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Anisotropic photon emission from gluon fusion and splitting in a strong magnetic background:
The two-gluon one-photon vertex
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Having in mind the pre-equilibrium stage in peripheral heavy-ion collisions as a possible scenario for the
production of electromagnetic radiation, we compute the two-gluon one-photon vertex in the presence of an
intense magnetic field at one-loop order. The quarks in the loop are taken such that two of them occupy the lowest
Landau level, with the third one occupying the first excited Landau level. When the field strength is the largest
of the energy (squared) scales, the tensor basis describing this vertex corresponds to two of the three-vector
particles polarized in the longitudinal direction whereas the third one is polarized in the transverse direction.
However, when the photon energy is of the same order as or larger than the field strength, the explicit one-loop
computation contains extra tensor structures that spoil the properties of the basis compared with the case when the
field strength is the largest of the energy scales, which signals that the calculation is incomplete. Nevertheless,
by projecting the result onto the would-be basis, we show that the squared amplitude for processes involving
two gluons and one photon exhibits the expected properties such as a preferred in-plane photon emission and
a slightly decreasing strength for an increasing magnetic-field strength. We comment on possible venues to
improve the one-loop calculation that include accounting for progressive occupation of the three quarks of the
lowest and first-excited Landau levels such that, still working in the large field limit, a more complete description
can be achieved when the photon energy increases.

DOI: 10.1103/PhysRevC.106.064905

I. INTRODUCTION

There are several intriguing properties associated with the
direct photons produced in the aftermath of relativistic heavy-
ion collisions. The first is the large magnitude of their elliptic
flow coefficient v2, found to be similar to that of hadrons
[1–3]. Since the latter comes mainly from the late stages of
the collision, when flow is already built up, it may be thought
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that direct photons are also preferably produced during the
hadronic part of the system’s evolution. However, the yields
seemingly have a large thermal component that dominates
over the prompt one for low values of the transverse mo-
mentum pT . In fact, the low-pT part of the spectrum is used
to characterize the system’s temperature which turns out to
have large values that can originate only during the very early
thermal history of the collision. The early emission of the bulk
of the direct photons seems to be confirmed by the measured
pT dependence of v2 which, for large pT , is consistent with
zero. This can be understood when considering that photons,
being a penetrating probe, can only be boosted by conditions
experienced at the times when they are produced. If they in
fact come from the early stages, when velocities are small,
their v2 for large pT should tend to zero [4], as observed. Put
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together, these properties have been dubbed the direct photon
puzzle.

In addition, an excess of low-pT photons, with respect to
known sources and even to descriptions that work well for
other electromagnetic probes, has been found by PHENIX [5].
Their analyses show that the yield of these low-pT photons
scales with a given power of the number of binary collisions,
both in Au + Au and Cu + Cu systems [6], which suggests
that the source of these photons is similar for different collid-
ing species and beam energies. However, it should be pointed
out that a tension exists between the photon yields measured
by the PHENIX and STAR Collaborations [7] and that, for
the latter as well as for recent ALICE Collaboration mea-
surements [8], the difference with state-of-the art calculations
for direct photon emission [9–11] is either not present or
exists only within experimental uncertainties. Future photon
measurements in a lower energy domain, such as the one to
be carried out by the NICA-MPD experiment [12], promises
to provide valuable complementary information.

Attempts to find possible missing contributions for the de-
scription of the photon yield have recently paid attention to the
electromagnetic radiation produced during a pre-equilibrium
stage. [13–16]. At early times, an anisotropy in the gluon
distribution, caused by a possible anisotropy in the pressure,
together with a delayed equilibration of the Glasma, may
lead to an anisotropic photon emission [17]. A momentum-
anisotropic quark-gluon plasma (QGP), with a hydrodynamic
evolution of the momentum distributions from the initial
stage, may also contribute to photon emission and have a
noticeable impact on v2 for intermediate and large pT [18].

Another source of extra electromagnetic radiation, that at
the same time provides a natural anisotropic emission, is the
presence of a magnetic field. A magnetic field provides not
only a direction that breaks rotational invariance and can be
a source of v2 but it also opens new channels for photon
emission. For instance, in a quark-gluon plasma, photons can
be emitted by magnetic-field-induced bremsstrahlung and pair
annihilation [19–22]. The closely related dilepton production
processes in a magnetized QGP has also been addressed in
Refs. [23,24]. The QED × QCD conformal anomaly [25] or
fluctuations of the gluon coupled to the photon stress tensor
[26] can be a source of soft photons as well. Holography
has also been employed to describe photon production from
a strongly coupled plasma in the presence of intense magnetic
fields [27–30].

Recall that magnetic fields of a sizable intensity may be
produced in semicentral heavy-ion collisions [31–35]. Al-
though the intensity of the field generated by spectators drops
very fast, which causes an incomplete electromagnetic re-
sponse in the medium formed at later times [36,37], the field
is found to be very intense during pre-equilibrium. Recent
experimental results corroborate earlier theoretical predictions
indicating a peak value B ≈ 1019 G for energies of the BNL
Relativistic Heavy Ion Collider (RHIC) [38,39]. Experimental
analyses aiming to characterize the time evolution of the field
are on its way.

