
PHYSICAL REVIEW C 106, 064330 (2022)

α-particle formation and clustering in nuclei

E. Khan ,1 L. Heitz,1 F. Mercier,1 and J.-P. Ebran2,3

1IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay Cedex, France
2CEA, DAM, DIF, F-91297 Arpajon, France

3Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680, Bruyères-le-Châtel, France

(Received 19 September 2022; accepted 13 December 2022; published 28 December 2022)

The nucleonic localization function has been used for a decade to study the formation of α particles in nuclei,
by providing a measure of having nucleons of a given spin in a single place. However, differences in interpretation
remain, compared to the nucleonic density of the nucleus. In order to better understand the respective role of the
nucleonic localization function and the densities in the α-particle formation in cluster states or in the α-decay
mechanism, both an analytic approximation and microscopic calculations, using energy density functionals,
are undertaken. The nucleonic localization function is shown to measure the anticentrifugal effect, and is not
sensitive to the level of compactness of the α particle itself. It probes the purity of the spatial overlap of
four nucleons in the four possible (spin, isospin) states. The density provides, in addition, information on the
compactness of an α-particle cluster. The respective roles of the nucleonic localization function and the density
are also analyzed in the case of α particle emission. More generally, criteria to assess the prediction of α cluster
in nuclear states are provided.
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I. INTRODUCTION

The question of the formation of α clusters in nuclei is
an important issue for nuclear physics, as illustrated by the
famous Hoyle state, or the study of the behavior of the nuclear
fluid at low-density [1–6]. In principle, a sound indicator for
α clusterization should be based on a four particles correlator
measurement. However, such beyond mean-field calculations
are expected to be heavy, especially in deformed nuclear
states, where clusterization could occur.

For a decade, the nucleonic localization function (NLF)
has increasingly been used to tag the formation of α particles
[7–13], such as in cluster states, or during the fission process.
It is therefore important to understand its usefulness and lim-
itations in details. Concomitantly, the use of relativistic mean
field (RMF) energy density functional (EDF) approaches has
been shown to pinpoint localized alpha structures in nuclei
[14–22]. This is less the case with Skyrme EDF approaches,
where localized α-particle structures do not appear in the
density, unless strong constraints are considered, such as in
the case of high-spin rotations [23] or very large deformations
[7]. This difference in behavior between the RMF and Skyrme
densities was related to the difference in the depth of the
mean-field potential [15].

However, some questions remain: are the RMF density and
the NLF probing the same aspects of α-particle formation in
nuclei? Why do the α particles indicated by NLF and RMF
densities are not exactly located at the same position? Why
is the NLF extending very far outside the nucleus, typically
a few times its radius? How to explain that similar NLFs
are found when using different EDF such as the Skyrme
and the RMF one, but different densities are obtained (the

RMF showing more α-particle formation than the Skyrme
one)? Is the NLF well designed to study clustering in nu-
clei? An especially relevant case to study is the α emission
process, which was recently described using relativistic EDF
approaches [24,25]. The investigation of both densities and
NLF during the formation of the α particle, just before its
emission, shall enlighten their respective roles, and provide
interesting information on the question of the α-preformation
process in nuclei, before their radioactive decay.

The present work intends to help in clarifying these ques-
tions, in order to provide a sound procedure for analyzing the
presence of α particles in nuclei. The complementary roles
of the NLF and the RMF density shall be investigated. In
particular, the question of whether the NLF only can monitor
the formation of α-particle clustering in nuclei shall be ad-
dressed. Section II provides an analytical study of the NLF, in
order to understand the basic mechanism driving this quantity.
Section III focuses on microscopic calculations of densities
and NLF in nuclei, with an application to the case of the
alpha decay of 212Po. Criteria to identify α-particle clusters
in nuclear states are also discussed.

