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In-medium nucleon-nucleon cross section in nuclear matter
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In-medium nucleon-nucleon (NN) cross sections at various densities and isospin asymmetries are investigated
systematically in the framework of the Brueckner-Hartree-Fock approach. The calculations are base on the
exact treatment of the center-of-mass momentum instead of the total momentum approximation employed in
previous works. The neutron-proton in-medium cross section is shown to exhibit nearly isospin asymmetry
independence. For convenience in application, analytical formulas embodying the medium correction to free NN
cross section with parameters calibrated to the calculated results have been provided. Using these formulas, the
transverse and elliptic flows of emitted nucleons in heavy-ion collisions are studied within the isospin-dependent
Boltzmann-Uehling-Uhlenbeck transport model. We find the medium effect of the cross section from the G
matrix contributes to the transverse and elliptic flows oppositely to and obviously smaller than that from
the effective mass. In addition, the present microscopic in-medium cross sections can significantly revise the
predictions of the transverse and elliptic flows compared to the in-medium cross sections previously adopted in
transport models for heavy-ion collisions.
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I. INTRODUCTION

The in-medium nucleon-nucleon (NN) cross sections play
an essential role in the related topics of neutron stars (NSs)
and the transport-model simulation of heavy-ion collisions
(HICs) [1–8]. For NSs, the shear viscosity is the primary
damping mechanism that hinders the gravitational-wave-
driver r-mode instability of rapidly rotating NSs at low
temperature [9–11], while the thermal conductivity, which
measures the ability to conduct the heat, is an important input
for modeling NS cooling [12,13]. These two transport coef-
ficients crucially depend on the effective NN scattering cross
sections near Fermi momentum [7,8]. In the numerical HIC
simulations by transport models such as the isospin-dependent
Boltzmann-Uehling-Uhlenbeck model [14,15], particles drift
in the presence of the mean field while undergoing two-
body scatterings, which requires the knowledge of in-medium
NN cross sections and the nuclear mean field. Microscopic
approaches, which can determine both the mean-field and
the two-body NN cross sections self-consistently based on
the bare NN force, exhibit the unique advantage of deriving
these inputs on the same footing. In the previous literature,
several calculations of the effective NN cross sections had
been performed based on microscopic approaches, such as
the Brueckner theory [16,17], the Dirac-Brueckner theory
[18–20], variational approaches [21], and so on.
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In comparison to the free-space NN cross sections, the
in-medium effects originate from the scattering amplitude and
the density of the states [17]. In the Brueckner theory, the
effective G matrix, which embodies the many-body effects
on NN collisions via the mean field and the Pauli blocking,
serves as the in-medium scattering amplitude. In the zero
density limit, the G matrix develops into the T matrix, and
the corresponding Brueckner-Bethe-Goldstone (BBG) equa-
tion reduces to the Lippmann-Schwinger (LS) equation. One
can obtain the free-space NN cross section directly by solving
the LS equation. In addition to the scattering amplitude, the
modified density of states due to the many-body effects is es-
sentially determined by nucleon effective masses. These two
contributions, i.e., the modification of the G-matrix elements,
and the modification of the density of states in the medium,
can be embodied self-consistently in the Brueckner theory.
Actually, the latter in-medium effect strongly overwhelms the
first one.

In medium, the cross section depends on the motion state
of the colliding pair with respect to the medium, i.e., the
momenta of the two colliding nucleons k1 and k2. Accord-
ingly, the in-medium NN cross section relies on the total
momentum of the colliding pair K = |k1 + k2| besides its
dependence on the scattering angle θ and relative momen-
tum k = 1

2 |k1 − k2|. This K dependence requires an exact
treatment of the total momentum of the intermediate two
nucleons in solving the BBG equation. However, due to the
computational limits, the total momentum was approximated
by its average value [22] in previous Brueckner-Hartree-Fock
(BHF) calculations [18,23–30]. The current computing power
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allows one to completely avoid this approximation to obtain
more reliable knowledge of the in-medium cross section. Re-
cent studies [31,32] have also shown that an exact treatment
of the total momentum can provide more accurate results of
the effective mass and the G matrix. On the other hand, in the
transport model [33], the medium effect on the cross section is
usually approximated by using the effective reduced mass of
the scattering pair based on effective NN interactions [34–37].
This approximation is reasonable but not accurate enough.
Therefore, we present microscopic predictions of in-medium
NN cross sections for asymmetric nuclear matter within the
BHF approach under the exact treatment of the total momen-
tum. And we also adopt the obtained cross section to study the
medium effect of NN cross sections on some observables in
the final state of HICs.

