mid-central colli-
sions is characteristic of the geometry-driven flow anisotropy
observed in nucleus-nucleus collisions [89,90]. This demon-
strates that anisotropic flow can indeed be accessed and
quantified using PH. Note that for illustrative purposes we
have ignored complications of our procedure relating to the
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FIG. 11. Extracted v2 coefficient of the average p-norm local
clustering statistic, shown as a function of centrality class and p.
The dashed line represents the v2 coefficient extracted from the
cophenetic distance function shown in Fig. 12.

estimation of the elliptic flow plane [91], which we take in
this work to coincide with the positive x axis in the transverse
plane. In principle, sensitivity of flow observables to the nth
flow plane angle �n can be significant and is typically avoided
by working instead with multiparticle correlation functions,
which by construction do not depend on �n [70].

A thorough generalization of the analysis we present here
to one which is similarly insensitive to �n will be deferred to
future work. However, we briefly consider one possible way
of doing this which involves introducing a PH-based notion of
separation between pairs of hadrons. This notion is provided
by the cophenetic distance, which we discuss next.

F. Cophenetic distance

As noted above, the dendrogram encodes both the clus-
tering information (through the heights at which branches
merge) as well as positional information (by looking at the
positional coordinates of the leaves). One natural statistic that
couples the physical degrees of freedom to the clustering
statistics is the cophenetic distance. The cophenetic distance
dc(i, j) between two points i, j is the height in the dendrogram
(value of the filtration) at which the corresponding leaves
merge into a single cluster [92].

This distance function can be naturally extended to a corre-
lation functional dc(	φ,	y) := 〈〈dc(i, j)〉〉 such that points
i, j have separation (	φ,	y), and 〈〈 〉〉 denotes averaging
over dendrograms within a centrality class. This cophenetic
correlation function is readily generalizable to nth-order cor-
relation functions (e.g., the cophenetic distance between three
points, etc.).

In Fig. 12 we depict the ratio of cophenetic distance
functions dsig

c (	φ,	y)/dbkg
c (	φ,	y), where the superscripts

indicate the type of event. As in the case of the local p-norm
clustering statistics, we extracted a corresponding v2 Fourier
coefficient for the correlation distance function. Defining

g̃(	φ) ≡
∫ 	ymax

−	ymax

d	y
dsig

c (	φ,	y)

dbkg
c (	φ,	y)

, (9)

FIG. 12. The ratio of cophenetic correlation functions dsig
c (	φ,	y)/dbkg

c (	φ,	y) for different centrality classes. We note the long-range
(in rapidity) enhancement which exhibits the oscillation characteristic of elliptic flow.
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and setting 	ymax = 3, we compute the cophenetic v2 coeffi-
cient according to

v
cophenetic
2 =

(∫ 2π

0 g̃(	φ)e2i	φd	φ∫ 2π

0 g̃(	φ)d	φ

)1/2

. (10)

The result is plotted in Fig. 11. The cophenetic v2 shows good
agreement with the v2 coefficient from the local clustering.

A large cophenetic distance between two particles implies
a longer time for them to merge into a single cluster, so that
sparsely populated regions lead to an enhanced cophenetic
distance (relative to the background); conversely, densely pop-
ulated regions produce suppression of the cophenetic distance
in those regions. Thus the elliptic flow signal emerges here
(with peaks at 	φ ≈ π/2 and 3π/2 and valleys at 	φ ≈ 0
and π ), qualitatively consistent with that obtained by other
two-particle methods [89–91].

VI. CONCLUSIONS

In this work we demonstrated how to use persistent ho-
mology to probe correlational and topological structures in
the particle distributions produced by nuclear collisions. Our
primary aim is to advance the notion of a point cloud as a
useful and flexible perspective for characterizing the proper-
ties of these particle distributions. We utilized a density-based
filtration of ensembles of point clouds to identify large- and
small-scale topological structure, and introduced several new
tools and observables to probe aspects of nuclear collision
phenomenology. Most importantly, we augmented existing
tools from topological data analysis to incorporate spatial
degrees of freedom, in an effort specifically to quantify
anisotropies indicative of hydrodynamical flow. While these
topologically minded observables have close, intuitive con-
nections to traditional correlational measures, it remains the
subject of future work to formalize the relationships between
PH observables and standard statistical measures. In this vein,
we briefly note several directions in which our analysis could
be improved.