In a couple of recent works [40,41] we have put for-
ward the idea that the presence of a magnetic field in the

pre-equilibrium stage of the heavy-ion collision opens the
gluon fusion and splitting channels for photon production.
According to the bottom-up thermalization evolution scenario
[42] during this stage, nonequilibrium distributions of quarks
and gluons, fq and fg, respectively, describe the particle occu-
pation numbers, with quarks being suppressed with respect
to gluons by the relation fq ∼ αs fg [43,44]. Although the
quark or antiquark splitting and quark-antiquark annihilation
amplitudes represent the leading perturbative matrix element
for photon emission, overall at pre-equilibrium, this process
is suppressed by a factor α2

s . If one accounts for Pauli block-
ing in the final state, the suppression for low energy photon
emission is even larger making gluon fusion or splitting
to be comparable in intensity to the former processes. As
a consequence, gluon fusion or splitting, together with the
large abundance of soft pre-equilibrium gluons, contribute to
enhance the photon yield and v2. In Refs. [40,41] a drastic ap-
proximation whereby the field intensity is taken as the largest
energy (squared) scale was employed. This approximation
limits the accuracy of the results to the very-low-pT part of
the spectra. In this work we relax this approximation and do
not set such restriction between the magnitude of the photon
p2

T and the field intensity, although we still work in the strong-
field limit as compared with the square of the masses of the
active quark species. Given the complexity of the calculation,
here we limit ourselves to computing the one-loop two-gluon
one-photon vertex that describes this process and reserve the
application of its contribution to the photon yield and v2 for
a follow-up work. It is worth mentioning that the techniques
used in Refs. [40,41], have also influenced recent treatments
to obtain the corrections to the anomalous magnetic moment
of the electron or muon and the corresponding ones of the
anomalous magnetic moment of quarks, in the presence of
a magnetic field with a strength comparable to the fermion
masses [45,46].

The work is organized as follows: In Sec. II we set up
the ingredients to compute the vertex function describing the
on-shell coupling between two gluons and a photon in the
presence of a magnetic field. In the strong-field limit, we spell
out the most general expression for this vertex consistent with
parity, charge conjugation and gauge invariance. In Sec. III,
we explicitly compute the one-loop contribution to the vertex
function in the presence of a magnetic field. We make use of
the Landau-level representation of the quark propagators and
work in the strong-field limit, with the quarks occupying the
lowest possible Landau levels that produce a nonvanishing
result. This requires that two of the quarks are in the lowest
Landau level (LLL) and the other in the first-excited Landau
levels (1LL) . To extend the work of Refs. [40,41], where
the calculations were performed in the large-field limit and
neglecting the momentum in the quark line occupying the
1LL, here we remove the latter simplifying assumption. We
explicitly compute the coefficients for the tensor basis that
describe the matrix element and show that, when the photon
energy squared is allowed to be comparable to the magnetic-
field strength, the explicit one-loop calculation contains extra
terms not present in the basis corresponding to the case where
the magnetic-field strength dominates the energy scales of the
problem. We finally summarize and provide an outlook of the
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calculation to set a possible route to avoid these shortcomings
in Sec. IV.

II. TWO-GLUON ONE-PHOTON VERTEX IN A MAGNETIC
BACKGROUND

The coupling between two gluons and one photon is made
possible by the presence of the external magnetic field. Ac-
cording to Furry’s theorem, the coupling vanishes in the
absence of this field since both QED and QCD are charge-
conjugation-conserving theories. The breaking of Lorentz
invariance, also induced by the magnetic field, separates
space-time into parallel and perpendicular pieces with respect
to the magnetic field. For definiteness, let us consider a con-
stant in time and spatially uniform magnetic field of strength
B pointing along the ẑ direction. The separation of space-time
is implemented by introducing the tensor metric components
such that [47]

gμν = gμν

‖ + gμν

⊥ , (1a)

gμν

‖ = diag(1, 0, 0,−1),

gμν

⊥ = diag(0,−1,−1, 0), (1b)

which implies that, for any four-vector pμ, we can write

pμ

‖ = (p0, 0, 0, p3),
(2a)

pμ

⊥ = (0, p1, p2, 0),

and

p2 = p2
‖ − p2

⊥, (2b)

where p2
‖ ≡ p2

0 − p2
3 and p2

⊥ = p2
1 + p2

2. Therefore, the most
general tensor structure for a third-rank tensor, such as the
two-gluon one-photon vertex �

μνα

ab , where μ, ν, α and a, b
are Lorentz and color indices, respectively, involves the metric
tensors in the parallel and perpendicular directions,

gμν

‖ , gμν

⊥ , (3)

and the momentum components of the gluons and the photon,
also in the parallel and perpendicular directions, namely,

pα
‖ , pα

⊥, kα
‖ , kα

⊥, qα
‖ , qα

⊥, (4)

where p, k, and q are the four-momenta of the gluons and of
the photon, respectively.

The kind of magnetic field hereby considered cannot
transfer energy-momentum to the gluons and the photon.
Thus, when also neglecting possibly medium-induced mod-
ification on their dispersion properties, energy-momentum
conservation imposes that, for on-shell propagation, all the
four-momenta are parallel [48]

qμ = pμ + kμ. (5)

Choosing qμ as the reference four-momentum, we have

pμ =
(

ωp

ωq

)
qμ, (6a)

kμ =
(

ωk

ωq

)
qμ, (6b)

where ωp, ωk , ωq are the energies of the gluons and photon,
respectively. The on-shell restriction implies a reduction of the
tensor structures involved in the vertex construction. Then, it
is enough to consider tensors obtained from the combination
of

gμν

‖ , gμν

⊥ , qα
‖ , qα

⊥. (7)

Following the findings of Refs. [40,41], in the approxima-
tion where the magnetic field is the largest of the kinematical
energy (squared) variables, the tensor structure can be ex-
pressed as

�
μνα

ab = δab�
μνα,

�μνα ≡ �1(ωq, ωk, q2)
εi jqi

⊥gjμ
⊥√

q2
⊥

(
gνα

‖ − qν
‖qα

‖
q2

‖

)