The paper is organized as follows. In the next section, we
briefly review the BHF approach and the cross section. The
numerical results and discussions are given in Sec. III, where
parametrized formulas of the medium correction factor are
provided and we employ the obtained formulas to study the
medium effect of NN cross sections on heavy-ion reactions.
And finally, a summary is given in Sec. IV.

II. THEORETICAL APPROACHES

The calculation of in-medium NN cross sections requires
two central ingredients, i.e., the scattering amplitude and the
density of states. In the framework of the nonrelativistic BHF
approximation, the effective G matrix playing the role of the
scattering amplitude and the (momentum dependent) effective
mass related to the density of states can be obtained self-
consistently.

A. Cross section in the BHF approach

The details of the BHF approach are described elsewhere
[23,24,32]. Here we outline it briefly for completeness. The
starting point in Brueckner theory is the effective reaction
matrix G, which satisfies the generalized Bethe-Goldstone
(BG) equation,

〈12|Gττ ′ (ω)|1′2′〉
= 〈12|Vττ ′ |1′2′〉 +

∑
1′′2′′

〈12|Vττ ′ |1′′2′′〉

× Qττ ′

ω − eτ (1′′) − eτ ′ (2′′)
〈1′′2′′|Gττ ′ (ω)|1′2′〉, (1)

where Q, ω, and e(ω) are the Pauli operator, the starting
energy, and the energy denominator, respectively. V is the
adopted Argonne V18 NN potential [38] supplemented with
an effective two-body force derived from a microscopic three-
body force (3BF) [39–41], and 1 ≡ (k1, σ1), etc., denote the
momentum and spin z components. The spin-up and spin-
down states are degenerate for non-spin-polarized nuclear
matter; hence, we omit the spin index for convenience here-
after. The Pauli operator, defined as

Qττ ′ (k1, k2) = [1 − nτ (k1)][1 − nτ ′ (k2)], (2)

embodies partially many-body effects in the G matrix via
preventing the intermediate nucleons from scattering into
the occupied states. By nτ (k) we denote the Fermi distribu-
tion function, which turns into the Heaviside step function
θτ (k − kτ

F ) at zero temperature. The neutron and proton Fermi
momenta are related to their corresponding densities ρn/p by
the relation kn/p

F = [3π2ρ(1 ± β )/2]1/3, with the total density
ρ = ρn + ρp and the isospin asymmetry β = (ρn − ρp)/ρ.

The single-particle (s.p.) energy in the BHF approach is
given by

eτ (k) = k2

2m
+ Uτ (k), (3)

where Uτ (k) is the so-called auxiliary potential, which pro-
vides the remaining many-body effects in the G matrix. The
choice of Uτ (k) controls the convergence rate of the hole-line
expansion. In the present calculations, the so-called continu-
ous choice of the s.p. potential has been adopted, because it
minimizes the contribution from the three-hole line diagrams
[42]. Under the continuous choice, the s.p. potential takes the
real part of the on-shell antisymmetrized G matrix,

Uτ (k) =
∑
k′,τ ′

Re〈kk′|Gττ ′
[
eτ

k + eτ ′
k′
]|kk′〉A, (4)

for all momenta. In this context, the auxiliary potential plays
the role of the nuclear mean field that each nucleon feels
during its propagation between two successive scatterings.

