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Fusion-fission analysis of 12C + 248Cm and 16O + 244Pu nuclear reactions across the Coulomb barrier
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By using the symmetric-asymmetric Gaussian barrier distribution (SAGBD) model, Wong formula, and
coupled channel approach, heavy ion fusion dynamics is investigated for 12C + 248Cm and 16O + 244Pu reactions
at energies lying below and near the Coulomb barrier. Coupling of various channels linked with the structure
of participants to the relative motion of the collision partners is done by considering a Gaussian type of weight
function in the SAGBD model and cross sections are found to be enhanced relative to the calculations obtained by
the simple barrier penetration model. In the SAGBD model, the channel coupling effects are calculated in terms
of channel coupling parameter (λ) and percentage reduction in the height of apparent fusion barrier with respect
to the Coulomb barrier (VCBRED). The channel coupling parameter estimates the cumulative influence of dominant
intrinsic channels, which are responsible for the sub-barrier fusion enhancement. The SAGBD calculations
appropriately explain the dynamics of 12C + 248Cm and 16O + 244Pu reactions at energies lying around the
Coulomb barrier. The coupled channel analysis of the present reactions is done by using the code CCFULL and
the coupled channel calculations unambiguously identify the dominant influences of the rotational states up to
10+ spin states of the ground state rotational band of target isotopes in both reactions. In addition, the couplings
to higher order deformation, such as β4 for target and low lying quantum states of the projectile, are necessarily
required to reproduce the experimental data of 12C + 248Cm and 16O + 244Pu reactions. Apart from the fusion
analysis, the dynamical cluster-decay model (DCM) is applied to understand the fission dynamics of the 260No∗

nucleus formed via the above-mentioned reactions. The decay study is carried out at the center-of-mass energies
spread, Ec.m. (≈79 to 109 MeV) by including the quadrupole deformations (β2) and optimum orientations (θopt

i )
of the decaying fragments. According to the experimental observation, the noncompound nucleus (nCN) fission
component competes with the compound nucleus (CN) fission processes. Consequently, the possibility of nCN
contribution is also explored in the decay of the 260No∗ compound nucleus. With an aim to have a comprehensive
analysis of CN and nCN fission mechanisms, the role of the center-of-mass energy (Ec.m.) and angular momentum
(�) is explored in terms of various parameters of DCM such as fragmentation potential, preformation probability,
barrier modification, etc.
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I. INTRODUCTION

Among the various types of nuclear interactions, the com-
plex and fascinating aspects of fusion reactions have attracted
researchers not only for the cause of energy production in
the stellar region but also for the formation of new exotic
nuclear isotopes. Heavy ion fusion provides useful informa-
tion regarding the nuclear structure and interaction potential
of the colliding nuclei. Hitherto, a lot of experimental and
theoretical imperative studies have been done to explore the
dynamics of heavy-ion systems [1–5]. At energies much lower
than the Coulomb barrier, the possibility of the occurrence
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of fusion is a difficult job. The phenomenon in which the
fusion occurs at below barrier energies is called tunneling [6].
In other words, quantum mechanically, the fusion probabil-
ity is found to be nonzero in classically forbidden regions
and hence is called a quantum tunneling phenomenon. The
coupling of internal degrees of freedom with the relative
motion of fusing partners plays a major role is enhancing
the cross sections over the calculations obtained by the one-
dimensional barrier penetration model (BPM) at energies
below and near the Coulomb barrier and is termed fusion en-
hancement [7–9]. These couplings modify the original barrier
and split it into more than one barrier of various heights and
weights. Different theoretical models have been proposed to
explain this enhancement phenomenon [10–12], however, the
explanations of a large number of problems related to fusion
are still a milestone for researchers working in this domain.
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The amalgamation (fusion) process has gained more attention
during the last few decades because of its close alliance with
the nucleus-nucleus potential [13,14]. To understand the im-
portance of the interaction potential between fusion pairs, a
lot of experimental and theoretical studies have been done
on fusion cross sections over the last few decades [1,15–
19]. In literature [1–5], for the fusion process, the channel
coupling effects were entertained by the nuclear component of
the total interaction potential which is mostly described by a
standard Woods-Saxon potential. The Woods-Saxon potential
(WSP) contains an elementary exponential form and depends
upon three factors, namely depth of potential, diffuseness, and
range [20–22].

In the present work, the fusion-fission dynamics of
12C + 248Cm and 16O + 244Pu reactions is analyzed us-
ing the symmetric-asymmetric Gaussian barrier distribution
(SAGBD) model and dynamical cluster-decay model (DCM)
in reference to the experimental measurements of Benerjee
et al. [23] for these reactions. The SAGBD formalism con-
tains a weighted Wong formula by the Gaussian function
and multidimensional character of nucleus-nucleus poten-
tial, which incorporates the role of nuclear structure of the
participants [24]. In this sense, the SAGBD approach [24]
cumulatively considers all dominant channel coupling ef-
fects. Due to the multidimensional character of the SAGBD
model, it compensates the effects of channel couplings ap-
propriately and describes the fusion dynamics of 12C + 248Cm
and 16O + 244Pu reactions around the Coulomb barrier in a
reasonable way. In the SAGBD approach, the impact of chan-
nel couplings is analyzed in terms of the channel coupling
parameter (λ) and percentage reduction of the effective fu-
sion barrier (VCBRED) with respect to the uncoupled Coulomb
barrier (VCB). The larger values of λ and VCBRED imply a
significant contribution from the nuclear structure of the fus-
ing nuclei and hence reflects the need of a significant barrier
modification in the fusion dynamics of the studied systems.
The present work is focused on systems of different entrance
channels forming the same compound nucleus (260No∗). The
enhanced fusion cross sections of 12C + 248Cm over 16O
+ 244Pu reactions imply that 12C + 248Cm has a larger en-
trance channel mass asymmetry over 16O + 244Pu and hence
favors the fusion process. The λ and VCBRED for the 12C
+ 248Cm (16O + 244Pu) reaction are, respectively, 2.53 (3.18)
and 3.75% of VCB (3.68% of VCB) and thus point towards
the presence of significant barrier modifications present in the
SAGBD model.

To signify the impact of individual internal structure de-
grees of freedom associated with the collision partners, the
coupled channel analysis for the 12C + 248Cm and 16O + 244Pu
reactions has been done by using the coupled channel code
CCFULL [25]. In both the reactions, the targets are statically
deformed in their ground state and exhibit nonzero values of
hexadecapole deformation (β4 = 0.039 for 248Cm and β4 =
0.062 for 244Pu). The projectile (12C) is also statically de-
formed in its ground state while the heavier projectile (16O) is
doubly magic and spherical in shape in its ground state. There-
fore, the rotational states of targets up to 10+ spin states of the
ground state rotational band of a target with β2 = 0.250 for
248Cm and β2 = 0.220 for 244Pu are included in the coupled

channel description. In addition, the couplings to hexade-
capole deformation (β4 = 0.039 for 248Cm and β4 = 0.062
for 244Pu) and a low lying quantum state of the projectiles
are necessarily required in the coupled channel calculations
in order to reproduce the experimental data of the considered
reactions. For both reactions, the couplings to a low lying
quantum state of the projectile are needed and hence found to
contribute significantly. This clearly signifies the impacts of
projectile degrees of freedom as well as the rotational states
of the target isotopes along with hexadecapole deformation
of the target for an adequate description of the observed sub-
barrier fusion enhancement for 12C + 248Cm and 16O + 244Pu
reactions. The coupled channel analysis and the SAGBD anal-
ysis reflect almost a similar behavior of the studied reactions
but via different mechanisms and thus both approaches rea-
sonably describe the formation of the same compound nuclei
via fusion channels.