Applications of PH to nuclear collisions have been largely
unexplored save for a small collection of works [93]. One fun-
damental challenge of PH is cleanly relating PH observables
to traditional correlational measures like n-point connected
correlation functionals. The density-based filtration used here
has strong connections to Minkowski functionals, Euler
characteristics, and integrals of connected correlation func-
tions [43,44], but a “dictionary” mapping from PH to standard
statistical measures has (to our knowledge) yet to be con-
structed.

Our PH observables are also closely tied to recent work
on energy flow polynomials, where correlational structures
are tied to functionals of the angular degrees of freedom in
the resultant point cloud [94]. Another further direction of
pursuit is defining robust observables that better incorporate
the positional degrees of freedom, like the local clustering
statistic given here. One could imagine statistics like cluster
correlation functions being generalized to PH observables,
and we intend in future work to explore this further.

Finally, PH is not limited solely to point clouds and could
profitably be applied to other aspects of nuclear collisions.
For instance, PH has been successfully applied to discretized
scalar fields (e.g., on a hyperlattice) through the use of cubical
complexes [95,96]. In the hydrodynamical phase of the evo-
lution of the QGP one could leverage PH at each phase of the
flow to form a sequence of topological fingerprint “snapshots”
of the dynamical system. The evolution of these snapshots as
a time series can be further explored by leveraging distance
measures between PDs [95]. A recent exploration of using PH
to probe Rayleigh convection leveraged these tools to iden-
tify Lyapunov exponents and critical behavior [95]. A similar
pipeline could be used to probe the emergence of turbulent or
critical behavior of QGP.
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APPENDIX A: DETAILS OF DTFE

In this Appendix we more fully describe the DTFE, out-
line the correspondence between superlevel and sublevel set
filtrations, and document our procedure for implementing the
DTFE in the context of nuclear collisions.

Given the Delaunay triangulation of a point cloud in an
ambient space, let v denote a vertex in the triangulation, and
define 	v as the set of n-simplices adjacent to v. We define a
functional

fp(v) =
⎛
⎝ ∑

t∈	(v)

V (t )

⎞
⎠

p

, (A1)

where V (t ) denotes the volume of an n-simplex t . The choice
p = −1 defines the density field f (v) := f−1(v), and we con-
tinue the density field onto the rest of the triangulation via
a piecewise linear interpolation. The intuition for the density
function f (v) is that, in regions with a high concentration
of points (with respect to the standard Lebesgue measure),
the Delaunay triangulation tends to build many n-simplices
with small volume. Vertices in high-concentration areas
therefore coface several small-volume n-simplices, which im-
plies f (v) is larger in high-concentration regions than in
lower-concentration regions.

While performing a superlevel set filtration on f (v) is
perfectly valid, in this work we elect to instead perform a
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sublevel set filtration on the “inverse density field”

�(v) := f1/2(v) =
⎛
⎝ ∑

t∈	(v)

V (t )

⎞
⎠

1/2

. (A2)

Apart from being computationally more efficient, perform-
ing the sublevel set filtration on �(v) is equivalent to a
superlevel set filtration on f (v), up to some monotonic map
between the filtration values. In other words, both level set
filtrations start at large “densities” and end at low “densities.”

While the sublevel sets of the linearly interpolated inverse
density � are submanifolds, the PH pipeline requires simpli-
cial complexes. Thankfully, the homology of the submanifold
is unaltered by instead considering the flag complex of the
subgraph of the Delaunay triangulation formed by vertices in
the sublevel set [54]. Put differently, the topology can only
change when vertices are added to the sublevel set filtration,
and so the PH pipeline need only consider when vertices enter
and exit the filtration, as the edges only appear when both
vertices appear. The flag complex is computationally efficient,
since it only requires knowledge of the value �(v) and the
Delaunay triangulation, which is generally sparse.