II. ANALYTIC CALCULATION OF THE
LOCALIZATION FUNCTION

The key ingredient of the NLF is the leading term Zqσ (�r)
of the Taylor expansion of the same-spin (σ ) and same-isospin
(q) conditional pair probability [7]:

Zqσ (�r) ≡ τqσ (�r)ρqσ (�r) − 1
4 [ �∇ρqσ (�r)]2 − �j 2

qσ (�r), (1)

where ρqσ , τqσ , �∇ρqσ , and �jqσ are the nucleon density, ki-
netic energy density, density gradient, and current density,
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respectively. In the present static and time-reversal symmetric
case, the current density �jqσ vanishes. After normalization

by τTF
qσ ρqσ , where τTF

qσ = 3
5 (6π2)2/3ρ5/3

qσ ≡ ρ
5/3
qσ

a is the Thomas-
Fermi kinetic energy density, the NLF reads as [7]

Cqσ (�r) =
[

1 +
(

aZqσ (�r)

ρ
8/3
qσ (�r)

)2]−1

. (2)

A low conditional pair probability, i.e., a high local-
ization of a nucleon at a given position, translates into
Zqσ (�r) = 0 and Cqσ (�r) = 1. Therefore, a Cqσ (�r) = 1 value,
in a N = Z nucleus, indicates at least a pure spatial overlap
of the four possible (isospin,spin) nucleonic states (qσ ) =
(n↑, n↓, p↑, n↓). This case is called hereafter a pure four-
nucleons overlap. It should not be confused with an α-particle
cluster, which requires, in addition, spatial compactness in a
four particles bound state. This last feature has no a priori
reason to be monitored by the NLF, which is calculated at
the mean-field level: in this framework, the conditional pair
probability (1) shall not be sensitive to the possible correlated
behavior of the four nucleons, beyond Pauli or deformation
effects.

In order to provide a global understanding of the mech-
anisms at work in the NLF, we first analytically study this
quantity.

A. The spherical case

1. Analytic derivation of the localization function

In a first approach, spherical symmetry is assumed to be
preserved at the mean-field level. This shall enable a detailed
analysis of the NLF. N = Z nuclei are considered and the
spin-orbit term is neglected.

Omitting in the following the spin and isospin degrees of
freedom, the nucleon wave function is

�n,l,m(�r) = ϕn,l (r)Y m
l (θ, φ), (3)

where n and � are the radial and orbital quantum numbers,
respectively, and m ranges from −� to �.

In this case, the density and kinetic energy densities read,
for a given (spin, isospin) value, in agreement with [26], as

ρqσ (r) =
∑

nl

2l + 1

4π
ϕ2

nl (r), (4)

τqσ (r) =
∑

nl

2l + 1

4π

[
(∂rϕnl (r))2 + l (l + 1)

r2
ϕnl (r)2

]
. (5)

As an aside, this expression for the kinetic energy density can
be used to derive a relation involving the derivative of the
spherical harmonics, not found in textbooks, to our knowledge
(see the Appendix).

In the spherical symmetry case, using Eq. (3) in Eq. (1),
leads to

Zqσ (r) =
∑

nl,n′l ′

(2l + 1)(2l ′ + 1)

16π2

[
(∂rϕnl )

2ϕ2
n′l ′

+ l (l + 1)

r2
ϕ2

nlϕ
2
n′l ′ − ϕnlϕn′l ′ (∂rϕnl )(∂rϕn′l ′ )

]
. (6)

It should be reminded that a pure four-nucleons overlap con-
dition is met for Cqσ = 1, hence for Zqσ = 0. In order to
further derive an analytic expression, the present derivation
is applied to the case of three-dimensional (3D) harmonic
oscillator (HO) wave functions. In this case, the following
relation is obtained:

∂rϕnl = ϕnl

(
l

r
− r

b2

)
− 2

√
n − 1

b
ϕn−1,l+1, (7)

where b is the oscillator length of the spherical 3D HO wave
function.