After investigating the formation process of a compound
nucleus (CN) exhibited via 12C + 248Cm and 16O + 244Pu re-
actions, the decay of compound nucleus 260No∗ formed in
the above-mentioned reactions is analyzed by using the DCM
[26–34] based upon the well-known quantum mechanical
fragmentation theory (QMFT) [35–38]. Formerly, the fusion-
fission studies were confined to reactions involving light mass
projectiles such as protons, α, and stable heavy ions induced
on stable targets such as gold, lead, and bismuth nuclei. Later,
the discovery of radioactive nuclear beams to examine the
fusion-fission decay patterns in heavy ion reactions became
an exciting area of research. In such reactions, fusion may
involve the complete amalgamation of the projectile and tar-
get nucleus, leading to a composite system which exhibits
an excited state with specific excited energy (E∗), and also
possesses a significant share of angular momentum. Further,
the decay of different compound nuclei formed in a variety
of heavy ion induced reactions at low energy range has be-
come a compelling subject [39], since it helps to produce new
isotopes that may not occur naturally. Moreover, such mech-
anisms also provide comprehensive knowledge of numerous
nuclear properties and related structural and dynamical ef-
fects. The decay dynamics of the compound nucleus in the
specified mass region (ACN � 200) may also provide a lot of
interesting opportunities [23], such as the exploration of the
competing nature of different compound and noncompound
nucleus (nCN) decay mechanisms such as fusion-evaporation,
intermediate mass fragments, heavy mass fragments, fission
fragments (symmetric/asymmetric), and noncompound nu-
cleus decay processes (fast fission, quasifission), etc. Several
experimental and theoretical efforts [26,40–49] have been
made to examine the competing nature of CN and nCN
processes. Various reaction conditions, such as incident en-
ergy, charge product, mass asymmetry, deformations, and
orientations of the nuclei, play important roles in the emer-
gence of CN and nCN mechanisms [26,40–49]. It has been
observed [50,51] that in nCN processes, the fragments sep-
arate at a relatively shorter timescale as compared to the
CN process. As a consequence, the barrier penetrability in
nCN processes becomes a maximum, which results in a di-
minishing CN fission barrier. The main focus of the present
work is to analyze 12C + 248Cm and 16O + 244Pu reactions,
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which populate the same compound nucleus 260No∗. Here,
the fusion-fission dynamics of the 260No∗ nucleus formed
in the above-mentioned reactions at a wide range of center-
of-mass energies range (Ec.m. ≈ 79 to 109 MeV) is studied
by including the quadrupole deformations (β2) and optimum
orientations (θopt

i ) of the decay fragments. Furthermore, in
reference to experimental data [23], the possibility of nCN
contribution is also explored in the decay of the 260No∗ com-
posite system. With an aim to have a comprehensive analysis
of CN and nCN fission mechanisms, the role of center-of-
mass energy (Ec.m.) and angular momentum (�) is explored
in terms of various parameters of DCM such as fragmentation
potential, preformation probability, barrier modification, etc.

The paper is organized as follows. A brief description of
the methodology used for the calculation is given in Sec. II.
The results on fusion and corresponding decay dynamics are
discussed in Sec. III, and the conclusions drawn are discussed
in Sec. IV.

II. THEORETICAL FORMALISM

The theoretical formalism contains two subsections: (A)
The SAGBD model: to analyze fusion data, the coupled
channel analysis (wherever needed) is done by using the
CCFULL code. (B) The DCM: to explain the decay process of
the chosen systems.

A. SAGBD model

The total cross section on the basis of partial wave analysis
for interacting nuclei is given by

σF = π

k2

∞∑
�=0

(2� + 1)T F
� . (1)

Here, T F
� denotes the transmission probability through the

fusion barrier for the �th wave and

k2 = 2μEc.m.

h̄2 , (2)

wherein μ and Ec.m. denote the fusing system reduced mass
and energy incident in the center of mass frame. The trans-
mission probability in one-dimensional BPM for the Coulomb
barrier (VCB) can be obtained by using the WKB method or
solving the Schrödinger equation [52,53]. Hill and Wheeler
suggested an expression for the probability of transmis-
sion (T HW

� ) for the parabolic interaction barrier, and it is
defined as [53]

T HW
� = [1 + exp(

2π

h̄ω�

(V� − Ec.m.))]
−1, (3)

where h̄ω� represents the barrier curvature associated with the
effective barrier (V�) between fusing nuclei for the �th partial
wave. In Eq. (1), by replacing T F

� with T HW
� , one can obtain

the simple expression for the fusion cross section [4]

σF = π

k2

∞∑
�=0

(2� + 1)T HW
� . (4)

Wong further simplified the Hill-Wheeler formula by using
certain assumptions and obtained the following formula for

calculations of fusion cross sections [54]:

σ Wong(Ec.m.,VCB) = h̄ωBR2
B

2Ec.m.

ln[1 + exp(
2π

h̄ωB
(Ec.m. − VCB)],

(5)

where h̄ωB, RB, and VCB are the barrier curvature, barrier
position, and barrier height, respectively. The Wong formula
has gained a lot of attention and was used most commonly
because of its simplicity in the estimation of fusion cross
sections. Nuclear potential between the fusing nuclei is as-
sumed to be of Woods-Saxon type and is given by the
following relation [4]:

VN (r) = − V0

1 + exp
(R−R0

a0

) , (6)

where V0 is the depth and a0 is the diffuseness of the nuclear
potential. The radius parameter R0 is related to range parame-
ter (r0) via the following relation:

R0 = r0
(
A

1
3
p + A

1
3
T

)
. (7)

The range parameter (r0) is related with the geometry of the
fusing nuclei and its value depends upon the nature of the pro-
jectile and target isotopes. For spherical nuclei, the Coulomb
potential is defined as

VC (r) = ZPZT e2

r
. (8)

The total interaction potential for the s-partial wave (� = 0) is
termed as Coulomb barrier and is defined as

V (r) = − V0

1 + exp( R−R0
a0

)
+ ZPZT e2

r
. (9)

The height of the Coulomb barrier is defined by using the
following relation:

VCB = V (r)
∣∣
r=RB

, (10)

where V (r) denotes the total interaction potential between the
collision partners. The peak position of the Coulomb barrier
is obtained by using the following conditions:

dV (r)

dr

∣∣∣∣
r=RB

= 0 (11)

and

d2V (r)

dr2

∣∣∣∣
r=RB

� 0. (12)

The barrier curvature of the Coulomb barrier is evaluated by
using the following conditions:

h̄ωb =
[−h̄2

μ

d2V (r)

dr2

] 1
2
∣∣∣∣
r=RB

. (13)

