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This work incorporates the effect of short-range repulsion between particles into the Cooper-Frye hadron
sampling procedure. This is achieved by means of a rejection sampling step, which prohibits any pair of particles
from overlapping in the coordinate space, effectively modeling the effect of hard-core repulsion. The new
procedure—called the FIST SAMPLER—is based on the package THERMAL-FIST. It is used here to study the effect
of excluded volume on cumulants of the (net-)proton number distribution in central collisions of heavy ions in a
broad collision energy range in conjunction with exact global conservation of baryon number, electric charge, and
strangeness. The results are compared with earlier calculations based on analytical approximations, quantifying
the accuracy of the latter at different collision energies. An additional advantage of the new method over the
analytic approaches is that it offers the flexibility provided by event generators, making it straightforwardly
extendable to other observables.
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I. INTRODUCTION

The description of bulk observables in relativistic heavy-
ion collisions is usually performed in the framework of
relativistic hydrodynamics (see, e.g., [1,2] for an overview).
This modeling incorporates the Cooper-Frye particlization
stage, where the expanding QCD fluid is transformed into a
gas of hadrons and resonances (HRG). In most cases, hadron
momenta are sampled from local Maxwell-Boltzmann distri-
butions, with the possible inclusion of shear and bulk viscous
corrections [3–7]. Multiplicity distributions of the sampled
hadrons usually correspond to Poisson statistics, implying
independent particle emission. More involved descriptions
additionally implement a (micro)canonical treatment of con-
servation laws, such as that of energy-momentum and QCD
conserved charges [8–12]. Proper treatment of conservation
laws is relevant for observables involving event-by-event fluc-
tuations [13–17].

Physically, the system created at particlization corre-
sponds to an ideal hadron resonance gas, possibly with
nonequilibrium corrections due to shear and bulk vis-
cosities and (micro)canonical effects. On the other hand,
extensions of the Cooper-Frye procedure are necessary to
incorporate any additional physics. One commonly discussed
extension of the ideal HRG is short-range repulsive inter-
actions utilizing excluded volume [18–20]. For example, by
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introducing the excluded volume effect into baryon-baryon
(and, by symmetry, antibaryon-antibaryon) interaction [21],
one can effectively model the presence of the hard core in
nucleon-nucleon scattering and improve the description of
several lattice QCD susceptibilities [22–25]. Another exten-
sion would concern the search for the QCD critical point,
which would lead to large non-Gaussian fluctuations of the
proton number [26] requiring a generalized Cooper-Frye rou-
tine [27,28].

Previously, a method called subensemble sampler was in-
troduced in [16] to perform particlization of an interacting
hadron resonance gas and was used to study the influence
of baryonic excluded volume on proton and baryon num-
ber cumulants in Pb-Pb collisions at Large Hadron Collider
(LHC) energies. Although this method is rather generic,
it requires partitioning the Cooper-Frye hypersurfaces into
patches which should, on the one hand, be large enough
to capture all the relevant correlations but, on the other
hand, also be small compared to inhomogeneity scales across
the hypersurface. How to perform the partition into patches
can be ambiguous. The method has been used to study ra-
pidity acceptance dependent observables at LHC energies,
where the approximate longitudinal boost invariance is real-
ized [16]. Its application at lower collision energies, however,
is more complex. Instead, in Ref. [17], the proton cumu-
lants from the Beam Energy Scan at the Relativistic Heavy
Ion Collider (RHIC-BES) were analyzed using an analytic
approach incorporating baryon repulsion and conservation.
However, analytic approaches lack the flexibility of event
generators and are typically restricted to specific observables,
such as (net-)proton number cumulants in a particular ac-
ceptance [17]. Therefore, it is advisable to incorporate the
effect of short-range repulsion directly into the sampling
procedure.
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This work introduces the effect of short-range repulsion
between particles into the Cooper-Frye particlization through
a rejection sampling step, which prohibits any pair of parti-
cles from overlapping in the coordinate space. This induces
negative correlations between particles that are shown to be
consistent with analytical expectations based on the excluded
volume model. Then, the method is used to study the effect
of baryon repulsion on the cumulants of (net-)proton number
distribution in central heavy-ion collisions in a broad energy
range

√
sNN = 2.4–2760 GeV while simultaneously incorpo-

rating exact global conservation of baryon number, electric
charge, and strangeness.

The paper is organized as follows. The modeling of the
short-range repulsion effect using the rejection sampling step
is described in Sec. II. Section III describes how the effect is
introduced into a multicomponent hadron system at Cooper-
Frye particlization. The method’s application to heavy-ion
collisions is presented in Sec. IV. Conclusions and outlook
in Sec. V close the article.

II. METHOD

A. Probability of configurations

Consider a uniform system of N classical particles in vol-
ume V that is in contact with the heat bath characterized by
temperature T . Interactions between particles are mediated
by a (nonrelativistic) pair potential V (ri, r j ). The properties
of the system are characterized by the canonical ensemble
(T,V, N ). The microscopic configuration of the system can
be given by the set {ri, pi} of coordinates and momenta of
all particles in the system. The probability of a particular
configuration is determined by the Boltzmann factor, i.e.,

P({ri, pi}) ∝ e−H({ri ,pi })
T , (1)

where H ({ri, pi}) is the system Hamiltonian comprising the
kinetic and potential energy terms:

H ({ri, pi}) =
N∑

i=1

ε(pi ) + 1

2

N∑
i, j=1

V (ri, r j ). (2)

Here ε(pi ) is the energy-momentum relation for the particle i,
for example, ε(pi ) =

√
p2

i + m2 for relativistic particles and
ε(pi ) = p2

i /(2m) for nonrelativistic particles.
Based on the structure of the Hamiltonian in Eq. (2),

it is clear that the probability P({ri, pi}) factorizes into
momentum- and coordinate-dependent parts. The momen-
tum distribution is given by the (non)relativistic Maxwell-
Boltzmann distribution. Thus, the sampling of particle mo-
menta proceeds in the standard way. However, the probability
distribution of the coordinates of the particles is affected by
the interaction potential V (ri, r j ). The unnormalized distribu-
tion density reads

P̃coord({ri}) =
N∏

i, j=1

e− V (ri ,r j )

T . (3)

Without loss of generality, consider now that the sys-
tem is placed in a cubic volume. A sampling of momenta

and coordinates can be performed via rejection sampling.
First, the coordinates are sampled uniformly from the cubic
volume. Then, the particle momenta are sampled from the
Maxwell-Boltzmann distribution. The sampled configuration
is accepted with relative weight proportional to P̃coord({ri})
in Eq. (3). For purely repulsive potentials, V (ri, r j ) � 0, the
maximum weight computed through Eq. (3) does not ex-
ceed unity, and thus the application of rejection sampling is
straightforward. The method can, in principle, be generalized
to arbitrary two-body potentials that include attraction, for
instance, by rescaling the maximum weight or oversampling.