+ �2(ωq, ωk, q2)
εi jqi

⊥gjν
⊥√

q2
⊥

(
gμα

‖ − qμ

‖ qα
‖

q2
‖

)

+ �3(ωq, ωk, q2)
εi jqi

⊥gjα
⊥√

q2
⊥

(
gμν

‖ − qμ

‖ qν
‖

q2
‖

)

≡
3∑

n=1

�n(ωq, ωk, q2)�μνα
n , (8)

where �n(ωq, ωk, q2), n = 1, 2, 3, are scalar coefficients and
εi j is the Levy-Civita symbol in the transverse components:
ε12 = −ε21 = 1. Since q2 = 0, we can use either q2

‖ or q2
⊥ to

describe the functional dependence of the coefficients �n on
the photon’s momentum. Notice that

v
β

⊥ ≡ εi j
qi

⊥gjβ
⊥√

q2
⊥

(9)

corresponds to the polarization vector for transverse (with
respect to the magnetic field) modes and also that in the
strong-field limit, two of the three particles, either one of the
gluons and the photon or the two gluons, propagate in the
parallel polarization mode, characterized by a vector vσ

‖ that
satisfies [49]

vσ
‖ v

ρ

‖ ≡ �
σρ

‖ = gσρ

‖ − qσ
‖ qρ

‖
q2

‖
. (10)

The tensor basis of Eq. (8) is orthonormal, namely,

�σρβ
n �σρβm = δnm. (11)

This basis is also complete, when the magnetic field can
be taken as the largest possible energy (squared). Relax-
ing this condition introduces extra terms in the basis whose
importance increases as the ratio ω2

q/|eB| increases. In the
strong-field approximation, the physical picture that emerges
is as follows: It is well known that a strong magnetic field
forces two of the vector particles to occupy parallel polariza-
tion states [47,50,51]. When the vertex involves a third vector
particle, invariance under charge conjugation and conserva-
tion of angular momentum require that its polarization state
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FIG. 1. Feynman diagram describing the coupling between two
gluons and a photon at lowest order in αs and αem in the presence of
a magnetic field.

is transverse. At the lowest perturbative order, this can be un-
derstood recalling that, when polarized in the same direction,
the addition of the three spin 1/2 quarks in the loop gives
rise to a half-integer spin state that cannot describe the spin
state of a combination of three-vector particles. Therefore,
one of the quarks that make up the loop needs to be placed
not in the LLL but instead in the 1LL. This in turn induces
the emergence of a transverse mode to be occupied by one
of the vector particles. Similar selection rules, albeit in the
weak-field limit, are discussed in Ref. [48].

Parity conservation requires that the vertex is symmetric
under the exchange of the gluon Lorentz indices μ ↔ ν,
which in turn requires that, when ωp ↔ ωk , �1 ↔ �2, while
�3 remains invariant. The vertex also satisfies the transversal-
ity condition

qμ�μνα = qν�
μνα = qα�μνα = 0 (12)

imposed by gauge invariance. Relaxing the strong-field ap-
proximation to partially account for contributions to allow that
the photon energy (squared) is not small compared with the
magnetic-field intensity spoils the symmetry properties. We
explicitly show this in the following section, where we com-
pute the coefficients �n at leading order in the strong magnetic
field at the one-loop level. This calculation provides the key
features of photon production in the kinematical regions of
interest in the context of the direct photon puzzle and sheds
light on the road to improve the approximation.

III. ONE-LOOP VERTEX IN THE STRONG-FIELD LIMIT

The scattering process involving two gluons and a photon,
either gluon fusion or splitting, is described at leading order
in the strong, αs = g2/4π , and electromagnetic, αem = e2/4π ,
couplings by a Feynman diagram that is represented as a
fermion triangle with two gluons and one photon attached
to the vertices. Given that the magnetic field breaks Lorentz
symmetry, the vertex describing these processes needs to be
computed starting from configuration space. Figure 1 shows
the generic diagram where the internal lines correspond to
fermion propagators in the presence of a magnetic field, which

can be written as

S(x, x′) = 
(x, x′)
∫

d4 p

(2π )4 e−ip·(x−x′ )S(p), (13)

where 
(x, x′) is Schwinger’s phase factor that, for a fermion
with charge q f , is given by


(x, x′) = exp

{
iq f

∫ x

x′
dξμ

[
Aμ + 1

2
Fμν (ξ − x′)ν

]}
.

(14)

The Fourier transform of the translationally invariant part
of the propagator can be expressed as a sum over Landau
levels such that

iS(p) = ie−p2
⊥

/|q f B|
+∞∑
n=0

(−1)nDn(|q f B|, p)

p2
‖ − m2

f − 2n
∣∣q f B

∣∣ + iε
, (15)

with m f being the fermion mass and

Dn(|q f B|, p) = 2(/p‖ + m f )O−L0
n

(
2p2

⊥∣∣q f B
∣∣
)

− 2(/p‖ + m f )O+L0
n−1

(
2p2

⊥∣∣q f B
∣∣
)

+ 4/p⊥L1
n−1

(
2p2

⊥∣∣q f B
∣∣
)

, (16)

where Lm
n (x) are the generalized Laguerre polynomials, and

the operators O± are given by

O± = 1
2 [1 ± iγ 1γ 2sign(q f B)]. (17)

From the Feynman diagram of Fig. 1, we write the expres-
sion for the vertex as

�ab
μνα = −

∫
d4xd4yd4z

∫
d4r

(2π )4

d4s

(2π )4

d4t

(2π )4

× e−it ·(y−x)e−is·(x−z)e−ir·(z−y)e−ip·ze−ik·yeiq·x

× {Tr[iq f γαiS(s)igγμt aiS(r)igγνt biS(t )]

+ Tr[iq f γαiS(t )igγνt biS(r)igγμt aiS(s)]}
× 
(x, y)
(y, z)
(z, x), (18)

where p and k are the gluon and q are the photon
four-momenta, t a = λa/2, t b = λb/2 with λa and λb be-
ing Gell-Mann matrices. Notice that, in the last equation,
the contribution from the charge-conjugate diagram is also
considered.