The influences of channel coupling effects like rotational
states, vibrational states of interacting nuclei, and/or transfer
channels are not included in the Wong formula. In order to
incorporate the influences of channel coupling effects, we
have used the single weighted Gaussian function in the present
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work. In other words, the fusion cross section is estimated
by a weighting of the simple Wong formula by the single
Gaussian function and such weighted cross sections include
the impact of dominant channel couplings. In the SAGBD
approach [24], the Wong formula as defined in Eq. (5) is
a weighted Gaussian type of weight function and hence is
described below. Following the Stelson’s model [55] and the
Swiek-Wilczynska and Wilczynska (SWW) model [56], the
effective barrier distribution D f (VCB) obeys the following nor-
malization condition:∫

D f (VCB)dVCB = 1. (14)

The weighted Wong formula by a single Gaussian type
function after taking into consideration the multidimensional
character of the realistic interaction barrier is given by the
following relation:

σF =
∫ ∞

0
D f (VCB)σ Wong(Ec.m.,VCB)dVCB. (15)

Here σ Wong(Ec.m., VCB) denotes the Wong formula as given
by Eq. (5). The single Gaussian function used to retrieve the
practical barrier distribution form is given by the following
equation:

D f (VCB) = 1

N
exp

[
− VCB − VB0

2
2

]
(16)

with N = 

√

2π and 
 in the equation is the standard de-
viation and corresponds to the half-width of the peak of the
barrier distribution D f (VCB) at about 60% of the full width.
In the present work, we extract a quantitative contribution of
channel couplings which arises due to the nuclear structure
of the participant. Such a contribution is described in terms
of λ and VCBRED with Veff ≈ (0.95 ± 0.03)VCB and hence is
defined as

λ = VCB − (0.95 ± 0.03)VCB. (17)

VCBRED is defined as the percentage reduction of the effective
fusion barrier with respect to the original Coulomb barrier and
mathematically it is defined as

VCBRED =
[

VCB − Veff

VCB

]
100. (18)

The coupled channel approach is a conventional method to
handle the impacts of the channel coupling effects associated
with the nuclear structure of participant nuclei on the fusion
process. Within it, the following set of coupled channel equa-
tions is to be numerically solved [25]:[−h̄2

2μ

d2

dr2
+ J (J + 1)h̄2

2μr2
+ VN (r)

+ZPZT e2

r
+ εn − Ec.m.

]
�n +

∑
m

Vnm(r)�m = 0. (19)

Here, −→r is the distance between the center of mass of the
projectile and target nuclei. μ is the reduced mass of reacting

nuclei. Ec.m. and εn represent the incident energy in the cen-
ter of mass frame and the excitation energy of nth channel,
respectively. The Vnm(r) are matrix elements of the coupling
Hamiltonian, which in the collective model consists of the
Coulomb and nuclear components. �n and �m are the wave
functions in the nth and mth channels, respectively. VN is the
form of the nuclear potential used to analyze the experimental
data. In code CCFULL [25], the coupled channel equations are
solved numerically by adopting some simplifications like the
rotating frame approximation and ingoing wave boundary
conditions (IWBCs). In the coupled channel model, the im-
pacts of intrinsic channels are incorporated through the static
Woods-Saxon potential.

Since we are mainly interested in the inclusive process,
where the intrinsic degrees of freedom emerge in any final
state, therefore, by taking the sum over all the possible intrin-
sic states the total fusion cross section can be written as

σF (Ec.m.) =
∑

J

σJ (Ec.m.) = π

k2
0

∑
J

(2J + 1)PJ (Ec.m.),

(20)

where k2
0 is the wave vector in the entrance channel. PJ (E ),

which includes the influences of the dominant intrinsic de-
grees of freedom associated with the colliding systems, is the
total transmission coefficient corresponding to the total an-
gular momentum J [25,57]. In coupled channel calculations,
the vibrational couplings in the harmonic limit are taken into
account and the rotational couplings are considered with a
pure rotor assumption. In the rotational model, the nuclear
coupling Hamiltonian can be generated by changing the target
radius in the nuclear potential to a dynamical operator (Ô),

R → R0 + Ô (21)

with Ô as the dynamical operator in rotational coupling and
for a well deformed target nucleus it is defined as

R → R0 + Ô = R0 + β2RT Y20 + β4RT Y40 (22)

with RT parametrized as rcoupA
1
3 , β2 and β4 are the quadrupole

and hexadecapole deformation parameters of the deformed
target nucleus, respectively. In general, the nuclear coupling
matrix elements are evaluated as

VN (r, Ô) = − V0

1 + exp((r − R0 − Ô)/a)
. (23)

We need matrix elements of this coupling Hamiltonian
between the |I0〉 and |I ′0〉 states of the ground rotational band
of the target. These can be easily obtained using a matrix
algebra wherein one first looks for the eigenvalues and eigen-
vectors of the operator Ô. In the program CCFULL, using the
diagonlization of the matrix for operator Ô, the elements are
given by

ÔII ′ =
√

5(2I + 1)(2I ′ + 1))

4π
β2RT

(
I 2 I ′
0 0 0

)2

+
√

9(2I + 1)(2I ′ + 1))

4π
β4RT

(
I 4 I ′
0 0 0

)2

. (24)
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The total coupling matrix elements are obtained by taking
the sum of V (N )

nm and V (C)
nm given as follows:

V (N )
nm = 〈I0|VN (r, Ô)|I ′0〉 − V (0)

N (r)δn.m

=
∑

a

〈I0|α〉〈α|I ′0〉VN (r, λa) − V (0)
N (r)δn.m, (25)

V (C)
nm = 3ZPZT

5

R2
T

r3

√
5(2I + 1)(2I ′ + 1)

4π

×
(

β2 + 2

7

√
5

π
β2

2

)(
I 2 I ′
0 0 0

)2

+ 3ZPZT

9

R4
T

r5

√
9(2I + 1)(2I ′ + 1)

4π

×
(

β4 + 9

7
β2

2

)(
I 4 I ′
0 0 0

)
. (26)

B. The dynamical cluster-decay model (DCM)

The fission mechanism of the hot and rotating 260No∗

nuclear system formed via 12C + 248Cm and 16O + 244Pu re-
actions at various center-of-mass energies Ec.m. is analyzed
using the DCM [26–38]. It is worked out in forms of

(i) collective coordinates of mass (ηA = A1−A2
A1+A2

) and

charge (ηZ = Z1−Z2
Z1+Z2

) asymmetries where 1 and 2
stand, respectively, for heavy and light fragments;

(ii) relative separation R;
(iii) multipole deformations βλi (λ = 2, 3, 4) and orienta-

tions θi of two nuclei or fragments.

The decay cross sections in DCM are calculated by us-
ing decoupled approximations to R and η motion and for
the decoupled Hamiltonian, the Schrödinger wave equation
reads as[

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η, T )

]
ψν (η) = E ν

η ψν (η),

(27)

where ν = 0,1,2... refers to ground, first, and second state
solutions, respectively, and Bηη is the smooth hydrodynamical
mass parameter [58].