B. Hard-core repulsion

Here the focus is on a specific example of the interaction
potential, namely the hard-core interaction potential given by

V HC (ri, r j ) =
{∞, |ri − r j | < σ,

0, |ri − r j | � σ.
(4)

With this choice of V HC (ri, r j ), one deals with the system of
hard spheres. Here, σ = 2rc is the hard-sphere diameter, and
rc is the radius. As discussed in Appendix A, the equation of
state of the hard-sphere system reduces to that of the excluded
volume model in the dilute limit, provided that the excluded
volume parameter b of the latter model is taken as

b = 16πr3
c

3
. (5)

The hard-sphere and excluded volume model equations of
state are very similar at bn � 0.1, where n ≡ N/V . Thus the
hard-sphere model can mimic the excluded volume effect if
this condition is met. As discussed below, this is the case for
the particlization stage in heavy-ion collisions.

For the case of hard-core potential (4) the probability den-
sity P̃coord({ri}) in Eq. (3) vanishes if any pair of particles
overlap, i.e., if |ri − r j | < σ for any (i, j) pair. In all other
cases, P̃coord({ri}) = 1.

It follows that the system configuration can be sampled by
the following algorithm involving a rejection sampling step:

(i) The coordinates of N particles are sampled uniformly
from the given (cubic) volume.

(ii) If, for any (i, j) pair of particles, they overlap, i.e.,
|ri − r j | < σ , the configuration is rejected, and one
goes back to step 1.

(iii) The momenta of the particles are sampled from the
Maxwell-Boltzmann distribution.

The procedure can be further sped up by combining steps
1 and 2: If a newly sampled particle overlaps with any pre-
viously sampled particles, the configuration can be rejected
outright without needing to sample any remaining particles.

C. Testing the sampling method

1. Canonical ensemble

Here, sampling of the hard-sphere gas is performed, and
particle number fluctuations in various coordinate space sub-
systems are analyzed. The sampling is carried out for a fixed
value of the hard-core radius rc and particle number density
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n = N/V , but for different values of the total number of par-
ticles N . In particular, the scaled density bn is fixed to bn =
0.03, where b is given by Eq. (5). The value of b is used to set
the length scale, e.g., the dimensionless system volume reads
Ṽ = V/b = N/(bn), the cube length is L̃ = Ṽ 1/3, and the di-
mensionless hard-core radius is r̃c = L̃[ 3(bn)

16πN ]1/3 = ( 3
16π

)1/3.
To minimize the effect of finite system size, periodic boundary
conditions with minimum-image convention (periodic box)
are applied when checking the particles for overlap. The re-
sults are also compared with the case where periodic boundary
conditions are not applied (single box).

After sampling the configurations, the first and second
moments of particle number distributions inside various sub-
volumes of the coordinate space along the z direction are
studied. More specifically, the results are analyzed as a
function of the total volume fraction α < 1 covered by the
subvolume. A particle belongs to a subvolume α if its scaled
coordinate z̃ is in the range 1−α

2 < z̃
L̃

< 1+α
2 .

Monte Carlo simulations are performed for N =
20, 40, 80, 160. For the first moments, one observes that
the mean number of particles in a subvolume is consistent
within statistical errors with the relation 〈N〉α = αN , that is,
the particles are uniformly distributed throughout the volume
on average, as they should be.

For the second moment, the behavior of the scaled variance
ωα ≡ 〈N2〉α−〈N〉2

α

〈N〉α is studied. Note that this quantity vanishes in
the limit α → 1 since the total particle number is fixed. For
this reason, one looks at a scaled quantity ω̃α = ωα/(1 − α).
In Ref. [29] it was shown that this quantity is expected to
approach the scaled variance in the grand-canonical limit, i.e.,

ω̃α
N→∞→ ωgce. In the excluded volume model, one has [30]

ωev
gce = (1 − bn)2 ≈ 0.941, (6)

while in a more accurate Carnahan-Starling model (see
Appendix A) one has ωCS

gce ≈ 0.942.
The α dependence of w̃α resulting from the described

sampling procedure is shown in Fig. 1, both with and without
periodic boundary conditions. The sample size is of the order
of several million configurations in each case. It is seen that
the results show a suppression of scaled variance by magni-
tude, which is similar to that given by the grand-canonical
limit ωCS

gce, except for the α → 0 and α → 1 limits, where this
quantity tends to the Poisson limit of unity. Without periodic
boundary conditions, the finite-size effects are more signifi-
cant.

2. Grand-canonical ensemble

So far, the sampling has been discussed in the context of the
canonical ensemble, i.e., for the case where the total number N
is fixed. Consider the situation where the total number N itself
fluctuates event by event. One example of this scenario is the
grand-canonical ensemble, where the system can exchange
particles with a heat bath. Even in the canonical ensemble,
the total number of particles of a given type can fluctuate
if the system is multicomponent. A relevant example for the
present studies is the baryons and antibaryons in the canonical
ensemble hadron resonance gas. Even though the net number

ω
α

α

α

FIG. 1. The dependence of the corrected scaled variance ω̃α =
ωα/(1 − α) on the acceptance fraction α, evaluated in a box with
(bands) and without (dashed lines) periodic boundary conditions
resulting from the sampling of particles with a hard-core repulsion
for different values of total particle number. The dash-dotted hori-
zontal line corresponds to the expected thermodynamic limit of the
hard-sphere equation of state calculated using the Carnahan-Starling
model.

of baryons is precisely conserved, the individual numbers of
baryons and antibaryons fluctuate.

The generic way to incorporate the fluctuations of N is to
fold the canonical ensemble procedure with the sampling of
the total number N in each event. For example, the sampling
of the grand-canonical excluded volume model is explored
here. Thus, simulations are performed not for a fixed total
number N , but for a fixed mean number 〈N〉 that fluctuates
following the grand-canonical ensemble distribution given by
the EV model. The sampling is performed in two steps:

(i) The total number N is sampled from the grand-
canonical excluded volume model, where the method
described in Ref. [16] is used.