Equations (6) and (7) lead to the following expression for
Zqσ :

Zqσ (r) =
∑

nl

(2l +1)2

16π2

ϕ4
nl

r2
l (l +1) +

∑
n′l ′>nl

(2l +1)(2l ′ +1)

16π2

× ϕ2
nlϕ

2
n′l ′

r2
[l (l + 1) + l ′(l ′ + 1) + (l − l ′)2]

+
∑

n′l ′,nl

4
√

n − 1

br
(l ′ − l )ϕnlϕn−1,l+1ϕ

2
n′l ′

+ 4(n − 1)

b2
ϕ2

n′l ′ϕ
2
n−1,l+1 − 4

√
(n − 1)(n′ − 1)

b2

× ϕnlϕn′l ′ϕn−1,l+1ϕn′−1,l ′+1. (8)

It should be noted that in the case of light nuclei, where
only n = 1 states are filled, only the first two terms of Zqσ (r)
remain. These terms are driven by the orbital angular momen-
tum and originate from the centrifugal effect. Therefore, the
smallest values of Zqσ (r) (i.e., pure four-nucleons overlap)
are expected on the surface of the nucleus. Moreover, in the
case of the 4He, Eq. (8) gives Zqσ (r) = 0 over all the space,
because only the 1s state is filled for each nucleon and spin
type.

2. Calculations on 4He and 16O

Let us start with the case of 4He. As mentioned above,
Zqσ (r) = 0. Hence, Eq. (2) gives Cqσ = 1, and the NLF pre-
dicts a pure four-nucleons overlap over the space. This is
in agreement with the microscopic computation of the NLF
using the Skyrme EDF, see Fig. 1 of [7]. It provides a nice
explanation for the NLF equals to 1, in the case of a mere α

particle: this comes from the � = 0 value of the wave function
of all its nucleons [Eq. (8)].

However, Eq. (2) shows that outside of the nucleus,
the ρ16/3 quantity of the denominator tends toward 0,
whereas the numerator is also here equal to zero. This issue
impacts all the NLF calculations and will be addressed in the
next subsection.

In the case of 16O, both the 1s and 1p HO states are filled.
Hence, the following expression is obtained for Zqσ , using
Eq. (8):

Zqσ (r) = 9

16π2

ϕ2
1p(r)

r2

(
2ϕ2

1p(r) + ϕ2
1s(r)

)
. (9)

One sees again the presence of a centrifugal 1/r2 term, which
drives Zqσ towards small values when reaching the surface of
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FIG. 1. Nucleonic density, localization function C [Eq. (2)] and
Z [Eq. (9)] functions for 16O, calculated with the 3D HO approxima-
tion, for a given (spin, isospin) value.

the nucleus. Since small values of Zqσ correspond to values
of Cqσ close to 1 [see Eq. (2)], the NLF could be considered
as a probe of the anticentrifugal effect. This leads to the inter-
pretation that a small centrifugal effect favors the formation
of a pure four-nucleons overlap. This is in agreement with
the above discussion on Cqσ = 1 when only the � = 0 state
is filled (4He).

Figure 1 displays the behavior of the localization function
in 16O, using Eqs. (9) and (2), as well as the behavior of
Zqσ (r) and the nucleonic density. This result is in agreement
with the one calculated microscopically (Fig. 2 of [7]). It
should be noted that the localization function is close to one
around the surface of the nucleus, which seems to be a general
mechanism. Of course, because of spherical symmetry, there
is no formation of alpha cluster, but only a ring of larger
probability to detect a pure four-nucleons overlap around the
surface of the nucleus. The key point is that the Zqσ function
drops before the density (typically 2 fm before), because of
the 1/r2 term of Eq. (9). In this region close to the surface of
the nucleus, where Zqσ (r) is small and ρqσ (r) non-negligible,
Eq. (2) shows that it implies Cqσ 	 1. Therefore, the NLF
reaches large values in this area, which is also in agreement
with its anticentrifugal interpretation.

3. Interpretation with the density and localization parameters

We shall further interpret the behavior of the localization
function at the surface of the nucleus, and beyond, namely: i)
the surface is a critical area for the NLF, where Cqσ gets close
to 1, and ii) the large spatial extension of the NLF beyond the
surface. For this purpose, let us further approximate the value
of Zqσ (r), for this range around the surface of the nucleus, by
considering the most contributing wave function on the sur-
face, i.e., the one with the largest value of �, named hereafter
�max.