The fragmentation potential [VR(η, T )] in Eq. (27) is cal-
culated by a summation of (i) VLDM (T -dependent liquid
drop energy of Davidson [59]) with its constants at T = 0
MeV refitted [38] to give the experimental binding energies
[60,61]; (ii) δU , the empirical shell corrections of Myers and
Swiatecki [62]; and (iii) VC , VP, and V� are, respectively,
the T -dependent Coulomb, nuclear proximity, and angular
momentum dependent potentials for deformed and oriented
nuclei. The expression for VR(η, T ) is given as

VR(η, T ) =
2∑

i=1

[VLDM (Ai, Zi, T )] +
2∑

i=1

[δUi] exp
( − T 2/T 2

0

)
+VC (R, Zi, βλi, θi, T ) + VP(R, Ai, βλi, θi, T )

+V�(R, Ai, βλi, θi, T ). (28)

Here, T0 is considered as T0 = 1.5 MeV and it is the tem-
perature at which shell effects are considered to vanish
exponentially for higher excitation energies.

Further, the formation yield of decaying fragments is
worked out by calculating the preformation factor (P0) (con-
taining the structure information of the compound nuclear
system) as a solution of Eq. (27) and the equation for P0 is
given as

P0 =| ψ (η(Ai)) |2 √
Bηη

2

ACN
. (29)

The preformation factor (P0) shown in Eq. (29) refers to η

motion. Further, Ai (i = 1, 2) represents the mass of fragments
of outgoing channel and ACN is the mass of the compound
nucleus.

Next, in the tunneling process, the barrier penetrability “P”
of clusters or fragments refers to R motion and is calculated
by using the Wenzel-Kramers-Brillouin (WKB) integral as

P = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff ]}1/2dR

]
. (30)

V(R) in Eq. (30) represents the scattering potential and
is defined as the sum of the Coulomb potential, prox-
imity potential, and angular momentum dependent po-
tential [V (R) = VC (R, Zi, βλi, θi, T ) + VP(R, Ai, βλi, θi, T ) +
V�(R, Ai, βλi, θi, T )]. Further Qeff = B(T ) − [B1(T = 0) +
B2(T = 0)] is the effective Q value, for the decay of the hot
compound nucleus at temperature T into two binary frag-
ments observed in the ground state (T = 0) with their binding
energies Bi (i = 1, 2).

Furthermore, Ra in Eq. (30) is the first turning point of the
barrier penetration and is defined as

Ra = R1(α1, T ) + R2(α2, T ) + 
R(T )

= Rt (α, T ) + 
R(T ) (31)

with radius vectors (i = 1,2)

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi )

]
(32)

and T -dependent nuclear radii R0i(T ) of the equivalent spher-
ical nuclei [63],

R0i(T ) = [
1.28A1/3

i − 0.76 + 0.8A−1/3
i

]
(1 + 0.0007T 2).

(33)

In the definition of Ra above, 
R is the neck length parameter,
which represents the relative separation distance between two
fragments. It decides the first turning point of barrier pene-
tration, referring to the actually used barrier height, and also
allows us to define the barrier modification, 
VB = V (Ra) −
VB, which relates V (Ra) and the top of the barrier VB. Further,
the nuclear temperature (T ) used above is related to the com-
pound nucleus excitation energy as E∗

CN = (ACN/9)T 2 − T .
Finally, after getting P and P0, the expression of the decay

cross section is given by

σ =
�max∑

�=�min

σ� = π

k2

�max∑
�=�min

(2� + 1)P0P; k =
√

2μEc.m.

h̄2 ,

(34)
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FIG. 1. (a) The variation of the Coulomb barrier (VCB) as a
function of radial separation (r) between projectile and target for
12C + 248Cm and 16O + 244Pu reactions and (b) an amplified version
of (a) near barrier positions and calculations is obtained by using the
SAGBD model.

where μ = [A1A2/(A1 + A2)]m is the reduced mass, and �min

(where the decay cross section starts contributing) and �max

are the minimum and maximum angular momentum, respec-
tively. For CN mechanisms, the maximum angular momentum
is �CN

b f [64], above which compound nucleus formation is
hindered (or fission barrier diminishes), and for nCN, �max is
the upper limit of the partial wave above the �CN

b f value up to
which the nCN peripheral collisions participate in the fission
dynamics.

III. RESULTS AND DISCUSSION

A. Fusion analysis of 12C + 248Cm and 16O + 244Pu reactions

A comparison between Coulomb barriers of the chosen
reactions is shown in Fig. 1. From this figure, it has been
observed that the Coulomb barrier height varies for various
systems. In other words, there is a variation in the radial
dependency of interaction barriers at the peak that induces the
different barrier characteristics for the chosen reactions. As a
consequence, the sub-barrier enhancement in the magnitude
of the fusion excitation function depends on the combination
of colliding partners. We took the Woods-Saxon parametriza-
tion of the nucleus-nucleus potential for the fusion analysis.
The sub-barrier fusion data are highly dependent on intrinsic
degrees of freedom linked with the structure of interacting
nuclei, while above barrier fusion data are resistant to the
effects of channel coupling. Hence, the above barrier fusion
data may be replicated by one-dimensional BPM. The po-
tential depth (V0), the diffuseness (a0), and range parameter
(r0) for the studied systems are listed in Table I and are used
to retrieve the behavior of the fusion excitation functions.
By taking the values of the potential parameter as given in
Table I, the barrier characteristics such as Coulomb barrier
(VCB), peak position (RB), and the barrier curvature (h̄ωB) are
obtained by employing the conditions as defined by Eqs. (10)
to (13) and are given in Table II. The radial dependency of the
regular WSP, Coulomb potential, and the Coulomb barrier for

TABLE I. The parameters of the Woods-Saxon potential such as
depth (V0), diffuseness (a0), and range (r0), which have been used to
analyze the experimental data for different heavy ion fusing systems.

V0 a0 r0

S. No. Colliding systems (MeV) (fm) (fm)

1 12C + 248Cm 180 0.72 1.04
2 16O + 244Pu 180 0.72 1.06

various systems is depicted in Fig. 2. The barrier formed by
combining the attractive nuclear potential (VN ) and repulsive
Coulomb potential (VC) is termed the Coulomb barrier (VCB).
The dashed line in every panel indicates the radial dependency
of the Coulomb potential, while the dash dot-dot line in every
panel indicates the radial dependence of the nuclear potential.

If channel coupling effects are absent then the main peak
of the barrier distribution appears around the Coulomb barrier.
However, owing to the nuclear structure effects, the height
and shape of the main peak of the barrier distribution varies
towards the left or right side of the Coulomb barrier and these
results are expressed in the SAGBD model in terms of the
channel coupling parameter (λ). Thus, λ intrinsically refers
to different kinds of nuclear structure degrees of freedom
that are responsible for enhancing the sub-barrier fusion data.
The VCBRED parameter reflects the percentage reduction or
deviation of the effective fusion barrier between interacting
nuclei due to the consideration of different nuclear structure
effects associated with interacting nuclei with respect to the
uncoupled Coulomb barrier (VCB). These parameters (Veff ,
VCBRED, and λ) have been extracted from the SAGBD analysis
and are listed in Table III.

Figures 3(a) and 3(b) represent the total fusion excitation
functions for 12C + 248Cm and 16O + 244Pu systems calculated
by using the Wong formula and SAGBD model. The solid line
represents the estimations taken by using the SAGBD model
for every figure, while the dash dot dot line corresponds to
Wong estimations and the experimental data is denoted by
symbols depicted in the figure. The estimated fusion excita-
tion functions are significantly underpredicted in comparison
with the experimental findings because the simple Wong for-
mula does not include the impacts of the channel couplings
that result due to the nuclear geometry of the interacting
nuclei. The deviations between theoretical results and exper-
imental data are a maximum at below barrier energies and
these deviations do not appear in the above barrier regions.
This indicates that above barrier fusion data have negligible
dependence on the intrinsic structure of participating nuclei.