(ii) The coordinates of the N particles are sampled using
the method described in Sec. II B.

Figure 2 shows the sampling results for wα as functions of
α in the grand-canonical ensemble. For α → 1 the results ap-
proach the grand-canonical value, as expected. The finite-size

〈 〉
〈 〉
〈 〉
〈 〉

ω
α

α

FIG. 2. Same as Fig. 1, but for the uncorrected scaled variance
ωα calculated within the grand-canonical ensemble.
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ω
α

α

α

FIG. 3. Same as Fig. 1, but calculated either within the SPR
approximation (bands) or without approximations (symbols), for the
periodic box only. The bottom panel shows the ratio of the approxi-
mate and unbiased calculations.

effects play a role at finite α, keeping w̃α slightly above the
grand-canonical limiting value. For α → 0, w̃α approaches
the Poisson limit of unity.

D. SPR approximation

One can introduce the following approximation to the sam-
pling procedure to achieve sufficiently fast sampling of an
even larger number of particles. Particles are sampled one by
one. When the ith particle is sampled, its possible overlap with
any of the already sampled particles is checked. If an overlap
is detected, the sampled particle is rejected, and the process
is repeated. The difference from the exact method is that the
already sampled i − 1 particles are not rejected but retained.
This procedure is referred to as the single particle rejection
(SPR) approximation, and it allows one to significantly im-
prove the speed of the sampling procedure, especially for large
systems. The SPR approximation can be expected to be most
accurate for moderate values of bn, i.e., for dilute systems.
Indeed, in dilute systems, it is improbable for a newly sampled
particle to overlap with more than one other particle. Thus,
there is no real need to reject all previously sampled particles
if only a single overlap is detected.

The accuracy of the SPR approximation can be tested
with simulations. The results for ω̃α obtained using the SPR
approximation are depicted in Fig. 3, for N = 80, 160, 640,
for the periodic box only, and in the canonical ensemble. The
results for N = 80 and 160 are consistent within errors with
the results of the unbiased method, shown in Fig. 3 by the
symbols. The results for N = 640 indicate the approaching of
the grand-canonical value ωev

gce in the limit N → ∞.
The method can be tested further by considering higher

values of bn. Figure 4 depicts the results for bn =

ω
α

α

α

FIG. 4. The dependence of the corrected scaled variance ω̃α =
ωα/(1 − α) on the acceptance fraction α calculated in the periodic
box within the SPR approximation for different values of the scaled
density bn. The dash-dotted horizontal lines correspond to the ex-
pected thermodynamic limit of the hard-sphere equation of state
calculated using the Carnahan-Starling model.

0.03, 0.1, 0.25, 0.5, all calculated for N = 320 within the
SPR approximation. The dash-dotted horizontal lines cor-
respond to the grand-canonical values expected in the
thermodynamic limit, as calculated within the Carnahan-
Starling approximation (see Appendix A). The Monte Carlo
results consistently approach the grand-canonical values for
all values of bn considered. One can conclude that the SPR ap-
proximation produces accurate results for the variance of par-
ticle number distributions at densities at least up to bn = 0.5.

Differences between the SPR approximation and the full
sampler can be seen in more subtle observables than the cu-
mulants. An example based on the radial distribution function
is discussed in Appendix B.

III. REPULSIVE CORE IN THE COOPER-FRYE HADRON
SAMPLING PROCEDURE

The system created in heavy-ion collisions is not a
static box but a dynamically expanding, inhomogeneous
fireball. The momentum distribution for hadron species j
emerging from hydrodynamics is given by the Cooper-Frye
formula [31]

ωp
dNj

d3 p
=

∫
�(x)

d�μ(x) pμ f j[u
μ(x)pμ; T (x), μ j (x)], (7)

neglecting the shear and bulk viscous corrections. Here �(x)
is the Cooper-Frye hypersurface, d�μ(x) is the hypersurface
element, uμ(x) is the collective four-velocity, pμ is the four-
momentum, and f j is the distribution function corresponding
to a local thermodynamic equilibrium at a space-time point
x. The total mean number of particles can be obtained by
integrating Eq. (7) over the momenta. This results in

〈Nj〉 =
∫

�(x)
〈dNj (x)〉 (8)

=
∫

�(x)
d�μ(x)uμ(x) n j[T (x), μ j (x)]. (9)
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Here n j is the equilibrium local rest frame density of par-
ticle species j near the space-time point x. This density
may generally contain the effect of hadronic interactions,
such as excluded volume. The total effective volume at
particlization is

Veff =
∫

�(x)
d�μ(x)uμ(x), (10)

thus one can introduce the average effective density of particle
species j as 〈n j〉 = 〈Nj〉/Veff .

The Cooper-Frye sampling procedure that includes the ef-
fect of hard-core repulsion proceeds as follows:

(i) The total numbers of all the particle species are
sampled. The effect of excluded volume on the dis-
tribution of the total particle numbers is included,
where applicable, following the method described in
Refs. [16,32] and using the average effective densities
〈n j〉 as input. The exact global conservation laws are
enforced through rejection sampling, where configu-
rations that do not satisfy the exact conservation laws
are discarded.

(ii) The momenta and coordinates of each hadron are
sampled one by one. To do that, first, the hypersurface
element from which the given hadron is sampled is
determined. This is done via the multinomial distri-
bution where each volume element x is weighted by
〈dNj (x)〉, i.e., by the grand-canonical mean yield for
the given hadron species emitted from that element.
Then the momenta and coordinates of the hadron
emitted from the chosen hypersurface element x are
sampled via the standard procedure.

(iii) All pairs of hadrons with hard-core repulsion between
them are checked for overlap. If an overlap is de-
tected, one goes back to the previous step. As in
Sec. II, to speed up the procedure, one can check
the overlap of a newly sampled particle with already
sampled ones before sampling the remaining ones. As
detailed below, each pair of hadron species can have
a different value of the minimum distance σ of their
closest possible approach.

Note that a numerical Cooper-Frye hypersurface might
have negative volume elements with d�μ(x)uμ(x) < 0. Here
these volume elements are skipped, i.e., the presence of the
θ function, θ (d�μ(x)uμ(x)), in all Cooper-Frye integrals is
implied.