After several self-consistent iterations of Eqs. (1) and (3),
the effective interaction matrix G is obtained for the given
density and isospin asymmetry. Using the G matrix, the to-
tal NN elastic-scattering cross section in asymmetric nuclear
matter can be expressed as

σ = M∗2

16π2 h̄4

∑
S,J

∑
L′,L

[1 − (−1)S+L+T ]2 2J + 1

4π

∣∣GSJ
L′L

∣∣2
,

(5)

where GSJ
L′L = 〈k, L′SJ|G(e2)|k, LSJ〉 is the matrix element of

the on-shell G matrix in the the partial wave representation,
with T , S, L, and J denoting the total isospin, the total spin, the
orbital angular momentum, and the total angular momentum
of the two scattering nucleons, respectively. e2 = eτ

k1
+ eτ ′

k2

denotes the total energy of the colliding pair. And the term
1 − (−1)S+L+T originates from the generalized Pauli princi-
ple. M∗, describing the in-medium phase-space modification,
represents the effective mass of the two-nucleon system in
medium [17,43]. It is determined by the dependence of the
total energy of the pair e2 on the relative k = |k1 − k2|/2 and
is defined as

M∗ =
(

1

2k

∂e2

dk

)−1

. (6)

This definition coincidentally develops into the reduced ef-
fective mass of two particles in the case when the momenta
of the colliding particles are equal or the s.p. potential is
parabolic. In some investigations, the reduced effective mass
is employed for simplicity [7,27]. However, in the present
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calculation we adopt the definition (6) to include the total
momentum contribution accurately (see Sec. II C).

B. Three-body force

Our adopted 3BF is constructed within the meson-
exchange-current approach, and one can refer to Refs. [39–41]
for all lengthy technical details. In this model, the most impor-
tant mesons (π , ρ, σ , and ω) are considered, and the 
 and
Roper resonance excitations and the important Z diagram are
involved. All parameters of the TBF model, i.e., the coupling
constants and form factors, are consistently determined to
reproduce the Argonne V18 NN potential, and their values can
be found in Refs. [40,41]. After integrating over the degrees
of freedom of the third nucleon, an equivalent effective two-
body force, V eff

3 , can be obtained from the microscopic 3BF
according to the standard scheme as described in Ref. [39]. In
r space, the effective two-body force V eff

3 reads

〈r′
1, r′

2|V eff
3 |r1, r2〉

= 1

4
Tr

∑
n

∫
dr′

3dr3φ
∗
n (r′

3)[1 − η(r′
13)][1 − η(r′

23)]

×W3(r′
1, r′

2, r′
3|r1, r2, r3)φn(r3)

× [1 − η(r13)][1 − η(r23)], (7)

where φn is the wave function of a single nucleon in free space
and the trace is taken with respect to the spin and isospin of the
third nucleon. The details of the 3BF W3(r′

1, r′
2, r′

3|r1, r2, r3)
are described in Ref. [40]. The defect function η(r) is
determined by the G matrix, which should be calculated
self-consistently with the BG equation. We stress here that
the defect function implicitly depends on the value of the
total momentum and the total momentum approximation is
abandoned to determine the defect function in the present
calculation. One should note that the current effective 3BF,
avoiding the difficult problem to solve the Faddeev equation,
neglects certain many-body contributions [44,45].

C. Total-momentum-dependent G matrix

Both the G matrix and the effective mass depend on the
motion states of the colliding pairs with respect to the medium
or, equivalently, the in-medium cross sections depend on the
total momentum of the colliding pair. Using the definitions of
total and relative momenta,

K = k1 + k2, k = 1
2 (k1 − k2), (8)

the BG equation (1) develops into

δKK′ 〈k|Gττ ′ (K, ω)|k′〉
= δKK′ 〈k|Vττ ′ |k′〉 +

∑
K′′k′′

δKK′′ 〈k|Vττ ′ |k′′〉

× Qττ ′ (K′′, k′′)
ω − eτ

(
1
2 K′′ + k′′) − eτ ′

(
1
2 K′′ − k′′)

× δK′′K′ 〈k′′|Gττ ′ (K′′, ω)|k′〉. (9)