TABLE II. The values of Coulomb barrier (VCB), barrier position
(RB), and barrier curvature (h̄ωB) for different heavy ion fusing
systems.

VCB RB h̄ωB

S. No. Colliding systems (MeV) (fm) (MeV)

1 12C + 248Cm 67.29 11.54 4.43
2 16O + 244Pu 86.40 11.74 5.07
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FIG. 2. The variations of the Coulomb (VC) and nuclear (VN )
potentials along with the Coulomb barrier (VCB) as a function of
radial separation between projectile and target for (a) 12C + 248Cm
and (b) 16O + 244Pu reactions calculations are obtained by using the
SAGBD model.

However, the channel coupling effects caused by the nuclear
composition of the fusing partners are crucially important
in the sub-barrier realm and, without recognizing them, the
total fusion data cannot be replicated at near and below the
Coulomb barrier.

Benerjee et al. [23] experimentally measured the excitation
function for the formation of the 260No∗ compound nucleus
in the energy range Ec.m. = 57.91 to 84.96 MeV (for the
12C + 248Cm system) and Ec.m. = 79.54 to 109.01 MeV (for
the 16O + 244Pu system). The authors suggested that the mass-
asymmetry structure of the 12C + 248Cm system is found to
be larger than that of the 16O + 244Pu system. Owing to the
presence of multidimensional character, the SAGBD model
predictions automatically sustain the influential channel-
coupling effects in the sub-barrier fusion mechanism of the
chosen reactions. The multidimensional nature of the nucleus-
nucleus potential that emerged due to the Gaussian type of
weight function, hence reflects inherently the influence of
nuclear structure in the SAGBD estimations. This lowers the
fusion barrier between the collision partners and, as a result,
the SAGBD model predicts larger fusion cross sections in the
sub-barrier domain. In this manner, the model results shift to-
wards experimental data in below-barrier energy regions, and
thus explain the reported fusion enhancements with respect to
the predictions of one-dimensional BPM. Thus, the SAGBD
predictions appropriately describe the fusion mechanism of
12C + 248Cm and 16O + 244Pu systems qualitatively. On the
other hand, the impacts of channel couplings are described in

TABLE III. The values of channel coupling parameter λ and
VCBRED for the chosen reactions under study.

Colliding VCB Veff λ

S. No. systems (MeV) (MeV) (fm) VCBRED

1 12C + 248Cm 67.29 64.76 2.53 3.75% of VCB

2 16O + 244Pu 86.40 83.22 3.18 3.68% of VCB

FIG. 3. The total fusion cross section for (a) 12C + 248Cm and
(b) 16O + 244Pu reactions as a function of Ec.m. obtained by using the
Wong formula and SAGBD model. These results are compared with
the experimental data taken from Ref. [23].

terms of channel coupling parameters (λ) and the percentage
reduction of the effective barrier height (VCBRED) with respect
to original barrier and results are listed in Table III. The value
of λ for 12C + 248Cm and 16O + 244Pu systems is found to
be 2.53 and 3.18, respectively. The larger value of λ implies
that the channel couplings are significant at sub-barrier ener-
gies and hence greater barrier modifications are needed for
an adequate fusion description of the dynamics of studied
reactions. Besides the presence of a nucleon transfer channel
in the 16O + 244Pu system, the sub-barrier fusion enhancement
of this system is lower than that of the 12C + 248Cm reaction.
This fact can be correlated with the larger entrance channel
mass asymmetry for the 12C + 248Cm reaction. The value of
VCBRED for the 12C + 248Cm and 16O + 244Pu systems is found
to be 3.75% and 3.68% of VCB, respectively.

FIG. 4. The full momentum transfer (FMT) or [complete fusion
(CF) cross section] of (a) 12C + 248Cm and (b) 16O + 244Pu reactions
as a function of Ec.m. obtained by using the Wong formula and
SAGBD model. These results are compared with the experimental
data taken from Ref. [23].
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FIG. 5. The total fusion cross section for (a) 12C + 248Cm and
(b) 16O + 244Pu reactions as a function of Ec.m. obtained by using
coupled channel code CCFULL. These results are compared with the
experimental data taken from Ref. [23].

Figures 4(a) and 4(b) represent the complete fusion cross
sections for the 12C + 248Cm and 16O + 244Pu systems ob-
tained by using the Wong formula and SAGBD model. As
already mentioned the simple Wong formula does not include
the influences of the nuclear structure of reaction partners,
therefore, the predictions of complete fusion cross sections re-
main significantly lower than the experimental data. On the
other hand, the SAGBD model obtains the required order
of the CF cross sections due to the multidimensional nature
of the nucleus-nucleus interaction potential. The calculated
results for chosen reactions are compared with the CF data
in Fig. 4.

In order to identify the effects of the internal structure de-
grees of freedom of the collision partners, the coupled channel
calculations are performed by using the coupled channel code
CCFULL and the results of calculations are shown in Fig. 5.
The parameters of the standard Woods-Saxon potential, such
as potential depth, diffuseness, and range parameter, which
are used in the coupled channel code CCFULL for performing
the coupled channel calculations, are listed in Table IV. These
potential parameters are chosen in such a way that the above
barrier fusion data can be reasonably revolved by using no
coupling calculations. The ground state deformation param-
eters and corresponding excitation energies of the target and
the low lying quantum states such as 2+ and 3− vibrational
states of the projectiles are taken from Refs. [9,65–67] and

TABLE IV. The parameters of the Woods-Saxon potential such
as depth (V0), diffuseness (a0), and range (r0), which have been
used in the coupled channel code CCFULL for the coupled channel
calculations of the present fusing systems.

V0 a0 r0

S. No. Colliding systems (MeV) (fm) (fm)

1 12C + 248Cm 150 0.66 1.130
2 16O + 244Pu 150 0.66 1.150

TABLE V. The deformation parameters and corresponding ex-
citation energies of low lying quantum states which are used in the
coupled channel calculations of the present reactions which are taken
from Refs. [9,65–67].

Nucleus β2 E2 (MeV) β3 E3 (MeV)

12C 0.592 4.440 1.550 9.640
16O 0.350 6.920 0.710 6.130
248Cm 0.250 0.0434 – –
244Pu 0.220 0.0442 – –

are listed in Table V. For both cases, the coupled channel
calculations are obtained by incorporating the rotational states
up to 10+ spin states of the ground state rotational band of
target isotopes. Additionally, the couplings to higher order
deformation, such as β4 for target and 2+ quantum states of
the projectile, which are found to play a very important role
in the sub-barrier fusion enhancement of the given reactions,
are also incorporated for addressing the experimental data of
the studied systems.