To describe a constant magnetic field that points in the z
direction, the vector potential Aμ can be chosen in the sym-
metric gauge,

Aμ = B

2
(0,−y, x, 0), (19)

so that, from Eq. (14), the product of Schwinger phases is
given by


(x, y)
(y, z)
(z, x) = e−i
|q f B|

2 εm j (z−x)m (x−y) j , (20)
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where the indices m, j = 1, 2. It has been shown that when
considering localized interactions, such as in the present cal-
culation, the product of Schwinger phases is gauge invariant
[52].

Given that at the early stages of a heavy-ion collision
the magnetic field is at its peak intensity, we can work in
the strong-field approximation, whereby fermions in the loop
occupy the lowest possible Landau levels, and one takes

|q f B| 
 m2
f . In Refs. [40,41], it has been shown that the

first-order nonvanishing contribution in the large-field limit
requires two of the fermion propagators to occupy the LLL
whereas the third one occupies the 1LL, which correspond to
n = 0 and n = 1 in Eq. (15), respectively:

iSLLL(p) = i
e−p2

⊥/q f B

p2
‖ − m2

f + iε
(/p‖ + m f )O−, (21)

iS1LL(p) = −2i
e−p2

⊥/q f B

p2
‖ − m2

f − 2|q f B| + iε

[
(/p‖ + m f )

(
1 − 2p2

⊥∣∣q f B
∣∣
)
O− − (/p‖ + m f )O+ + 2/p⊥

]
. (22)

The contributing Feynman diagrams, obtained when placing two fermion propagators in the LLL and the other in the 1LL,
are depicted in Fig. 2. After integration of the configuration space variables, the vertex in Eq. (18) is given by

�
μνα

ab = −δ(4)(q − k − p)Tr[tatb]
8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )

3∑
i=1

Dμνα
i , (23)

where

f (p⊥, k⊥) = 1

8
∣∣q f B

∣∣ [pm − km + iεm j (p j + k j )]
2 1

2|q f B|
(
p2

m + k2
m + 2iε jm pmk j

)
(24)

and

Dμνα
1 =

{
2|q⊥| I1

[
(C̃vν

⊥ + iqν
⊥)

(
�

μα

‖ − 1

2
gμα

‖

)
− (

C̃v
μ

⊥ + iqμ

⊥
)(

�να
‖ − 1

2
gνα

‖

)]
+ 2J1εi jg

iμ
⊥ gjν

⊥ qα
‖

}
, (25)

Dμνα
2 =

{
2|q⊥| I2

[(
B̃v

μ

⊥ + 3iωk

4ωq
qμ

⊥

)(
�να

‖ − 1

2
gνα

‖

)
−

(
B̃vα

⊥ + 3iωk

4ωq
qα

⊥

)(
�

μν

‖ − 1

2
gμν

‖

)]
+ 2J2εi jg

iα
⊥gjμ

⊥ qν
‖

}
, (26)

Dμνα
3 =

{
2 I3

[
(−iÃ1qν

⊥ − Ã2|q⊥|vν
⊥)

(
�

μα

‖ − 1

2
gμα

‖

)
+ (

iÃ1qα
⊥ + Ã2|q⊥|vα

⊥
)(

�
μν

‖ − 1

2
gμν

‖

)]
+ 2J3εi jg

iν
⊥gjα

⊥ qμ

‖

}
, (27)

with the coefficients Ã, B̃, and C̃ given by

Ã1(ωk, ωq) ≡ −C̃

8
− ωp

ωq
− 1

8
, (28a)

Ã2(ωk, ωq) ≡ −C̃

8
+ ωk

2ωq
+ 1

4
, (28b)

B̃ ≡ 2ωk − 3ωq

ωq
+ i

2
, (28c)

C̃ ≡ ωp − ωk

ωq
, (28d)

and where we have defined

I1 ≡
∫ 1

0
dx

∫ 1−x

0
dy

x + ωk
ωq

(1 − x − y) − [
x + ωk

ωq
(1 − x − y)

]2

�2
1(x, y)

, (29a)

J1 ≡
∫ 1

0
dx

∫ 1−x

0
dy

[
2x + 2(1 − x − y) ωk

ωq
− 1

�1(x, y)q2
‖

+ 1

�2
1(x, y)

{[(
x + ωk

ωq
(1 − x − y)

)2

−
(

x + (1 − x − y)
ωk

ωq

)
ωk

ωq

]
+

(
x + (1 − x − y)

ωk

ωq

)
ωk (ωq − ωk )

ω2
q

−
[(

x + (1 − x − y)
ωk

ωq

)2

+
(

1 − 2x − 2(1 − x − y)
ωk

ωq

)
ωk

ωq

](
x + (1 − x − y)

ωk

ωq

)}]
, (29b)
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�1(x, y) = [x + (1 − x − y)(ωk/ωq)]2q2
‖ − xq2

‖ − (1 − x − y)[(ωk/ωq)2q2
‖ − 2|q f B|] + m2

f , (29c)

I2 ≡
∫ 1

0
dx

∫ 1−x

0
dy

[(
ωk
ωq

x + (1 − x − y)
)2 − ωk

ωq

(
ωk
ωq

x + (1 − x − y)
)]