The conservation condition of total momentum during scatter-
ing ensures K = K′ = K′′. Though the bare NN interaction V

is independent of the total momentum, the G matrix depends
on K due to the Pauli operator and the energy denominator in
the BG equation. For given densities and isospin asymmetries,
the calculations of the auxiliary potential (4) require the full
information of G at arbitrary values of ω and K = |K| (note
the G matrix should be independent of the orientation of
K). Therefore, one needs to solve the BG equation (9) on a
NK × Nω grid, where NK (Nω ) is the number of K (ω) points. It
would have been greatly challenging to do such calculation
several decades ago. Accordingly, the total momentum has
been approximated by its averaged value [22],〈

K2
ττ ′

〉
(k)

=
∫

dk1
∫

dk2nτ (k1)nτ ′
(k2)K2δ(k − |k1 − k2|/2)∫

dk1
∫

dk2nτ (k1)nτ ′ (k2)δ(k − |k1 − k2|/2)
.

(10)

Reference [32] indicates that this approximation is insufficient
to obtain accurate results. In the present calculation, the exact
treatment of the total momentum is employed in the calcula-
tion of the G matrix and the s.p. potential.

To obtain the in-medium cross section, the on-shell condi-
tion of the scattering amplitude requires the starting energy
in the G matrix to be ω = e2, where e2 is actually a very
complicated function of the total momentum K , the relative
momentum k, and the angle θK̂k between K and k. Fortu-
nately, the total energy e2 is insensitive to the angle θK̂k. In
addition, one may note that the total energy of the pair in the
intermediate state, i.e., eτ ( 1

2 K′′ + k′′) + eτ ′ ( 1
2 K′′ − k′′) in the

energy denominator of Eq. (9), is angle-averaged in solving
the BG equation (9) to get the G matrix. It has been shown
in Ref. [32] that such an angle-average procedure provides
a fairly accurate approximation. To be consistent, it seems
more appropriate to take the average of e2 with respect to the
angle θK̂k in M∗ and GSJ

L′L = 〈k, L′SJ|G(e2)|k, LSJ〉 of Eq. (5)
for calculating the cross sections; i.e., the total energy e2 is
approximated by its angle-averaged value, i.e., e2 → e2 =∫ d�k

4π
e2, in the present calculation. In fact, this angle-averaged

approximation is also adopted in dealing with the Pauli op-
erator in solving the BG equation, which can eliminate the
coupling between different partial waves and the mixing of
total isospin T = 1 and T = 0 neutron-proton states in the
G matrix [32]. After the angle-averaging procedure, both the
G matrix and the effective mass of the two-nucleon system
M∗ depend simply on the magnitudes K and k of the total
momentum and the relative momentum, while k is essentially
related to the laboratory energy through the relation ELab =
2 h̄2k2

m . Finally, the in-medium cross section is essentially a
function of the density ρ, the isospin asymmetry β, the total
momentum K of the colliding pair, and the incident laboratory
energy ELab.

III. RESULTS AND DISCUSSION

In this section, we first obtain the parametric formulas
of the in-medium cross sections based on the microscopic
calculations. Following that, we apply the obtained formu-
las to the isospin-dependent Boltzmann-Uehling-Uhlenbeck
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FIG. 1. The calculated pp cross sections within the BHF approach as a function of the incident laboratory energy ELab. The left, middle,
and right panels correspond to the densities 0.5ρ0, ρ0, and 1.5ρ0, respectively. While the upper, middle, and lower panels show the results
with various isospin asymmetries β = 0.0, 0.2, 0.4. The black, red, blue, and orange lines correspond to the total momenta 0.9, 2.25, 3.6, and
4.95 fm−1, respectively.

(IBUU) transport model [33] to study medium effects of
the cross sections on the transverse and elliptic flows
in HICs.

A. In-medium NN cross section

The numerical calculation here focuses on obtaining exten-
sive information of the in-medium NN cross sections under
various densities and isospin asymmetries based on the BHF
approach at zero temperature. The Argonne V18 two-body
interaction [38] supplemented with a microscopic 3BF [40,41]
is adopted as the realistic NN interaction.