For the 12C + 248Cm reaction, the no coupling calcula-
tions, in which the colliding systems are taken as point-like
particles and their internal structure are ignored, are substan-
tially smaller than those of the experimentally observed data
particularly in below barrier energy regions. As far as the
projectile is concerned, it is statically deformed in its ground
state, therefore, the quadrupole deformation of the projectile is
expected to affect the fusion dynamics of the studied system.
The deformation parameter for the quadrupole state of the
target is much larger than that of its octupole deformation.
Additionally, the excitation energy corresponding to the 2+
vibrational state lies much lower than that of its 3− vibrational
state as given in Table V, therefore, the couplings of the
relative separation coordinate with a 2+ vibrational state are
expected to influence the fusion yields at sub-barrier energies.
The couplings to the rotational states up to 10+ spin states of
the ground state rotational band of target isotopes enhance the
magnitude of the fusion cross sections in below barrier energy
regions with respect to the outcomes of the one-dimensional
BPM as evident from Fig. 5(a). Additionally, the couplings
to higher order deformation such as β4 for the target and 2+
quantum states of the projectile, which are found to play a
very important role in the sub-barrier fusion enhancement of
the given reactions, are also incorporated for addressing the
experimental data of the studied systems. The so-obtained
calculations are unable to address the experimental data in
sub-barrier energy regions but these calculations reasonably
recover the experimental data at above barrier energies. To
improve the theoretical outcomes, the coupling to β4 = 0.039
is included in the coupled channel description. Such calcu-
lations further converge the calculations towards the data in
sub-barrier energy regions but fail to reproduce the experi-
mental data. This demands couplings to more intrinsic degrees
of freedom of the collision partner in the coupled channel
calculations. Therefore, the couplings to one phonon 2+ vi-
brational state of the projectile as well as rotational states
up to 10+ spin states of the ground state rotational band of
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target isotopes along with β4 = 0.039 of the target are done
in the coupled channel code CCFULL. The so-obtained cou-
pled channel calculations adequately describe the sub-barrier
fusion dynamics of the present reaction in the whole range of
incident energy as depicted in Fig. 5(a). In this sense, the cou-
plings to dominant vibrational excitations of the participants
appropriately describe the observed fusion dynamics of the
chosen system.

In the case of the 16O + 244Pu reaction, the no coupling es-
timations remain substantially underestimated with reference
to the experimental data in the below barrier energy range.
This is due to the fact that no coupling outcomes, except
for the relative motion between the participants, entertain
the additional intrinsic degrees of freedom associated with
the collision partners. To address the experimental data, the
couplings to internal structure degrees of freedom of the pro-
jectile and target must be incorporated in the coupled channel
analysis. As the target isotope is well deformed in its ground
state, is reasonable to consider the rotational states of the
target rather than its vibrational states. The considerations of
the rotational states up to 10+ spin states of the ground state
rotational band of the target substantially increase the fusion
probability as well as the fusion yields particularly in sub-
barrier energy regions. The inclusion of the rotational states of
the target along with β4 = 0.062 of the target is not sufficient
to account for the observed sub-barrier fusion dynamics of a
given reaction. The couplings to additional intrinsic degrees of
freedom associated with the projectile are needed to reproduce
the sub-barrier fusion enhancement of the chosen reaction.
Although, the projectile is a doubly magic nucleus and the
vibrational states of this nucleus lie at much higher excitation
energies, the one-phonon 3− vibrational state of the projectile
is included in the coupled channel description. Thus, by enter-
taining the rotational states up to 10+ spin states of the ground
state rotational band of the target along with β4 = 0.062 of
the target and the one-phonon 3− vibrational state of the pro-
jectile, the coupled channel calculations properly describe the
sub-barrier fusion anomaly of the present reaction as evident
from Fig. 5(b). Besides the projectile vibrational states lying
at much higher excitation energies, the projectile contributes
to the fusion process significantly and hence unambiguously
identifies the participation of the projectile degrees of freedom
in the fusion dynamics of the 16O + 244Pu reaction.

In Fig. 6, the fusion excitation functions for the
12C + 248Cm and 16O + 244Pu systems are plotted as a func-
tion of Ec.m.

VCB
. Both reactions have separate entrance channels,

but they form the same compound nucleus, i.e., (260No∗). In
literature [19,24], it has been emphasized that greater entrance
channel mass asymmetry (η = |AP−AT

AP+AT
|) supports the mecha-

nism of fusion reactions resulting in the enhancement of the
fusion cross sections at the sub-barrier realm. Thus, η can
influence the fusion mechanism of the chosen reactions and
its magnitude is 0.907 for the 12C + 248Cm reaction and 0.877
for the 16O + 244Pu reaction. The larger value of η for the
12C + 248Cm system as compared to the 16O + 244Pu system
causes some extra fusion enhancement in the sub-barrier do-
main for the earlier case.

In Fig. 7, the comparison of theoretical predictions based
upon the SAGBD model and coupled channel approach has

FIG. 6. Fusion cross sections data for (a) 12C + 248Cm and
(b) 16O + 244Pu reactions are compared in reduced scale Ec.m./VCB.
The experimental data of the chosen reactions are taken from
Ref. [23].

been made and, from this figure, it is unambiguously clear
that the SAGBD model predictions and coupled channel
calculations reflect an almost similar behavior of the stud-
ied reactions in the close vicinity of the Coulomb barrier.
The coupled channel calculations performed by incorporating
the appropriate number of intrinsic channels associated with
the collision partners fairly reproduce the experimental data
of 12C + 248Cm and 16O + 244Pu systems in near and sub-
barrier energy regions. In a similar sense, the Gaussian type of
weight function used in the SAGBD model properly includes
the cumulative influences of the all the dominant intrinsic
channels that are responsible for the observed sub-barrier
fusion enhancement of the chosen reaction. The Gaussian type

FIG. 7. The total fusion cross sections obtained by using the
coupled channel approach and SAGBD model are compared for
(a) 12C + 248Cm and (b) 16O + 244Pu reactions as a function of Ec.m..
The calculated results are also compared with the experimental data
taken from Ref. [23].
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FIG. 8. Variation of fragmentation potential of (a) light particles
and (b) fission fragments as a function of fragment mass in the decay
of hot and rotating 260No∗ composite system at Ec.m. = 109.01 MeV
for different �- ranging 0 � � � �max.

of weight function taken in the present work seems to be
reasonable for explaining the behaviors of the heavy ion fu-
sion dynamics.

After studying the fusion process of 12C + 248Cm and
16O + 244Pu reactions, the subsequent decay analysis of com-
pound nucleus 260No∗ is analyzed in the next section.

B. Fission analysis of the 260No∗ nucleus

1. Induced fission

This section deals with the decay study of 260No∗ at
the center-of-mass energies spread Ec.m. ≈ 79 to 109 MeV
by including the quadrupole deformations (β2) and opti-
mum orientations (θopt

i ) of the decay fragments. According
to the experimental observation, the nCN fission component
competes with the CN fission process for the chosen CN.
Consequently, the possibility of nCN contribution is also ex-
plored in the decay of the 260No∗ compound nucleus. With an
aim to have comprehensive analysis of the CN and nCN fis-
sion mechanism, the role of the center-of-mass energy (Ec.m.)
and angular momentum (�) is explored in terms of various
observables of DCM such as the fragmentation potential, pre-
formation probability, and barrier modification.