A few relevant details must be specified regarding the treat-
ment of global conservation laws. The total baryon number to
be conserved is calculated from the 4π mean hadron yields
from Eq. (8). The calculated value is then rounded to the
nearest integer. To maintain consistency, all elements of the
hypersurface d�(x) are then rescaled by a common factor so
that the baryon number calculated by Eq. (8) coincides with
the rounded integer number. This has only a minor effect, as
the rescaling factor is very close to unity in all considered
cases. If strangeness is treated canonically, it is required to
be equal to zero in each generated event. Finally, the total
net charge is constrained to reproduce the charge-to-baryon

ratio of Q/B = 0.4. If the total electric charge satisfying the
Q/B = 0.4 condition is not an integer, it is rounded to the
nearest integer.

Note that the presented algorithm differs from most of the
conventional methods used. There, hadrons are first sampled
from each cell one by one, and then constraints from global
conservation laws are imposed. In this way, one may have
to resort to rejecting all sampled particles if the global con-
servation laws are not satisfied. The present algorithm deals
with this problem more efficiently. Here, first, the total mul-
tiplicities of all hadrons are sampled, then the conservation
laws are checked, and only after that does the sampling of
hadrons’ momenta and coordinates begin. The drawback is
that, in the case of numerical Cooper-Frye hypersurfaces,
this method requires storing the precomputed multinomial
probabilities for all hadron species and all Cooper-Frye hyper-
surface elements, which increases the memory requirements
significantly. For example, the method requires about 5–15
Gb of RAM for sampling the central Au-Au collisions of
RHIC-BES using Cooper-Frye hypersurfaces from the MUSIC

code [33]. The present algorithm may also be less efficient
for event-by-event hydrodynamics, as opposed to single-shot
hydrodynamics used in the present study.

The procedure to check the overlap between two particles
at the Cooper-Frye particlization has to be modified compared
to the box case to account for the presence of collective mo-
tion, relativistic effects, and the fact that particles are emitted
at different time moments. This is achieved as follows:

(i) First, both particles are boosted into their center-of-
mass frame.

(ii) Then, the particle emitted at the earlier time is propa-
gated along the straight line to the time of the particle
which was emitted later.

(iii) Finally, the distance |ri − r j | between the particles is
calculated and checked if it is below the threshold
value of σsis j , where si and s j is the species type of
particles i and j, respectively.

The hadron resonance gas at the Cooper-Frye particliza-
tion stage is a multi-component system. Thus, in general,
the hard-core repulsion between different hadron species is
characterized not by a single excluded volume parameter b,
but by a matrix bαβ of excluded volume parameters where
each element corresponds to a distinct pair of hadron species.
Note that this matrix need not be symmetric [34]. The matrix
bαβ can be used to determine the threshold distances σαβ . As
discussed in the framework of the multicomponent excluded
volume model [34], the coefficients bαβ are related to σαβ as

bαβ + bβα

2
= 2πσ 3

αβ

3
, (11)

thus

σαβ =
(

3bαβ

2π

)1/3

, (12)

where bαβ = (bαβ + bβα )/2.
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The SPR approximation can be employed similarly to the
box case in Sec. II. Using the SPR approximation is essen-
tial for sampling central collisions of heavy ions, where the
system is so large that applying the full (unbiased) method is
prohibitively time consuming.

It is instructive to summarize the list of approximations and
possible limitations of the method:

(i) Total particle numbers Nj are sampled from an auxil-
iary excluded volume HRG model characterized by
constant volume Veff and mean hadron yields 〈Nj〉,
both calculated via the Cooper-Frye formula. The
resulting excluded volume effect on the cumulants
of the Nj-distribution may be slightly different from
the true result if the distribution of particle number
densities across the Cooper-Frye hypersurface is in-
homogeneous. The accuracy of this approximation for
central Au-Au collisions at various beam energies is
verified in the next section by comparing Monte Carlo
results with analytic approximations, yielding only
minor differences.

(ii) As the Nj distribution is sampled from the excluded
volume model rather than from the exact hard-sphere
model distribution, for consistency, it is imperative
that the excluded volume model provides an accurate
approximation for the hard-spheres equation of state.
As shown in Appendix A, this is satisfied with high
precision for bn � 0.10–0.15.

Both approximations (i) and (ii) concern the Nj-
distribution, and they become less relevant when the
canonical ensemble is applied, as the canonical en-
semble effects then dominate the fluctuations of Nj .

(iii) As the hard-core repulsion is an inherently non-
relativistic concept, issues may arise when relativistic
effects are strong. In particular, this can be an is-
sue when the two overlapping particles have large
relative velocities. This may happen, for instance,
when the particles are emitted from different regions
of the fireball characterized by significantly different
collective velocities. However, as the hard-core repul-
sion is a short-range phenomenon, the issue becomes
irrelevant in this case since these particles would not
overlap in the coordinate space. Particles that are
close by in the coordinate space, on the other hand,
would typically correspond to very similar collective
velocities, thus their relative velocities are determined
by the local temperature T (x), which is usually of
order 160 MeV or lower in heavy-ion collisions at
particlization. Therefore, the relativistic effects be-
come less relevant for m/T (x) 
 1, as is the case for
baryons (mB � 938 MeV/c2), but could be important
if hard-core repulsion is incorporated for lighter par-
ticles such as pions.

The Cooper-Frye sampling with short-range repulsion is
implemented within the open source package THERMAL-
FIST [35] starting from version 1.4.

IV. APPLICATION OF THE METHOD TO PROTON
CUMULANTS IN HEAVY-ION COLLISIONS

To illustrate the newly developed FIST SAMPLER and the
corresponding effect of hard-core repulsion, the behavior of
(net-)proton cumulants in central collisions of heavy ions at
various collision energies is studied. The effect of (anti)baryon
excluded volume on the cumulants has previously been stud-
ied at LHC [36] and RHIC-BES [17] energies using different
methods, thus, it is instructive to compare these results with
the present method.

It is assumed here that excluded volume repulsion
is present for all baryon-baryon and, by symmetry, all
antibaryon-antibaryon pairs, as motivated by recent analyses
of lattice QCD data on baryon number susceptibilities [22,24].
This implies bαβ = b > 0 if either α, β ∈ B or α, β ∈ B̄, and
bαβ = 0 otherwise. To be consistent with the earlier studies,
the value of the baryon excluded volume parameter is chosen
to be b = 1 fm3, corresponding to a classical hard-core radius
of around rc = 0.39 fm.