In comparison to the free-space NN cross sections, which
rely only on the incident laboratory energy ELab, the in-
medium cross sections also depend on the density ρ, the
isospin asymmetry β, and the total momentum K , due to the
medium effect. To exhibit these dependencies, the in-medium
proton-proton (pp), neutron-neutron (nn), and neutron-proton
(np) cross sections are shown in Figs. 1–3 as functions of
ELab at various densities ρ and isospin asymmetries β with
different total momenta K , respectively. To exhibit the effect
of the total momentum, the in-medium cross sections with
different total momenta, K = 0.9, 2.25, 3.6, and 4.95 fm−1,
are displayed. The left, middle, and right panels correspond

to densities 0.5ρ0, ρ0, and 1.5ρ0, with the saturation density
ρ0 = 0.17 fm−3, respectively. The upper, middle, and lower
panels show the results with several values of isospin asym-
metry, β = 0.0, 0.2, and 0.4.

In Figs. 1 and 2, the pp and nn cross sections do not
vary monotonically with the incident laboratory energy; i.e.,
the cross sections decrease rapidly at low ELab, while they
come to increase slowly at high ELab. This is in agreement
with the conclusions of Refs. [7,27]. Such a behavior at high
ELab of the cross section originates from the 3BF effect [8].
However, the np cross section decreases monotonically with
ELab. In general, the effective mass decreases with density
below 3 times saturation density [31]. Because the medium
effect from the effective mass strongly overwhelms that from
the G matrix on the cross sections [17], the cross sections de-
crease with densities at low incident energy as exhibited in
Figs. 1–3. In addition, the nn cross section is systematically
greater than the corresponding pp one, which can be at-
tributed to the mass-splitting feature of m∗

n > m∗
p in the BHF

approach.
On the whole, the in-medium cross section grows with

increasing total momentum at high ELab. The situation turns
to be a little complicated for low ELab. As is well known, the
G matrix shows a spurious singular behavior around Fermi
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FIG. 2. Same as in Fig. 1, but for nn cross sections.

energy corresponding to the missing pair correlation from the
BHF approximation [46–50]. This singularity occurs when the
total momentum is close to zero and strongly enhances the
cross section in a sharp region near the Fermi surface [17,27],
which makes an empirical parametrization of the cross sec-
tion rather difficult. However, in heavy-ion collisions, this
strong enhancement has nonsignificant influence on the nu-
merical simulation. Accordingly, we eliminate the singularity
by hand when obtaining the parametrized formulas. As soon
as the total momentum becomes nonzero, the abovementioned
enhancement in the cross section disappears rapidly, which
results in the complicated behavior for different K at low
incident energy.

One can see from Fig. 3 that there are only tiny dis-
crepancies among the np cross sections at various isospin
asymmetries. In fact, the medium correction factor based
on the reduced mass of two colliding nucleons implies a
significantly weak isospin asymmetry dependence [34–36].
Because the effect from the effective mass dominates the
medium effects of the cross section, the result remains faint
isospin asymmetry dependence when the effect from the G
matrix is included. Such an isospin-asymmetry-independent
in-medium cross section is also employed in the ultrarelativis-
tic quantum molecular dynamics (UrQMD) model [51–53]
to simulate HICs. In the following parametrization of the np
in-medium cross section, we adopt the isospin asymmetry
independence.

Because the free pp and np cross sections can be deter-
mined experimentally [54–56], in some numerical simulation
of HICs using BUU [34–36,51–53] and QMD transport
models, the in-medium cross sections are factorized as the
product of medium correction factors and the free NN elastic-
scattering cross sections σfree. In such a factorization, the
medium effects are involved in the medium correction factor
evidently. Especially, if one approximates the medium effect
to the phase-space modification, the medium effect can be
simply expressed as the square of the ratio of the effective
reduced mass to the bare reduced mass of the two colliding
nucleons [34]. To better connect with the transport model, we
parametrize the medium correction factor, which is defined as

λ = σBHF/σfree, (11)

where σBHF represents the calculated in-medium cross sec-
tion in the framework of the BHF approach.