First to understand the decay of the 260No∗ composite
system formed in the 16O + 244Pu reaction, the fragmentation
behavior of light particles and fission fragments is studied.
Figure 8 depicts the fragmentation potential VR(η, T ) for light
particles and fission fragments (FF) in the decay of the 260No∗

nucleus at maximum given center of mass energy, Ec.m. =
109.01 MeV at different values of angular momentum ranging
from 0 � � � �max. The calculated T -dependent collective
potential energy VR(η, T ) gives the relative contribution of
possible decay fragments. It is noticed from Fig. 8 that lower
� states are energetically more favorable for light particles
(LPs) and higher ones for the FF. This implies that at lower
� values the probability of LPs to participate in the decay

FIG. 9. Variation of preformation probability (highlighting the
fission region) as a function of fragment mass at two extreme
energies.

process is comparatively more than that of the fission frag-
ments. Because at lower � values the fragmentation potential
([VR(η, T )] of LPs is less than that of fission fragments as
shown in the figure. A lesser fragmentation potential signi-
fies more of a possibility of fragments to participate in the
decay channel. However, if we compare VR(η, T ) of LPs and
fission fragments at higher � values, the value of VR(η, T )
is lesser for fission in comparison to that of LPs. Therefore,
at higher angular momentum, the fission region acquires a
lower fragmentation potential (equivalently, the higher the
preformation probability P0) in comparison to light particles.
This confirms that the fission component dominates at higher
� value. Furthermore, it is important to mention here that
the value of VR(η, T ) increases with an increase in the �

value for both decay modes. However, the structure of the
fragmentation potential for both light particles and fission
fragments is observed to remain similar at all � values. The
variation of the potential energy surfaces reveals that 260No∗

shows nearly symmetric mass distribution, which is in line
with the experimental observation [23]. The same observation
is drawn at other energies (not shown here to avoid repetition).
It is relevant to mention that, in the framework of DCM,
the preformation factor P0 is the solution of the stationary
Schrödinger equation in the η coordinate, where the fragmen-
tation potential goes as input [see Eq. (27)].

After studying the variation of the fragmentation potential,
we analyze the decay dynamics of the 16O + 244Pu reaction
through the preformation probability P0 (see Fig. 9), plotted as
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TABLE VI. The DCM-calculated fission cross sections for the
260No∗ nucleus at center-of-mass energies ranging from Ec.m. =
79.54 to 109.01 MeV. Also tabulated are the relevant fitted neck-
length parameters 
R, temperatures T , and excitation energies (E∗).

S. No. Ec.m. E∗ �max 
R σ DCM
FMT σ

exp
FMT

(MeV) (MeV) (h̄) (fm) (mb) (mb)

1 79.54 39.00 134 0.974 15.50 15.8 ± 0.2
2 81.84 41.30 134 1.001 43.80 44.7 ± 0.5
3 84.87 44.33 135 1.026 113.74 113.2 ± 0.9
4 88.86 48.32 136 1.057 251.38 250.7 ± 1.7
5 92.89 52.35 137 1.077 391.69 388.6 ± 2.4
6 97.03 56.49 138 1.089 543.60 538.6 ± 2.4
7 100.93 60.39 139 1.108 752.00 754.0 ± 2.2
8 109.01 68.47 141 1.200 876.00 874.0 ± 5

a function of heavy mass fragments at �max, as the fission con-
tribution becomes prominent at higher � values. Comparing
the preformation profile at extreme energies, it is observed that
the magnitude of P0 changes very minutely. Also, the mass
distribution for fission fragments is almost identical and sym-
metric in nature, independent of Ec.m.. Furthermore, the fission
cross sections for 260No∗ at all given energies are addressed by
optimizing the neck length parameter (
R), the only param-
eter of the DCM, and are tabulated in Table VI along with
other essential quantities. It is clearly observed from the table
that the DCM calculated cross sections are in good agreement
with the experimental data [23]. The neck length parameter
may be used to estimate the barrier modification (
VB) for the
decay of the compound nucleus. Thus, to extend the fission
analysis of the 260No∗ compound system, 
VB, which is an
in-built barrier lowering property of the DCM, is scrutinized
as a function of center of mass energy for both symmetric and
asymmetric fission components in Fig. 8.

Figure 10 depicts the variation of |
VB| as a function of
center of mass energy for the fission decay of the 260No∗

compound system for both symmetric and asymmetric fis-
sion components at extreme � values. It is observed from the

FIG. 10. Variation of |
VB| = |V (Ra) − VB| as a function of cen-
ter of mass energy (Ec.m.) for symmetric and asymmetric fission
fragment at extreme � values.

figure that the magnitude |
VB| is lower for the symmetric
component. This signifies that the asymmetric fission com-
ponent demands higher barrier modification to participate in
the fission decay of the 260No∗ compound system. Further,
|
VB| is highest at the lowest energy and at lower � value.
This implies that |
VB| decreases with an increasing value of
the angular momentum and Ec.m.. As a consequence, a larger
barrier modification is required at lower energies and lower �

values. Further, one may also observe that at the higher three
energies for maximum � state, the magnitude |
VB| almost
approaches zero. This corresponds to the disappearance of the
fission barrier at a large value of angular momentum due to
higher rotational energy, which inhibits the formation of an
equilibrated compound nucleus at higher � values [64]. This
signifies that a hot and rotating composite system undergoes
the nCN process, and may lead to the formation of nCN fission
fragments similar to those in the fusion-fission (ff) process
at higher � states [64]. This claim is in agreement with the
referred experimental data [23].

In view of this, an attempt is made to estimate the nCN
fission cross sections at the higher three energies (Ec.m. =
97.03, 100.93, 109.01 MeV). Now, for � values, where the
fission barrier disappears, the barrier penetrability is maxi-
mum [68]. The nCN cross sections (σnCN) are estimated by
summing the fission contribution of fragments, at those �

values where the fission barrier starts vanishing or the bar-
rier penetrability [see Eq. (30)] becomes one [64]. The σnCN

values calculated using the DCM are depicted in Fig. 11. This
figure reveals the variation of nCN fission cross sections as
a function of the fragment mass at Ec.m. = 97.03, 100.93,
109.01 MeV. It is observed from the figure that with an in-
crease in energy, nCN contribution increases with a maximum
at Ec.m. = 109.01 MeV. Furthermore, Fig. 11 clearly shows
that unlike CN fission, the mass distribution of nCN fission
fragments is purely asymmetric in nature, which is in line with
the experimental estimate [23].

Next, to analyze the entrance channel effects on CN fission,
the fission study of another incoming channel 12C + 248Cm
forming a 260No∗ compound nucleus is also demonstrated
at common Ec.m. in order to make a comparison between
the mass distribution profile of the 260No∗ compound sys-
tem while considering both incoming channels (12C + 248Cm
and 16O + 244Pu). It is important to note that the calcula-
tions for the latter incoming channel are done only at the
two extreme energies, i.e., Ec.m = 81.24 and 84.96 MeV. The
calculated fission cross sections match the experimental data
nicely and the corresponding neck length parameter for both
the energies is nearly 
R = 1.0 fm. Figure 12 represents the
preformation distribution of 260No∗ at center of mass energy,
i.e., 81.24 MeV for a maximum value of angular momen-
tum while using the hot oriented deformed approach. It is
observed that the structural profile remains almost the same
for both incoming channels, although a minute difference in
their magnitudes is visible. A nearly symmetric fission peak
is exhibited for both cases and the fragments contributing
towards fission cross sections are identical. The fragment hav-
ing the maximum probability to be preformed is 128Sn (with
complementary fragment 132Te). Both emitting fragments are
near the magic closure Z = 50 and N = 82.
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FIG. 11. Variation of nCN cross sections for fission fragments
contributing to nCN decay.