�2
2(x, y)

, (30a)

J2 ≡
∫ 1

0
dx

∫ 1−x

0
dy

[
(1 − 2x) ωk

ωq
− 2(1 − x − y)

�2(x, y)q2
‖

+ 1

�2
2(x, y)

{[(
(1 − x − y) − ωk

ωq
x

)
ωk

ωq

−
(

(1 − x − y) + ωk

ωq
x

)2
]

+
(

(1 − x − y) + ωk

ωq
x

)
ωk (ωq − ωk )

ω2
q

+
[(

(1 − x − y) + ωk

ωq
x

)2

−
(

2x − 1 + 2(1 − x − y)
ωk

ωq

)
ωk

ωq

](
(1 − x − y) + ωk

ωq
x

)}]
, (30b)

�2(x, y) = [(1 − x − y) + (ωk/ωq)x]2q2
‖ − x(ωk/ωq)2q2

‖ − (1 − x − y)(q2
‖ − 2|q f B|) + m2

f , (30c)

I3 ≡
∫ 1

0
dx

∫ 1−x

0
dy

−x + ωk
ωq

[
y − ωk

ωq
(1 − x − y)

] + [
x + ωk

ωq
(1 − x − y)

]2

�2
3(x, y)

, (31)

J3 ≡
∫ 1

0
dx

∫ 1−x

0
dy

−i

8π

1

�2
3

[(
ωp + 2ωk

ωq

)
�3 +

[
f̃ 3 − f̃ 2

(
1 + ωk

ωq

)
+ f̃

ωk

ωq

]
q2

‖

]
, (32)

�3(x, y) =
[

x + (1 − x − y)
ωk

ωq

]2

q2
‖ − xq2

‖ − (1 − x − y)k2
‖ + 2|q f B|y + m2

f , (33)

with

f̃ ≡ x + (1 − x − y)
ωk

ωq
. (34)

We emphasize that Eqs. (25)–(27) are obtained under
the approximation whereby |q f B| 
 m2

f in the numerator of
Eqs. (21) and (22). This is a reasonable approximation when
accounting only for the active quark species u, d , s and during
the pre-equilibrium and/or very early stages of the collision.
On the other hand, the masses in the denominator need to
be kept finite so that the integrand is infrared safe. This is
explicitly shown in Appendix A.

To perform the integrals, we implement a Wick rotation in
the q0 component of the photon momentum, namely,

q2
0 = ω2

q → −(
qE

0

)2
. (35)

Since the integrals to perform are written in terms of q2
‖, we

need to keep track of the consequences of this Wick rotation
to then come back by means of an analytical continuation
to Minkowski space. The parallel component of the four-
momentum transforms under this Wick rotation as

q2
‖ → −

[(
qE

0

)2 + q2
3

]
≡ −(

qE
‖
)2

= −ω2
q(1 + cos2 θ ), (36)

where θ is the angle between the photon’s direction of mo-
tion and the magnetic-field direction, namely, the ẑ axis.
Thus, after integrating over the Feynman parameters x and
y, we can analytically continue back to Minkowski space by
replacing (

qE
‖
)2 → ω2

q(1 − cos2 θ ) = ω2
q sin2 θ. (37)

In Appendix (B) we calculate �n(ωq, ωk, q2) for n =
1, 2, 3 in Eq. (8), by projecting Eq. (23) onto a basis, where
we have used both the transverse polarization vector and the
longitudinal polarization tensor as defined in Eqs. (9) and (10).
The functions �i have real and imaginary parts and are defined
in Eqs. (B5)–(B7) as

�n ≡ 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|�̃n(ωq, ωk, θ ), (38)

where we follow through on energy conservation as ωq =
ωp + ωk . Figure 3 shows the sum of squared amplitudes |�̃n|
as a function of the ratio of the photon energy to the quark
mass for a fixed field strength and the full range of photon
directions of propagation [Fig. 3(a)]; again as a function of
the ratio of the photon energy to the quark mass for a fixed
angle of the photon propagation with respect to the magnetic
field direction, for a range of field strengths [Fig. 3(b)]; and
as a function of the ratio of the photon energy (referred to a
gluon energy) to the field strength, for a fixed value of the pho-
ton’s direction of propagation, for different field intensities
[Fig. 3(c)]. Notice that the sum of the squared amplitudes |�̃n|
is larger for a photon propagation within the reaction plane
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FIG. 2. Leading-order Feynman diagrams describing the vertex
coupling two gluons and one photon in the presence of a magnetic
field. The single lines represent fermion propagators in the lowest
Landau level, and the double lines are propagators in the first-excited
Landau level. The continuous and dashed arrows represent the flow
of charge and momentum, respectively.

(θ = π/2) and that for θ = π/2 it is also larger for smaller
field intensities. On the other hand, notice that the prefactor
|q⊥|e f (p⊥,k⊥ ) also depends on θ . Figure 4 shows this depen-

dence for different ωk and |q f B| values for a range of fixed
ratios ωq/ωk , [Fig. 4(a)] ωk = 1 GeV, |q f B| = m2

π ; [Fig. 4(b)]
ωk = 1 GeV, |q f B| = 5m2

π ; and [Fig. 4(c)] ωk = 0.1 GeV,
|q f B| = m2

π . Notice that the prefactor peaks at small angles
for large gluon energies. In this case the squared amplitude is
highly suppressed for angles close to the reaction plane. How-
ever, for small gluon energies and/or a large field strength, the
prefactor is dominated by emission angles close to the reaction
plane. Since at pre-equilibrium the largest gluon abundance
happens for small energies, a positive v2 coefficient may be
expected. Last but not least, notice that the prefactor vanishes
for θ = 0, which prevents photons from being emitted along
the direction of the magnetic field.