One of the main goals of the current paper is to provide
an easy-to-use microscopic nuclear input for HIC simu-
lations. We, therefore, fit the obtained medium correction
factors as analytic functions of four independent variables
including the density ρ̃ = ρ/ρ0, the isospin asymmetry β,
the total momentum K , and the incident laboratory en-
ergy ẼLab = ELab/419.58 MeV. The empirical formulas for
the pp and nn medium correction factors are employed as
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FIG. 3. Same as in Fig. 1, but for np cross sections.

follows:

λpp = {
1 + [(

a1 + a2ρ̃K0.5 + a3K2 + a4ρ̃
2 + a5ẼLabK + a6Ẽ0.5

Lab + a7Ẽ2
Lab

)̃
ρ0.5

+(
a8ρ̃

0.5 + a9ρ̃ + a10ρ̃
2 + a11ρ̃

1.5ẼLab + a12ρ̃
2Ẽ3

Lab

)
β
]/[

1 + (a13 + a14ρ̃
1.5 + a15K2)ẼLab + a16Ẽ2

Lab + a17Ẽ3
Lab

]}
× {

1 + [a18ρ̃
0.5 + a19ρ̃K2 + a20ρ̃

0.5K3 + a21ρ̃
2K0.7]

/[
1 + (a22 + a23ρ̃

0.5 + a24K2)ẼLab + a25Ẽ2
Lab

]}
, (12)

λnn = {
1 + [(

a1 + (a2ρ̃ + a3)K1.5 + a4ρ̃
2 + a5ẼLabK0.5 + a6Ẽ0.5

Lab + a7Ẽ2
Lab

)̃
ρ0.5

+ (
a8ρ̃

0.5 + a9ρ̃ + a10ρ̃
2 + a11ρ̃

1.5ẼLab + a12ρ̃
2Ẽ3

Lab

)
β
]/[

1 + (a13 + a14ρ̃
1.5 + a15K2)ẼLab + a16Ẽ2

Lab + a17Ẽ3
Lab

]}
× {

1 + [
a18ρ̃

1.5Ẽ2
Lab + a19ρ̃K2 + a20ρ̃

1.5K3 + a21ρ̃
2K0.7

]/[
1 + (a22 + a23ρ̃

0.5 + a24K2)ẼLab + a25Ẽ3
Lab

]}
. (13)

They can both be divided into two parts roughly, one corresponds to the β-dependent part, while the other is related to K
dependence. Both of these two terms are ρ and ELab dependent. Though the exact physical picture of the formulas is unclear,
they can provide us with a relatively good fitting of the results. Due to the independence of β, the formula for the np medium
correction factor is chosen as

λnp = {
1 + [(

a1 + a2ρ̃
0.5 + a3ρ̃

2 + a4Ẽ1.5
Lab + a5ẼLab + a6Ẽ3

Lab

)̃
ρ0.7]/[

0.01 + (a7 + a8ρ̃
2 + a9(0.1K )2)ẼLab + a10Ẽ2

Lab + a11Ẽ3
Lab

]}
× {

1 + [(
a12Ẽ0.5

Lab + a13(0.1K )Ẽ2
Lab + a14(0.1K )1.5ẼLab + a15(0.1K )0.5

)̃
ρ0.7

]/[
0.01 + (a16 + a17ρ̃

0.5 + a18K2)Ẽ0.5
Lab + a19Ẽ2

Lab

]}
, (14)

where the term related to β is absent. In the present fitting procedure, the microscopic calculations cover
the domains 0.5ρ0 � ρ � 2.5ρ0, −0.8 � β � 0.8, 0 fm−1 � K � 6.3 fm−1, and 35 MeV � ELab � 420 MeV. As dis-
cussed before, the in-medium cross section is strongly enhanced near the Fermi surface due to the singularity of
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TABLE I. Parameters for the formula of the medium correction factors λpp, λnn, and λnp.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Type a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a13

pp 0.3060 −0.0596 0.0119 0.0666 0.0896 −0.482 −0.2739 −0.3801 0.37 −0.1005 −0.059 −0.0404 −4.977
0.5798 0.0532 8.2144 −2.7922 −0.6403 −0.0049 0.0008 0.0115 −2.8884 1.3864 −0.0042 5.6319