2. Spontaneous fission

Now, it is a well known fact that nobelium, being a highly
fissile nucleus, exhibits spontaneous fission also. The data
on the spontaneous fission half-lives of ‘No’ are observed
experimentally and the study on the spontaneous fission (SF)

FIG. 12. The comparison of preformation probability distribu-
tion of compound nuclear system 260No∗ considering two different
incoming channels.

of No has been studied previously using the QMFT based
preformed cluster model (PCM) (the ground state version
of the DCM) in [69]. Here, an attempt is made to compare
the preformation distributions of 260No using the spontaneous
fission and induced fission phenomena. Panel (a) of Fig. 13
presents the preformation probabilities for the ground state
as well as excited state fission of 260No, while considering
the hot compact configuration of emitting fragments. It is
seen that the mass distribution for all decay modes is almost
the same for the hot deformed approach at both energies. It
is to be noticed that the highest value of angular momen-
tum is valid just for the induced decay mode of the 260No
compound nucleus. This result holds well in accordance with
our previous study [70] on plutonium isotopes, where the
structural profile of spontaneous and induced fission was in-
vestigated. Further, the role of orientations is investigated
along with the deformation parameter. In panel (b) of this fig-
ure, the relevance of hot compact orientation is compared with
the cold elongated configuration of decaying fragments at the
highest compound nucleus energy having maximum value of
angular momentum. The behavior of the fission fragments
gets completely modified when we move from teh hot com-
pact configuration to the cold elongated one. Whereas the hot
configuration exhibits symmetric fragmentation, on the other
hand, a purely asymmetric mass distribution is noticed in the
case of a cold oriented configuration of emitting fragments.

Finally, the ground state fission of the 260No nucleus is
analyzed by using hot compact and cold elongated configu-
rations of decaying fragments, so as to see the significance of
orientations in the nuclear reactions. The comparison between
the two approaches is presented in panel (c) of Fig. 13. It is
concluded that there is a major difference in the preformation
profile of 260No for hot and cold approaches. The hot compact
configuration exhibits a purely symmetric mass distribution,
on the other hand, the cold deformed approach shows a purely
asymmetric probability curve due to which the most probable
fission fragments change. An almost similar behavior is seen
for both spontaneous as well as induced fission cases by using
the hot and cold oriented configurations. However, if we con-
centrate on the distinction between hot and cold orientations
on the basis of the most probable emitting fragments, exactly
the same fragments are found to be contributing in sponta-
neous as well induced fission phenomena for hot oriented
configuration. The fragment having the highest probability is
128Sn complementary to the 132Te nucleus. On the other hand,
in the case of the cold-elongated approach, nearby fragments
are found to be contributing in the fission of 260No. For the
spontaneous fission case, these fragments are seen to be 102Zr
and 158Sm, whereas the fragments change to 100Zr and 160Sm,
while we consider the induced fission phenomenon. Thus, the
above results indicate the importance of orientations along
with the deformations of the emitting fragments.

Finally, to interpret the validity of DCM, the preforma-
tion distribution of the spontaneous fission of the 262No
nucleus calculated using the DCM is depicted in Fig. 14. This
figure clearly shows that the mass distributions of the 262No
nucleus are purely symmetric and have nice agreement with
the referred data [23]. Also, it is worth mentioning here that
the fission mass distribution of heavy compound systems
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FIG. 13. Preformation distribution of 260No∗ showing the comparison of (a) spontaneous and induced fission (at extreme energies) using
hot compact configuration, (b) hot-compact and cold elongated configuration of induced fission fragments, and (c) hot-compact and cold
elongated configuration of spontaneous fission fragments.

FIG. 14. DCM calculated preformation distribution of SF of the
262No nucleus.

obtained using DCM has also been found in reasonable agree-
ment with the available experimental mass distribution data in
previously done work [33,70].

IV. SUMMARY

In the present analysis, we have examined the formation
and decay of the 260No∗ nucleus. For fission analysis, theoret-
ical calculations for 12C + 248Cm and 16O + 244Pu reactions
have been done using the SAGBD model and Wong for-
mula. As expected, the Wong formalism could not explain
the fusion data in the sub-barrier region. This clearly sug-
gests the importance of channel coupling effects in sub-barrier
fusion dynamics. These effects enhance the fusion cross sec-
tions especially in the below barrier region and appropriately
explain the fusion mechanism of studied reactions. In conju-
gation, the SAGBD approach intrinsically incorporates such
effects and reasonably reproduces the experimental data. The
effects of intrinsic degrees of freedom of participating nu-
clei have been quantitatively determined in terms of channel
coupling parameter λ. The value of λ for 12C + 248Cm and
16O + 244Pu reactions has been found to have values of 2.53
and 3.18, respectively. In addition, reduced scale analysis has
been done and more enhancements found for the 16O + 244Pu
over the 12C + 248Cm reaction, which reflects the importance
of entrance channel mass asymmetry effects. Thus, SAGBD
calculations qualitatively and quantitatively reproduced the
fusion mechanism of the studied reactions.

The coupled channel calculations are performed by using
the coupled channel code CCFULL and in the coupled channel
description. The impacts of inelastic surface excitations of
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collision partners are considered explicitly. For both reactions,
the inclusions of multiphonon vibrational states such as 2+
and 3− associated with the target isotopes are taken into
account and found to play a very crucial role in the fusion
dynamics of the given reactions. The couplings to the three
phonon 2+ and one phonon 3− vibrational states of target
isotopes in both reactions have turned out to be dominant
for a complete description of the observed sub-barrier fu-
sion enhancement. Furthermore, the couplings to projectile
degrees of freedom in both reactions are additionally required
to explain the fusion dynamics of studied systems and hence
turned out to contribute significantly in the fusion process.
The coupled channel outcome is not able to retrieve the sub-
barrier fusion data of studied reactions without including the
projectile degree of freedom. This clearly points towards the
dominant impacts of projectile degrees of freedom as well as
the multiphonon vibrational excitations of the target isotopes
for an adequate description of the sub-barrier fusion enhance-
ment of 12C + 248Cm and 16O + 244Pu reactions. The coupled
channel calculations and the SAGBD calculations represents
almost similar behavior of the given reactions but via different
mathematical formulations and thus both approaches fairly
explain the formation of compound nuclei via fusion channels.

Further, the fission analysis of the 260No∗ nucleus formed
in 16O + 244Pu and 12C + 248Cm reactions is studied using the

dynamical cluster decay model. The decay study is carried
out at wide spread center-of-mass energies. The fission cross
sections are calculated at all given energies and it is observed
that the mass distribution of 260No∗ is nearly symmetric for
compound nucleus fission. Further, at higher energies the
diminishing of the fission barrier indicates the presence of
some nCN process, which is in agreement with the referred
experimental data. In view of this, the contribution of the
nCN fission cross section (σ nCN

fission) is also explored. The mass
distribution of σ nCN

fission is asymmetric (unlike CN fission) and in
agreement with experimental estimates. Finally, comparative
analysis of the excited state and spontaneous fission is studied.
Here, the role of orientations is comprehensively analyzed in
view of the ground state as well as the excited state fission of
the 260No∗ nucleus. The most probable fission fragments for
both decay modes are observed to be identical.
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