IV. SUMMARY AND OUTLOOK

In this work we have studied the two-gluon one-photon ver-
tex induced by the presence of a magnetic field. The relevant
physical scenario is the pre-equilibrium stage after a heavy-
ion collision where the largest field intensities are achieved.
During this stage, gluons are coupled to photons by means of
virtual quarks and thus the former indirectly experience the in-
fluence of the field by the interaction of this with the latter. In
this sense, arguments based on the suppression of the produc-
tion of electromagnetic radiation at pre-equilibrium, due to the
lack of quarks [36], do not apply when this radiation involves
processes mediated by virtual quarks. The vertex for on-shell
gluons and a photon can be constructed by multiplying the
longitudinal polarization tensor, that describes the polariza-
tion of two of these vector particles, times a third polarization
vector which is required to have components in the transverse
plane, with respect to the magnetic field, the largest energy
(squared) scale. However, when the photon energy squared is
allowed to be on the order of or larger than the magnetic-field
strength, this simple structure is spoiled. Nevertheless, in or-
der to explore the bowels of this very complicated calculation,

FIG. 3. Sum of squared amplitudes of �̃n, n = 1, 2, 3 from Eqs. (B5)–(B7), as a function of (a) the photon energy ωq and the angle with
respect to the magnetic field θ with |qf B| = m2

π , (b) the photon energy ωq and the magnetic field strength |qf B| with θ = π/2, and (c) the
ratio (ωq − ωk )/

√|qf B| and the angle with respect to the magnetic field θ with |qf B| = m2
π . All the physical parameters are normalized by the

quark mass mf = 2 × 10−3 GeV, having fixed ωk = 1 GeV.
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FIG. 4. Angular dependence of the factor |q⊥|e f (p⊥,k⊥ ) of Eq. (38) as a function of the photon’s energy ωq and the angle with respect to the
magnetic field θ for fixed values of ωq and |qf B|.

we have computed the one-loop contribution, following the
strategy of Refs. [40,41] applicable in the large-field limit.
This consists of explicitly computing the one-loop contribu-
tion, placing two of the loop quarks in the LLL and the other
one in the 1LL. The reason we worked with this configuration
is that this represents the first nonvanishing contribution when
quarks occupy progressive Landau levels starting from the
lowest one, given that when all the quarks are in the LLL,
the amplitude vanishes identically. When in the quark line
occupying the 1LL the magnitude of the corresponding mo-
mentum squared is neglected with respect the magnetic-field
intensity, the vertex turns out to respect the Ward identity
and thus be made out of transverse tensor structures. In the
present calculation we aimed at relaxing this approximation
while keeping the form of the vertex and only allowing for
the momentum in the corresponding quark line not to be
neglected with respect to the field intensity. This is born from
the observation that such approximation limits the accuracy
of the results to the very-low-pT part of the spectrum. It turns
out that the explicit one-loop calculation with this extension
introduces additional tensor structures for the vertex and thus
that the use of the simple vertex to express these contribu-
tions is not enough. The extra structures do not respect the
transversality nor the symmetry requirements for the vertex,
signaling the incompleteness of the calculation. Nevertheless,
with this procedure we have identified that allowing for the
full momentum dependence of the quark line in the LLL
requires the general structure of the vertex to be extended. At
the same time one needs to consider at least all the possible
Landau levels up to the first one for each of the quark lines in
the one-loop calculation. To avoid these shortcomings, we are
currently exploring the possibility to add one-loop corrections

where two and up to the three quarks in the loop occupy the
1LL. Our goal is to not only compute the vertex but also
the corresponding rate for photon emission when using the
appropriate gluon distribution function at pre-equilibrium and
to compare our results to other nonequilibrium scenarios for
photon production [13–16,43,44]. Needless to say this calcu-
lation is very challenging. However, the present result can be
used to envision some of the useful properties of this vertex for
calculations of photon yields and v2 in a kinematical region
that does not restrict the photon energy to be small compared
with the field strength. For this purpose we have computed
the sum of the squared amplitudes obtained when projecting
the explicit computation onto the simple basis of Eq. (8). The
squared amplitude shows some of the features that are to be
expected, namely, a dominance of photon emission along the
production plane (plane transverse to the direction of the mag-
netic field) and a slightly larger contribution from smaller field
strengths for large photon energies. Possible improvements
include accounting for the contribution coming from the three
loop quarks occupying the lowest and first-excited Landau
levels such that, still working in the large field limit, a more
complete description can be achieved when the photon energy
increases. This is work for the future that will be reported
elsewhere.

ACKNOWLEDGMENTS

This work was supported by UNAM-PAPIIT IG100322
and by Consejo Nacional de Ciencia y Tecnología
Grants No. A1-S-7655 and No. A1-S-16215. J.D.C.-Y.
acknowledges support from Consejo Nacional de Ciencia
y Tecnología Grant No. A1-S-7655 in the initial

064905-8



ANISOTROPIC PHOTON EMISSION FROM GLUON FUSION … PHYSICAL REVIEW C 106, 064905 (2022)

stages of this work. R.Z. acknowledges support from
ANID/CONICYT FONDECYT Regular (Chile) under Grant
No. 1200483. A.J.M acknowledges support from FAPESP
under Grant No. 2016/12705-7. M.E.T.-Y. acknowledges
support by the Simons Foundation through the Simons Foun-
dation Emmy Noether Fellows Program at Perimeter Institute
and is grateful for the hospitality of Perimeter Institute where
part of this work was carried out. Research at Perimeter
Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and Economic

Development Canada and by the Province of Ontario through
the Ministry of Economic Development, Job Creation
and Trade.