A. LHC

First, the LHC energies are studied. More specifically,
the 0–5% central Pb-Pb collisions at

√
sNN = 2.76 TeV

are analyzed, using a longitudinally boost-invariant Cooper-
Frye hypersurface based on the blast-wave model. The
parametrization of the hypersurface is identical to a previ-
ous study [16], where the blast-wave model parameters are
based on fits to the pT spectra within a single freeze-out
scenario [38]. These parameters are uniform across the entire
hypersurface. The particlization temperature is T = 160 MeV,
and the chemical potentials are vanishing. For this choice of
parameters, one has bnB = bnB̄ ≈ 0.029, where nB and nB̄ are
the number densities of baryons and antibaryons, respectively.

A total of 28.3 million events is sampled. The events in-
corporate the baryon hard-core repulsion as described above,
as well as the exact global conservation of baryon number.
The behavior of cumulants of net proton number distribu-
tion is analyzed. To minimize the statistical error, the fireball
volume is reduced by factor 10, from dV/dy = 400 fm3 to
dV/dy = 40 fm3. This reduction of the fireball volume is
achieved through the reduction of its transverse radius from
R⊥ = 9 fm to R⊥ ≈ 2.84 fm. The analysis is therefore focused
on the ratios of cumulants where the trivial dependence on
the volume is canceled. For more details on this procedure to
minimize the statistical error, see Ref. [16].

Figure 5 depicts the behavior of (a) the net-proton variance
normalized over the Skellam distribution baseline, κ2[p −
p̄]/〈p + p̄〉 and (b) the net-proton kurtosis ratio, κ4[p −
p̄]/κ2[p − p̄]. The calculations are performed in the exper-
imental acceptance used in the measurements performed
by the ALICE Collaboration [37], corresponding to cuts in
(anti)proton momentum, 0.6 < p < 1.5 GeV/c, and pseudo-
rapidity, |η| < ηmax. The results in Fig. 5 are shown as a
function of ηmax by solid black lines with grey bands depicting
the statistical uncertainties. The results are compared with the
earlier calculations of Ref. [16] obtained in the framework of
the so-called subensemble sampler (dash-dotted black lines),
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FIG. 5. Cumulant ratios κ2[p − p̄]/〈p + p̄〉 (left panel) and κ4[p − p̄]/κ2[p − p̄] (right panel) in 0–5% central
√

sNN = 2.76 TeV Pb-Pb
collisions as functions of the pseudorapidity cut ηmax. Calculations are performed within FIST SAMPLER incorporating the effects of short-range
baryon repulsion and global baryon conservation and shown by the black lines with bands. The dash-dotted black lines and dashed blue lines
depict the calculations of Ref. [16] within the subensemble sampler with and without the effect of baryon excluded volume, respectively. The
symbols correspond to the experimental measurements of the ALICE Collaboration [37].

as well as the ideal gas baseline that incorporates the effect of
baryon conservation but not hard-core repulsion (dotted blue
lines). Note that the calculations for κ4[p − p̄]/κ2[p − p̄] do
not account for the effect of volume fluctuations which would
influence the measurements [16].

The FIST SAMPLER results agree with the earlier results
based on the subensemble sampler. They also show visi-
ble deviations from the ideal gas baseline. This indicates
that the FIST SAMPLER provides a reasonable description of
the excluded volume effect. In contrast to the subensemble
sampler, which is mainly restricted to longitudinally boost
invariant systems such as those encountered at the LHC, the
FIST SAMPLER can also be straightforwardly applied to lower
collision energies where boost invariance does not hold. This
is explored at the RHIC beam energy scan energies in the next
section.

B. RHIC-BES

Net proton fluctuations have been measured by the STAR
Collaboration in Au-Au collisions in collision energy range√

sNN = 7.7–200 GeV [39,40]. In Ref. [17] the fluctuations
have been analyzed based on relativistic hydrodynamics sim-
ulations with MUSIC [41], incorporating effects of baryon
conservation and excluded volume. Calculations in Ref. [17]
were performed analytically, in two steps: (i) proton cumu-
lants are calculated in the experimental acceptance using the
Cooper-Frye formula in the grand-canonical limit, includ-
ing the excluded volume effect; (ii) correction for baryon
number conservation is performed using a method called SAM-
2.0 [42].

Here, the calculations of proton cumulants are performed
using the FIST SAMPLER, by sampling 0–5% central Au-Au
collisions at energies

√
sNN = 7.7, 14.5, 19.6, 27, 39, 62.4,

and 200 GeV. The sampling is performed with and without
the effect of exact baryon conservation, and it uses the same

Cooper-Frye hypersurfaces produced by the MUSIC code that
is based on [41] and is available at [33]. For each energy,
at least several million events have been generated. These
calculations are compared to the analytic approximations of
Ref. [17] in Fig. 6, for (a) the second proton cumulant ratio
κ2/κ1 and (b) the third-order net-proton cumulant ratio κ3/κ1.
The FIST SAMPLER results are shown by the bands, while the
lines show the analytic results.

In the absence of baryon conservation (baryon repulsion
only, green lines and bands in Fig. 6) deviations of the cu-
mulant ratios from the baseline of unity are driven solely by
baryon repulsion, which leads to a modest suppression. The
FIST SAMPLER results agree with the analytic approximations,
validating the method at RHIC-BES energies.

Incorporating exact baryon conservation (baryon repulsion
+ baryon cons., black lines, and grey bands in Fig. 6) leads to
a more potent suppression of the cumulant ratios. In this case,
the analytic and Monte Carlo results agree at high collision en-
ergies (

√
sNN � 40 GeV), but deviations between the two are

visible at lower
√

sNN . These deviations can be attributed to
inaccuracies of the SAM-2.0 framework at lower collision en-
ergies. As discussed in the original publication [42], it would
tend to overestimate the effect of (repulsive) interactions.
Comparison with the FIST SAMPLER allows one to quantify the
accuracy of this approximation under RHIC-BES conditions,
revealing a modest overestimation of excluded volume effect
on proton cumulants which gets worse as collision energy is
decreased.