The Delaunay triangulation in (φ, y) coordinates is essen-
tially a triangulation in two dimensions with one periodic
boundary condition, which one can visualize as “unrolling”
the infinite cylinder by cutting along the rapidity axis. To
properly account for the periodicity of the φ coordinate, we
computationally leverage a trick of duplicating the point cloud
twice over (i.e., if X is the point cloud, generate two more
point clouds X (φ + 2π ), X (φ − 2π )), compute the standard
Delaunay triangulation in 2D Euclidean space, and then re-
move all vertices from X (φ + 2π ), X (φ − 2π ) that are not
part of the original point cloud X (along with all correspond-
ing simplices). The area of each triangle in the triangulation
is then calculated as a function of 	φ,	y (where 	φ is the
proper angular separation) and is therefore invariant under a
Lorentz boost along the beam axis.

While this process is well established in the literature and
properly accounts for our periodic degree of freedom, one
unfortunate consequence is the presence of edge effects along
the boundary of the point cloud in the rapidity direction. One
can easily see this edge effect artifact in Fig. 2(b): the upper
boundary exhibits “sliver” triangles due to the low density
along that direction (these slivers are permitted because the
circumcircle extends into a region with no points). The conse-
quence of this edge artifact is that the “sliver” triangles have a
low area, and therefore contribute to a larger f (v) for positive
p. Thus, the boundary points appear to have a larger f (v) than
would be implied by the Lebesgue measure. This edge effect
substantially affects the PH pipeline by “turning on” points
and simplices at low values of �(v) prematurely early.

There are several different ways to combat this issue, each
with its own advantages and disadvantages. One approach is
to artificially introduce periodic boundary conditions in the y
direction as well, such that the high-magnitude rapidity points
are less likely to produce “sliver” triangles. However, given
the rapidity direction is noncompact, a choice has to be made
regarding where to “cut” along the rapidity direction so as to
introduce the periodicity. This choice is somewhat arbitrary

and might in and of itself introduce spurious edge effects.
Another approach is simply to perform the DTFE with one
periodic boundary condition, and then introduce a rapidity cut.
The advantage of this approach is computational efficiency,
at the cost of a choice of where to introduce the rapidity
cut. Based upon our numerical experiments of which high-
magnitude rapidity points contribute to the edge artifacts, we
elected to choose a rapidity cut |y| < 2 for our PH pipeline.
This rapidity cut functionally implies we compute the DTFE
for the full point cloud, but exclude the points that lie beyond
the rapidity cut for the PH calculation. While we believe this
choice to be appropriate and cogent for our work, we des-
ignate future work to assessing other methods of mitigating
these edge effects.

APPENDIX B: DIFFERENT PH PROTOCOLS

In this Appendix, we discuss alternative PH protocols, in
the interest of inspiring and informing future work.

The PH pipeline performed in this work utilized a sub-
level set density filtration which explicitly depended upon
the Delaunay triangulation. The triangulation of the manifold
was necessary to specify when two points should be joined
together. However, given access to the distances between any
two points (either the three-momenta Euclidean distance or
the cylindrical distance in (φ, y)), the Vietoris-Rips (VR) fil-
tration could have been performed. In the VR pipeline two
points i, j are connected with an edge whenever d (i, j) < ε,
where ε is the filtration parameter and d (·, ·) is the distance
function. Constructing the flag complex on the resultant graph
yields the Vietoris-Rips complex. Note that in this construc-
tion the points are assumed to have existed at the beginning
of the construction. This has large implications for the Betti
number and the cluster entropy, as it implies the zeroth Betti
number begins the filtration at its largest value.

One disadvantage of the VR pipeline is the propensity
for large chains of points to merge. This effect is well doc-
umented in the context of single-linkage clustering and can
be combatted through other agglomerative schemes like Wald
or centroid clustering. However, more complicated clustering
schemes that avoid these chaining effect are less amenable
to higher-dimensional simplicial homology (e.g., clusters, not
points, are merged in Wald clustering, and so a notion of 1D
intracluster homology is difficult to define).

The VR pipeline can be modified to have nonuniform open
sets around each point. For example, one can build ellipsoids
with principal axes that are point dependent, or radii of balls
that scale both with the filtration value and some local func-
tional [97].

Two frequent limitations of PH are computationally large
point clouds and the presence of outliers. While large point
clouds have less impact on computing 0D homology, higher-
dimensional homology becomes computationally intensive.
One workaround is to leverage the robustness of PH through
the use of a witness complex, wherein a subset of points are
used as landmarks used to “witness” simplicial complexes that
reflect the underlying topology [49,98]. The witness complex
can also be extended through subsampling methods to be
robust with respect to outliers [99].
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