APPENDIX A: CALCULATION OF THE TENSORS Dμνα
i

The tensors Dμνα
i are obtained by replacing the propagators

of Eqs. (21) and (22) into Eq. (18), so that after integration
over the coordinate space, they take the form

Dμνα
1 = 2iq f g2

π2
∣∣q f B

∣∣2

∫
d4r

(2π )4

d4s

(2π )4

d4t

(2π )4
δ(2)(k‖ + t‖ − r‖)δ(2)(s‖ − p‖ − r‖) exp

(
− r2

⊥ + s2
⊥ + t2

⊥∣∣q f B
∣∣

)

× exp

[
2i

|q f B|εm j (p + r − s)m(r − t − k) j

]
Tr

[
γ 1γ 2γ

μ

⊥ /r‖γ
ν
⊥/t ‖γ α/s‖

] − 2Tr
[
γ 1γ 2γ α

‖ /s‖γ
μ/r⊥γ ν/t ‖

](
s2
‖ − m2

f + iε
)(

t2
‖ − m2

f + iε
)(

r2
‖ − 2|q f B| − m2

f + iε
) , (A1)

Dμνα
2 = 2iq f g2

π2
∣∣q f B

∣∣2

∫
d4r

(2π )4

d4s

(2π )4

d4t

(2π )4
δ(2)(k‖ + t‖ − r‖)δ(2)(s‖ − p‖ − r‖) exp

(
− r2

⊥ + s2
⊥ + t2

⊥∣∣q f B
∣∣

)

× exp

[
2i∣∣q f B

∣∣εm j (p + r − s)m(r − t − k) j

]
Tr

[
γ 1γ 2γ α

⊥/s‖γ
μ

⊥ /r‖γ
ν/t ‖

] − 2Tr
[
γ 1γ 2γ ν

‖ /t ‖γ α/s⊥γ μ/r‖
](

r2
‖ − m2

f + iε
)(

t2
‖ − m2

f + iε
)(

s2
‖ − 2|q f B| − m2

f + iε
) , (A2)

Dμνα
3 = 2iq f g2

π2
∣∣q f B

∣∣2

∫
d4r

(2π )4

d4s

(2π )4

d4t

(2π )4
δ(2)(k‖ + t‖ − r‖)δ(2)(s‖ − p‖ − r‖) exp

(
− r2

⊥ + s2
⊥ + t2

⊥∣∣q f B
∣∣

)

× exp

[
2i∣∣q f B

∣∣εm j (p + r − s)m(r − t − k) j

]
Tr

[
γ 1γ 2γ ν

⊥/t ‖γ α
⊥/s‖γ

μ/r‖
] − 2Tr

[
γ 1γ 2/s‖γ

μ

‖ /r‖γ
ν/t ⊥γ α

](
r2
‖ − m2

f + iε
)(

s2
‖ − m2

f + iε
)(

t2
‖ − 2|q f B| − m2

f + iε
) . (A3)

The integration over the parallel momenta can be reduced
to a single integral provided by the Dirac δ functions, so that

r‖ = t‖ + k‖,

s‖ = t‖ + q‖. (A4)

On the other hand, the integration over the perpendicular
momenta can be performed by completing the square in the
exponentials which leads to three Gaussian integrals over r̃⊥,
s̃⊥, and t̃⊥. The latter implies the shifts over the transverse
variables within the traces, given by

t j = t̃ j − iεl j

(
1

2
r̃l + i

2
εlmr̃m − s̃l

)
− Aj, (A5a)

s j = s̃ j − 1
2 (iε jl r̃l − r̃ j ) − Bj, (A5b)

r j = r̃ j − 1
4Cj, (A5c)

where

Aj = iεl j

(
Bl − 1

4
Cl

)
, (A6a)

Bj = 1

2

[
1

4
Cj − p j − iε jl

(
kl − 1

4
Cl

)]
, (A6b)

Cj = p j − k j + iε jl (p + k)l . (A6c)

Note that the linear terms in the transverse tilde variables
vanishes.

For the parallel integration, we perform a Feynman
parametrization over the denominators of the tensors Dμνα

i .
For example, the denominator of the tensor Dμνα

1 can be
written as

d1 = 1(
s2
‖ − m2

f + iε
)(

t2
‖ − m2

f + iε
)(

r2
‖ − 2|q f B| − m2

f + iε
)

=
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

2δ(x + y + z − 1)

den3
1

, (A7)

where

den1 = x
(
s2
‖ − m2

f + iε
) + y

(
t2
‖ − m2

f + iε
)

+ z
(
r2
‖ − 2

∣∣q f B
∣∣ − m2

f + iε
)
. (A8)

Applying the momentum conservation of Eq. (A4):

den1 = x
[
(t‖ + q‖)2 − m2

f + iε
] + y

(
t2
‖ − m2

f + iε
)

+ [(t‖ + k‖)2 − 2|q f B| − m2
f + iε]

= �2
‖ − �1 + iε, (A9)

with

�‖ = t‖ + xq‖ + zk‖ ≡ t‖ + Q‖, (A10)

and �1(x, y) is defined in Eq. (29c). The tensor Dμνα
1 splits

into two components, correspondent to each trace, namely,

Dμνα
1 = Dμνα

1(a) + Dμνα

1(b) , (A11)
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so that after eliminating odd powers of �‖:

Dμνα

1(a) = 4(2π )5iq f g2∣∣q f B
∣∣ e f (p⊥,k⊥ )εi jg

iμ
⊥ gjν

⊥

∫ 1

0
dx

∫ 1−x

0
dy

∫
d2�‖
(2π )2

1[
�2

‖ − �1(x, y) + iε
]3

× {(
qα

‖ − Qα
‖ − kα

‖ + Qα
‖ − Qα

‖
)
�2

‖ + (k‖ − 2Q‖ − q‖ + 2Q‖ + k‖ + q‖ − 2Q‖) · �‖�α
‖

+ (
Q2

‖ − k‖ · Q‖
)(

qα
‖ − Qα

‖
) − (

Q2
‖ − q‖ · Q‖

)(
kα
‖ − Qα

‖
) − [

(q‖ − Q‖) · k‖ − q‖ · Q‖ + Q2
‖
]
Qα

‖
}
, (A12)

and

Dμνα

1(b) = −2(2π )5iq f g2∣∣q f B
∣∣ e f (p⊥,k⊥ )εi jC

i
∫ 1

0
dx

∫ 1−x

0
dy

∫
d2�‖
(2π )2

1[
�2

‖ − �1(x, y) + iε
]3

× {
gbν

⊥
[
2�

μ

‖ �α
‖ − Qμ

‖
(
qα

‖ − Qα
‖
) − Qα

‖
(
qμ

‖ − Qμ

‖
) − �2

‖gαμ

‖ − (
Q2

‖ − q‖ · Q‖
)
gαμ

‖
]

− gbμ
⊥

[
2�ν

‖�
α
‖ − Qν

‖
(
qα

‖ − Qα
‖
) − Qα

‖
(
qν

‖ − Qν
‖
) − �2

‖gαν
‖ − (

Q2
‖ − q‖ · Q‖

)
gαν

‖
]}

. (A13)

The integration over �‖ yields

Dμνα

1(a) = 4π4q f g2∣∣q f B
∣∣ e f (p⊥,k⊥ )εi jg

iμ
⊥ gjν

⊥

∫ 1

0
dx

∫ 1−x

0
dy

(
1

�1

)2

× {(
2Qα

‖ − qα
‖
)
�1 + (Q2

‖ − k‖ · Q‖)pα
‖ + (p‖ · Q‖)kα

‖ − [
Q2

‖ + (q‖ − 2Q‖) · k‖
]
Qα

‖
}
, (A14)

and

Dμνα

1(b) = −8π4q f g2∣∣q f B
∣∣ e f (p⊥,k⊥ )εi jC

i
∫ 1

0
dx

∫ 1−x

0
dy

(
1

�1

)2

× {
gjν

⊥
[(

q‖ · Q‖ − Q2
‖
)
gαμ

‖ − (
Qμ

‖
(
qα

‖ − Qα
‖
) + Qα

‖
(
qμ

‖ − Qμ

‖
))]

− gjμ
⊥

[(
q‖ · Q‖ − Q2

‖
)
gαν

‖ − (
Qν

‖
(
qα

‖ − Qα
‖
) + Qα

‖
(
qν

‖ − Qν
‖
))]}

. (A15)

Implementing that for on-shell propagation, the four-momenta are parallel, namely, Eqs. (6), the above structures can be written
as

Dμνα
1 = C(a)(q)εi jg

iμ
⊥ gjν

⊥ qα
‖ + C(b)(q)εi jq

i
[
gjν

⊥
(
gμα

‖ + �
μα

‖
) − gjμ

⊥
(
gνα

‖ + �να
‖

)]
. (A16)

APPENDIX B: CALCULATIONS OF THE VERTEX
COEFFICIENTS �n(ωq, ωk, q2 )

We calculate �n(ωq, ωk, q2) for n = 1, 2, 3 in Eq. (8) by
projecting Eq. (23) onto the basis{

v
μ

⊥�να
‖ , vν

⊥�
μα

‖ , vα
⊥�

μν

‖
}
, (B1)

where we have used both the transverse polarization vector
and the longitudinal polarization tensor as defined in Eqs. (9)
and (10). For each of the three Dμνα

i structures in Eq. (23), we
get the following set of results:

v
μ

⊥�να
‖ D1

μνα = 8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|C̃ I1,

vν
⊥�

μα

‖ D1
μνα = −8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|C̃ I1,

vα
⊥�

μν

‖ D1
μνα = 0, (B2)

v
μ

⊥�να
‖ D2

μνα = −8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|B̃ I2,

vν
⊥�

μα

‖ D2
μνα = 0,

vα
⊥�

μν

‖ D2
μνα = 8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|B̃ I2, (B3)

v
μ

⊥�να
‖ D3

μνα = 0,

vν
⊥�

μα

‖ D3
μνα = 8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|Ã2 I3,

vα
⊥�

μν

‖ D3
μνα = −8π4q f g2

|q f B| q2
‖e f (p⊥,k⊥ )|q⊥|Ã2 I3. (B4)

Using these results, we can go back to Eq. (8) and col-
lect the contributions that correspond to each coefficient
�n(ωq, ωk, q2). The projection with v

μ

⊥�να
‖ from the three sets

in (B2)–(B4), contributes to

�1 = 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|q2
‖(C̃I1 − B̃I2)

≡ 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|�̃1(ωp, ωq, θ ). (B5)
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The projection with vν
⊥�

μα

‖ from the three sets in Eqs. (B2)–
(B4), contributes to

�2 = 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|q2
‖(Ã2I3 − C̃I1)

≡ 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|�̃2(ωp, ωq, θ ), (B6)

and similarly for the projection with vα
⊥�

μν

‖ , which con-
tributes to

�3 = 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|q2
‖(B̃I2 − Ã2I3)

≡ 8π4q f g2

|q f B| e f (p⊥,k⊥ )|q⊥|�̃3(ωp, ωq, θ ). (B7)
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