nn −0.7353 −0.0096 0.0277 0.013 0.0252 0.219 −0.0036 0.5708 −0.5345 0.0401 0.2511 −0.1032 −0.66
0.0421 0.0538 1.8716 −1.0733 0.9442 −0.0101 −0.0001 0.0164 −3.4316 0.4414 0.0688 11.0018

np −0.0696 −0.07338 0.01371 1.3843 −0.5427 0.0416 −0.2427 −0.6689 −7.4114 1.6452 −3.2383 0.4973 −2.7614
2.1123 −0.0099 0.1975 −0.7046 −0.0228 −3.4225

the G matrix when K is close to zero; we artificially remove
this singularity. However, the medium correction factors still
behave in a complicated way at low total momenta. Such
a complexity increases the difficulty of parametrization and
may only slightly affect HIC simulation. Accordingly, the
cross section near the Fermi surface has been replaced by
the interpolated value in order to avoid the complexity at low
K (�0.9 fm−1) during the parametrization procedure in the
current paper. Finally, the parameters of the fittings are listed
in Table I for pp, nn, and np, respectively.
In Fig. 4, comparisons between the medium correction factors
from the formulas (lines with symbols) and from the BHF ap-

proach (lines) are displayed. The left, middle, and right panels
correspond to densities 0.5ρ0, ρ0, and 1.5ρ0, with β = 0.0,
respectively. The upper, middle, and lower panels represent
the pp, nn, and np medium correction factors, respectively.
Four different medium correction factors with total momenta
0.9, 2.25, 3.6, and 4.95 fm−1 are marked with black, red,
blue, and orange, respectively. Figure 5 shows the same results
as Fig. 4, but for β = 0.2. Because the np in-medium cross
section is nearly isospin asymmetry independent, the np
medium correction factors are not exhibited for β = 0.2 in
Fig. 5. In addition, the free NN cross section is identical
for different ρ and β; however, this property is broken down

FIG. 4. The medium correction factors as a function of the incident laboratory energy ELab. The upper, middle, and lower panels correspond
to pp, nn, and np, respectively. The left, middle, and right panels correspond to densities 0.5ρ0, ρ0, and 1.5ρ0, with β = 0.0, respectively. The
black, red, blue, and orange colors correspond to the total momenta 0.9, 2.25, 3.6, and 4.95 fm−1, respectively. The lines are related to the
microscopic calculation, while the lines with symbols correspond to the fitting results.
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FIG. 5. Same parameters as Fig. 4 except the isospin asymmetry β = 0.2 and the absence of np.

by the medium correction. The fitting results coincide with
the microscopic calculation well except for some complicated
cases. The standard deviations for pp, nn, and np are 0.047,
0.0412, and 0.05, respectively. This accuracy might be suf-
ficient for the numerical simulation of HICs as is shown in
Sec. III B.

B. Transverse and elliptic flows

One can easily apply the medium correct factors (12), (13),
and (14) of cross sections to the IBUU transport model. It was
shown in Refs. [35,36,57] that the transverse 〈px〉 and elliptic
flows V2 of emitted nucleons in HICs are sensitive to the NN
cross sections. Especially, Ref. [35] indicated that one can
extract the many-body effect via the transverse flow without
being much affected by the uncertainty of nuclear symme-
try energy. Accordingly, we take advantage of the transverse
and elliptic flows of emitted nucleons in HICs to study the
medium effects of NN elastic-scattering cross sections in the
framework of the IBUU transport model. The elliptic flow
V2 is the second Fourier coefficient of the nucleon azimuthal
distribution, i.e.,

V2 = 〈cos(2φ)〉 =
〈

p2
x − p2

y

p2
t

〉
, (15)

with the transverse momentum of emitted nucleons,

pt =
√

p2
x + p2

y. (16)

Figure 6 shows the transverse and elliptic flows in semicen-
tral 132Sn + 124Sn collisions at E/A = 270 MeV, respectively.
For comparison, five kinds of NN cross sections are adopted,
including the free one, σfree; the effective one employed in the
previous IBUU model [37], σeff = μ∗2σfree; the microscopic

one based on the BHF approach, σBHF; the one calculated
by replacing M∗ with vacuum mass in Eq. (5), σ ∗

BHF; and
that obtained from the formulas (12), (13) and (14) σfit,
where μ∗ is the effective reduced mass of the scattering
nucleons.