As a new application of the FIST SAMPLER, one can simulta-
neously incorporate the effects of baryon repulsion and exact
conservation of all three QCD conserved charges: baryon
number, electric charge, and strangeness. The electric charge
conservation, in particular, can influence the fluctuations of
the proton number since the proton carries the electric charge.
At high collision energies, the dominant electric charge carri-
ers are pions. Thus, the effect of electric charge conservation
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FIG. 6. Beam energy dependence of the proton cumulant ratio κ2/κ1 (left panel) and net proton cumulant ratio κ3/κ1 (right panel) in 0–5%
central Au-Au collisions at RHIC-BES. The results depict FIST SAMPLER calculations incorporating the baryon hard-core repulsion (green
bands), plus exact baryon conservation (grey bands), plus exact conservation of electric charge and strangeness (blue bands). The dotted green
and dash-dotted black lines correspond to analytic calculations of Ref. [17] with and without exact baryon conservation, respectively. The red
symbols correspond to the experimental data of the STAR Collaboration [39,40].

on protons is expected to be small [36]. As the collision energy
decreases, the fraction of charge carried by protons increases,
and so does the effect of charge conservation on proton cumu-
lants. This is reflected in the FIST SAMPLER results shown in
Fig. 6 by the blue bands, indicating additional suppression of
(net-)proton κ2/κ1 and κ3/κ1 due to electric charge conserva-
tion, which becomes visible at

√
sNN � 40 GeV. Interestingly,

at all collision energies considered, the FIST SAMPLER results
with exact conservation of baryon number, electric charge,
and strangeness are in good agreement with the analytical cal-
culations of proton cumulants from Ref. [42] that incorporate
baryon conservation but not electric charge and strangeness.
Thus, it appears that the additional suppression due to electric
charge conservation at all energies is of the same magnitude
as the overestimation of the excluded volume effect in the
analytical calculation of Ref. [42] with SAM-2.0. Although this
coincidence appears to be purely accidental, it indicates that
the results of Ref. [42] serve as an accurate baseline for proton
cumulants incorporating noncritical effects like baryon repul-
sion and exact conservation of multiple conserved charges.

C. GSI-SIS

The final application of the new method concerns the Au-
Au collisions at

√
sNN = 2.4 GeV, as probed by the HADES

experiment at the GSI-SIS facility. The experimental data [43]
indicate sizable multiproton correlations. These were recently
analyzed in the framework of a fireball model [44]. The
Cooper-Frye hypersurface was parametrized in the frame-
work of the Siemens-Rasmussen model with a Hubble-like
collective flow, which was found to provide a reasonable de-
scription of the pT spectra of pions and protons [45], while
the temperature T ≈ 70 MeV and baryochemical potential
μB ≈ 875 MeV were extracted from hadron yields [46]. Here
this parametrization of the hypersurface is used in FIST SAM-

PLER to study the behavior of proton cumulants influenced by
conservation laws and baryon repulsion.

At
√

sNN = 2.4 GeV, a significant fraction of protons is
bound into light nuclei in the final state. Based on the prelim-
inary HADES data [45], one can estimate that about 37.5%
of the final-state protons are bound. The light nuclei are not
incorporated into the FIST SAMPLER employed in the present
work. Thus, to model this effect, following Ref. [44], each
proton emitted from the fireball is assumed to be bound into
light nuclei with a probability of qnucl = 0.375 and not con-
tribute to the measured cumulants of the proton number.

The corresponding results for proton number cumulant ra-
tios κ2/κ1, κ3/κ2, and κ4/κ2 are shown in Fig. 7 as functions
of the rapidity cut ycut in the experimental acceptance of the
HADES experiment.

The results show a similar pattern to RHIC-BES energies:
both the baryon conservation and repulsion suppress the cu-
mulant ratios, with baryon conservation having a stronger
effect. The additional effect of electric charge conservation
(blue lines) is even more notable, which suppresses the cumu-
lant ratios even further. The combined effect of baryon and
electric charge conservation is more significant than that of
baryon repulsion. Note that both the total baryon and electric
charge of the participant matter fluctuates event by event in
the experiment. This is in contrast to the FIST SAMPLER where
they are both fixed. The experimental data of the HADES
Collaboration [43], shown in Fig. 7 by black symbols, is
corrected for volume (participant) number fluctuations, which
justifies the canonical treatment of baryon number for the
participant matter. However, the total electric charge of the
participants still fluctuates; thus, the FIST SAMPLER results in
Fig. 7 should be considered an upper bound on the effect of
exact conservation of the electric charge on the proton number
cumulants. It is also clear that the model fails to describe
the experimental data even qualitatively. For example, the
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FIG. 7. Cumulant ratios (a) κ2/κ1, (b) κ3/κ2, and (c) κ4/κ2 of the proton number distribution in 0–5% central
√

sNN = 2.4 GeV Au-Au
collisions in the experimental acceptance of the HADES Collaboration, as calculated within FIST SAMPLER. The results are shown as a function
of the rapidity cut ycut . The calculations incorporate the baryon hard-core repulsion (dotted green lines), plus exact baryon conservation
(dash-dotted black lines), plus exact conservation of electric charge and strangeness (solid blue lines). The black symbols correspond to the
experimental data of the HADES Collaboration [43].

scaled variance κ2/κ1 increases with the rapidity cut ycut in
the experiment, as opposed to the suppression predicted due
to conservation laws and short-range repulsion. This indicates
that the behavior of the proton cumulants in the experimental
data is not driven by the conservation laws or short-range
repulsion that are incorporated in FIST SAMPLER. For a discus-
sion of the various possibilities, including the QCD critical
point, see Ref. [44]

The present analysis indicates that the exact conserva-
tion of multiple conserved charges, as opposed to only that
of the baryon number, is essential for quantitative analysis
of proton number cumulants at moderate collision energies,√

sNN � 7.7 GeV. The FIST SAMPLER allows one to evaluate
the corresponding baselines in this energy regime, which can
then be used to analyze future experimental data coming from
the fixed-target program at RHIC [47] or the CBM experiment
at the Facility for Antiproton and Ion Research (FAIR) [48].

For comparisons of the FIST SAMPLER results in the
SIS-HADES regime with analytic approximations, see
Appendix C.

V. CONCLUSIONS AND OUTLOOK

This study introduced short-range repulsive correlations
into the Cooper-Frye hadron sampling procedure. This has
been achieved through a rejection sampling step that pro-
hibits any two particles with repulsive interactions from
overlapping in the coordinate space, effectively modeling the
excluded volume phenomenon. The effect introduces neg-
ative correlations between particles visible in normalized
cumulants of their distributions. The new method—called the
FIST SAMPLER—incorporates this effect and simultaneously
allows for both the canonical and grand-canonical treatments
of the QCD conserved charges.