Due to the Coulomb repulsion between protons, the trans-
verse and elliptic flows of protons are larger than those of
neutrons as exhibited in Fig. 6. The discrepancies among the
elliptic flows obtained from different cross sections become
larger at higher transverse momenta. This is due to the fact that
nucleons emitted with higher transverse momenta undergo
more violent collisions, and thus the influence of NN cross
sections becomes more important. In addition, Fig. 6 shows
that the results obtained from σfit coincide with those from
σBHF, which indicates the parametrization (12), (13), and (14)
can reproduce the in-medium cross section well. The present
formulas for nn, pp, and np medium correction factors are
sufficiently accurate for the numerical simulation of HICs.
Moreover, the discrepancy between the results from σBHF and
from σfree is much larger than that between the results from
σ ∗

BHF and from σfree, which confirms that the medium effect
from the effective mass strongly overwhelms that from the
G matrix [17]. Furthermore, the medium effect of the cross
section from the G matrix provides an opposite contribution
to the transverse and elliptic flows compared with the medium
effect from the effective mass. One may note that the results
obtained from σeff are between those from σfree and σBHF.
Though the results from σeff have embodied the medium effect
from the effective mass, the calculation of the effective mass
is approximated by the effective reduced mass at the Fermi
surface. Hence, this approximation is insufficient. The micro-
scopic NN cross sections can lead to significantly different
predictions of the transverse and elliptic flows in HICs.
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FIG. 6. Proton [panels (a) and (c)] and neutron [panels (b) and (d)] transverse (left panels) and elliptic (right panels) flows in the semicentral
reaction of 132Sn + 124Sn at 270 MeV/nucleon. Left panels: Proton (a) and neutron (b) transverse flows as a function of rapidity in the
semicentral reaction of 132Sn + 124Sn at 270 MeV/nucleon. Right panels: Proton (c) and neutron (d) elliptic flows as a function of the transverse
momentum.

IV. SUMMARY

In conclusion, the in-medium NN cross sections have
been systematically calculated at various densities and isospin
asymmetries for nuclear matter in the framework of the BHF
approach with a microscopic 3BF. The total momentum con-
tributions to the medium effect are included to obtain reliable
results. We find the np in-medium cross section is nearly
isospin asymmetry independent. In addition, easy-to-use for-
mulas of the medium correction factors, which can be applied
to the transport model conveniently, are provided with the
parameters calibrated to the calculated results.

Following this, the obtained NN cross sections are em-
ployed in the IBUU model to study the medium effect of the
cross section on the transverse and elliptic flows in HICs. The
results show that the medium effect of the cross section from
the G matrix contributes to the transverse and elliptic flows
oppositely to and obviously smaller than that from the ef-
fective mass. Moreover, the previous adopted effective NN
cross section in the IBUU transport model which embod-
ies the medium effects by the effective reduced mass at the
Fermi surface (an approximate consideration of the effective
mass of the two scattering nucleons) might be insufficient for
studying some observables compared to the current calculated
NN cross section. Furthermore, the present results also show
that our parametrized formulas can reproduce the calculated
in-medium NN cross section well. Therefore, these analytic
formulas can be used to study the medium effect of the cross

section on other observables in HICs, which we will explore
in a future work.

As is known, the BHF calculation is only appropriately
performed for homogeneous and equilibrate matter. The ap-
plication of the obtained cross sections should be under these
restrictions as well. In the standard numerical simulations of
HICs using transport models, the phase space of the colliding
system is divided into small cells, and the local density ap-
proximation is adopted by assuming the matter inside each
cell is homogeneous. Under this approximation, the cross
sections obtained from the BHF approach can be applied.
However, the physical conditions in HICs may be quite dif-
ferent. And consequently, the local density assumption might
need to be estimated and one may also need to be careful of
the effect due to the deviation from the equilibrium state in
HICs.
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