FIST SAMPLER was validated in a periodic box setup, where
the method yields the behavior of the scaled variance of par-
ticle number, which is consistent with the equation of state
of hard spheres. FIST SAMPLER was then used to model the
excluded volume effect in (anti)baryon-(anti)baryon interac-
tion at the particlization stage of heavy-ion collisions in a
broad collision energy range,

√
sNN = 2.4–2760 GeV. In a

longitudinally boost-invariant scenario at LHC energies, the
new method produces the behavior of net proton cumulants
up to the fourth order, which is consistent with an earlier study
of [16] that used the so-called subensemble sampler.

The advantage of FIST SAMPLER becomes evident at lower
collision energies, where boost invariance no longer holds
and where the application of the subensemble sampler is
challenging. The new method allowed one to incorporate
the simultaneous effects of baryon repulsion and baryon,
electric charge, and strangeness conservation at RHIC-BES
and SIS-GSI energies. In particular, the effect of electric
charge conservation on proton number cumulants becomes
increasingly important as the collision energy is decreased,√

sNN � 40 GeV, due to a smaller number of pions relative
to protons at lower energies. The resulting cumulant ratios of
the (net-)proton distribution are consistent with estimates of
Ref. [17] that were obtained by employing analytic approxi-
mations for baryon conservation and repulsion and neglecting
electric charge conservation. The reason for this coincidence
at lower energies appears to be that the analytic method of
Ref. [17] slightly overestimates the effect of baryon repulsion
in the canonical ensemble, which at lower collision energies is
approximately compensated for by the electric charge conser-
vation in FIST SAMPLER. Due to this coincidence, the results
of Ref. [17] can be taken as a baseline for (net-)proton cumu-
lants at RHIC-BES that incorporates noncritical effects such
as excluded volume and multiple global conservation laws.
The mechanisms above do not describe the experimental data
of the HADES Collaboration (Fig. 7), indicating that proton
number cumulants are driven by different mechanisms that
still need to be clarified.

FIST SAMPLER has several future potential applications. For
instance, one can couple its output with a hadronic afterburner
such as URQMD [49,50] or SMASH [51], which should ideally
include the short-range repulsion for consistency [52], and
study the effect of the hadronic phase on proton number
cumulants, in particular, that of baryon annihilation [53,54].
Although the effects of hadronic afterburner have not been
studied in the present work, the FIST SAMPLER code [55]
readily supports output tailored for use with URQMD after-
burner [56]. Since the method offers the full flexibility of
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an event generator, observables other than proton number
cumulants, such as, for example, balance functions [57] or
distributions of other hadronic species [58] can be studied as
well. In particular, one may revisit the Bayesian constraints
on transport coefficients of QCD matter and the switching
temperature for the transition from hydrodynamics to trans-
port [59,60] by employing the new particlization routine
presented here in such an analysis. One can also straightfor-
wardly incorporate the possible flavor dependence of baryon
repulsion suggested by recent analyses of lattice QCD data
on off-diagonal susceptibilities [24,25,61] by an appropri-
ate choice of the corresponding threshold distances σαβ in
Eq. (12). It can also be interesting to see how the presence
of baryonic hard-core repulsion might affect the light nuclei
production, such as employed in phase-space coalescence pre-
scriptions [62,63]. These applications will be the subject of
future studies.

Using the single particle rejection (SPR) approximation
was essential to sample central collisions of heavy ions in
practical applications of the new routine, as applying a direct
unbiased method was prohibitively time-consuming. The im-
plication is that the sampler is not fully unbiased, even though
the tests in a box setup indicate that the sampling of particle
number cumulants remains accurate. It is thus advisable to
consider other techniques, such as oversampling, to produce a
fast, unbiased sampler.

The sampling with short-range repulsion described in this
work has been implemented into the Monte Carlo event gen-
erator within the open source package THERMAL-FIST [35],
starting from version 1.4. The code for the sampling of various
central collisions of heavy ions discussed in the present work
is available at [55].
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APPENDIX A: THE EQUATION OF STATE AND PARTICLE
NUMBER FLUCTUATIONS IN THE SYSTEM

OF HARD SPHERES

The equation of state that describes the system of classical
particles that interact through a hard-core potential (4) can be
written in terms of the compressibility factor Z ≡ P/(nT ):

P

nT
= g(η), (A1)

where η = bn
4 = 4πr3

c
3

N
V is the so-called packing fraction. The

explicit expression for the function g(η) is not known, but

FIG. 8. Density dependence of the compressibility factor Z =
P/(nT ) in the system of hard spheres, as calculated in the excluded
volume (dashed black line) and Carnahan-Starling (solid red line) ap-
proximations. The symbols show the numerical Monte Carlo results
from Ref. [65].

different approximations are available that model the equa-
tion of state accurately when the values of η are not too large.
One well-known approximation is the van der Waals excluded
volume model where one has Pev = nT

1−bn , thus

gev(η) = (1 − 4η)−1. (A2)

A more involved analytical approximation of the equation of
state of hard spheres is given by the Carnahan-Starling
model [64]:

gCS(η) = 1 + η + η2 − η3

(1 − η)3
. (A3)

The accuracy of the excluded volume and Carnahan-
Starling models can be verified by comparing the results to
numerical Monte Carlo simulations of the hard-sphere system.
This comparison is depicted in Fig. 8, where the dependence
of the compressibility factor Z on bn, calculated in the two
models, is compared to the numerical simulations of [65]. The
excluded volume model accurately describes the compress-
ibility factor up to bn ≈ 0.10–0.15, while it overestimates the
numerical data for Z at higher densities. On the other hand,
the Carnahan-Starling model accurately describes the Monte
Carlo data for all the densities considered, that is, up to at least
bn = 0.6.

Cumulants of the grand-canonical particle number distri-
bution are given by

κn = V T n−1

(
∂nP

∂μn

)
T

. (A4)

For n = 1 one has κ1 ≡ 〈N〉, therefore, for n > 1 the cumu-
lants read

κn = T n−1

(
∂n−1〈N〉
∂μn−1

)
T

. (A5)

Using the thermodynamic identity ( ∂〈N〉
∂μ

)T,V = 〈N〉/( ∂P
∂n )T ,

one can evaluate the derivatives ( ∂n−1〈N〉
∂μn−1 )T iteratively, provided

that the pressure P is known as a function of density n. This
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FIG. 9. Density dependence of cumulant ratios κ2/κ1 (black,
top), κ3/κ1 (blue, middle), κ4/κ2 (red, bottom) of the grand-canonical
particle number distribution calculated for the hard-sphere system
within the excluded volume (dashed lines) and Carnahan-Starling
(solid lines) approximations.

is the case for the excluded volume [Eq. (A2)] and Carnahan-
Starling [Eq. (A3)] models.

Figure 9 depicts the behavior of the grand-canonical cumu-
lant ratios κ2/κ1, κ3/κ1, and κ4/κ2 as a function of the scaled
density bn. Given the accuracy of the Carnahan-Starling ap-
proximation for the compressibility Z (Fig. 8), it is expected
that the corresponding calculations of the cumulant ratios
accurately reflect the grand-canonical particle number distri-
bution in the hard-sphere system in the considered density
range. Deviations of the excluded volume model from the
Carnahan-Starling model become more visible in higher-order
cumulants. The excluded volume model provides accurate
results up to bn ≈ 0.10.

APPENDIX B: RADIAL DISTRIBUTION FUNCTION

The radial distribution function g(r) describes how the
density of particles varies around a reference particle at r = 0
relative to the expectation based on the mean particle number
density n = N/V . More specifically, g(r) is defined so that the
local particle number density at a distance r from the reference
particle is equal to n g(r). Deviations of g(r) from unity signal
the presence of correlations between particles.

The radial distribution function for the hard-sphere system
has been studied for a long time [66,67]. As the particles
cannot overlap, one has g(r) = 0 for r < σ . g(r) has a dis-
continuity at r = σ and approaches a value larger than unity
in the limit r → σ + 0, indicating the presence of effective
attraction as a many-body effect. For large r/σ values, g(r) is
expected to approach unity, given that the hard-core repulsion
is a short-range phenomenon. For moderate densities of bn,
accurate expressions for g(r) of the hard-sphere system can
be obtained based on the solution of the Percus-Yevick equa-
tion [66–68]. This can be used to validate the performance of
the FIST SAMPLER.

Figure 10 depicts g(r) in a range 1 < r/σ < 3 resulting
from FIST SAMPLER for a system of particles in a periodic
box at density bn = 0.12, which was obtained by binning

σ

FIG. 10. Radial distribution function g(r) resulting from
FIST SAMPLER for a system of particles in a periodic box at den-
sity bn = 0.12 with (blue circles) and without (black squares) the
application of the SPR approximation. The black line corresponds to
g(r) of a hard-sphere system calculated through the Percus-Yevick
equation [68].

the relative distances of the sampled particles. Blue circles
correspond to the case where the SPR approximation was
applied, whereas black squares show the unbiased calculation
without approximations. In the former case N = 320 particles
were sampled in each configuration, while in the latter case,
only N = 80 particles were used due to slower computational
performance.

The results are compared with the analytical expectation
for a hard-sphere system based on the Percus-Yevick approxi-
mation, which is expected to be highly accurate for density as
low as bn = 0.12 [68]. The full calculation is in quantitative
agreement with the analytical expectations, indicating that
FIST SAMPLER correctly reproduces the spatial correlations
between particles that interact through the hard-core poten-
tial (4). The SPR approximation underestimates g(r) at 1 <

r/σ � 1.5, indicating that it does not capture the full strength
of the many-body effective attraction effect. At the same time,
the SPR approximation reproduces the qualitative structure
of g(r), and, as discussed in Sec. II D, reproduces accurately
the behavior of cumulants of particle number distribution for
densities considered in this study.

APPENDIX C: COMPARISON OF FIST SAMPLER WITH
ANALYTIC CALCULATIONS AT

√
sNN = 2.4 GEV

Here a comparison of FIST SAMPLER calculations with the
analytic method recently developed in Ref. [44] is performed.
This allows one to verify the accuracy of the analytic approx-
imations of Ref. [44]. In particular, Ref. [44] used a method
called SAM-2.0 [42] to perform a correction for exact baryon
conservation. As discussed in Ref. [42], the method might
overestimate the effect of dynamical correlations among parti-
cles, in this case, the effect of short-range hard-core repulsion,
at low collision energies such as

√
sNN = 2.4 GeV at SIS-GSI.

By comparing to FIST SAMPLER, which is free of these issues,
one can quantify the accuracy of SAM-2.0 in this collision
energy regime.
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FIG. 11. The scaled variance of the proton number distribution
in the experimental acceptance of the HADES Collaboration as a
function of the rapidity cut ycut . The green (top) lines correspond
to calculations incorporating the hard-core repulsion among baryons
but not baryon conservation. The calculations shown by the red
(middle) lines implement exact baryon conservation but not baryon
repulsion. The black (bottom) lines show calculations with both the
baryon repulsion and conservation included. The differently styled
lines correspond to the results obtained using FIST SAMPLER while
the solid lines correspond to the analytic method from Ref. [44].

The corresponding results are shown in Fig. 11. One
sees good agreement between Monte Carlo and analytic
calculations for the cases when baryon repulsion is incor-
porated but not conservation (green lines) or when baryon

conservation is implemented but not repulsion (red lines).
This validates the analytic approach of Ref. [44] in these
regimes, in particular, SAM-2.0 used in [44] to correct for
baryon conservation is accurate in the limit of the ideal gas,
as expected.

When both the baryon repulsion and conservation are in-
corporated, visible differences between the FIST SAMPLER and
the analytic method occur. The analytic method, based on
SAM-2.0, overestimates the suppression of κ2/κ1 compared to
the Monte Carlo sampling. This is an artifact of the SAM-2.0
approximation, which assumes that there are no correlations
between particles inside and outside the acceptance apart from
the baryon conservation. As discussed in [42], this leads to
an overestimation of the correlations present in the grand-
canonical limit, namely the effect of hard-core repulsion
in this study. A similar observation applies to the higher-
order cumulant ratios κ3/κ2 and κ4/κ2 that are not shown in
Fig. 11.

As follows from the FIST SAMPLER calculations in Fig. 11,
the presence of baryon repulsion in addition to baryon con-
servation leads to only a minor further suppression of proton
cumulant ratios, i.e., the effect of hard-core repulsion in the
cumulants appears to be essentially washed out by baryon
conservation. This appears to be a consequence of the re-
duced collective flow effect at HADES energies compared
to higher energies, which dilutes the space-momentum cor-
relation, meaning that the excluded volume effect in the
coordinate space is almost washed out in the momentum space
where the measurements are performed. As shown in recent
molecular dynamics simulations [69], even critical fluctua-
tions may be washed out when analyzed in momentum space
if exact global conservation laws are enforced, and no collec-
tive expansion is imposed.
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