For nmax = 1, which is realized for light and most of
medium-mass nuclei, one gets for the main left-hand side term

0 1 2 3 4 5
r (fm)

0

0.2

0.4

0.6

0.8

1

0.1r0 (fm)
Cqσ(r)

FIG. 2. Density parameter r0 (11) and NLF (2) calculated with
the surface approximation (12), in the case of 16O.

of Eq. (2):

aZqσ (r)

ρ
8/3
qσ (r)

	 5

3

�max(�max + 1)

(6π )2/3

1

r2ρ
2/3
qσ

. (10)

In order to provide an interpretation, let us consider the den-
sity parameter r0, related to the density by

ρqσ = 1
4

(
4
3πr3

0

)−1
, (11)

where the 1/4 factor comes from the spin and isospin degen-
eracies.

r0 can be interpreted as the typical internucleon distance.
At saturation density, one gets r0 	 1.2 fm. On the surface
of the nucleus, the density drops, and hence r0 increases, as
shown on Fig. 2. Using Eq. (11) in Eq. (10), one gets

aZqσ (r)

ρ
8/3
qσ (r)

	 5

3

(
8

9

)2/3

�max(�max + 1)
( r0

r

)2
(12)

allowing to calculate the NLF with this approximated expres-
sion.

Figure 2 displays the behavior of r0, using a Woods-Saxon
density for ρ(r), and subsequently, the one of the NLF [from
Eqs. (2) and (12)] in the case of 16O (�max = 1), showing
the typical bell shape on the surface, in agreement with the
microscopic calculations [7] and Fig. 1 of the present work. r0

is constant in the nucleus, explaining why the NLF gets close
to 1 at the surface, due to the drop of the r0/r ratio. Beyond
the surface, r0 starts to increase faster than r, implying a drop
in the NLF value [see Eq. (12)].

This analysis shows that the dimensionless ratio r0/r drives
the NLF. From Eq. (12), the lengths involved in the NLF
are the position r and the density parameter r0, but there
is no information on the spatial dispersion of the α particle
itself. In order to include this information, quantities such
as the so-called localization parameter, αloc=r/r0 [15,16],
where r is the dispersion of the nucleonic wave function,
should be considered. αloc is a measure of the formation of
localized (in the sense of not dispersed) α particle. This last
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parameter is analogous to the Wigner or Brueckner parame-
ter in condensed matter [27]. Therefore, the NLF probes the
purity of the spatial overlap of the four nucleons of the α par-
ticle (n↑, n↓, p↑, n↓), irrespective of their own localization
(nondispersion), as illustrated by the present spherical case,
where the four nucleons behave as a ring. It does not indicate
whether these four nucleons form a bound and localized (com-
pact) state or not: the four nucleons state, identified by the
Cqσ = 1 condition of the NLF, could be delocalized and/or
unbound.

In the Cqσ = 1 condition, as discussed above, the pure
four-nucleons overlap shall be focused on the surface of the
nucleus, where the centrifugal effect is weak. Therefore, the
NLF, (as a necessary Cqσ = 1 condition) could be a first
signal for an α condensation in low-density systems, such
as the related Mott effect [3–5]. However, additional indica-
tors are necessary, such as the localization parameter αloc,
related to the formation of localized α particles, and hence
clusterization.

It should be noted that outside of the nucleus (typically
beyond its radius, such as r ∼ 3 fm in the case of 16O), the
nucleonic density is small (ρ � 0.2ρ0, where ρ0 is the satu-
ration density), whereas the NLF can still have large values
close to 1 (see Fig. 1). This means that there can be a pure
four-nucleons overlap of the very tails of the four nucleonic
wave functions in this region. However, the density integral
there is of course much smaller than 4. Therefore, this case
cannot correspond to α-particle clustering. This spatial region
can be confusing, when only the NLF is considered in order
to trace α-particle clustering. It is sometimes artificially cured
by adding an arbitrary spatial cutoff [8–10]. But as long as
both the nucleonic density and the NLF are considered in
order to look for α-particle clustering, there is no difficulty
in interpretation, as it will be also discussed in Sec. III.

B. The deformed case

At the mean-field level, the proper occurrence of clustering
requires a deformed nucleus [2], emphasizing that Cqσ = 1 is
a necessary, but not sufficient condition for α clustering, as
it can be reached in spherical nuclei (see present Fig. 1, and
Fig. 2 of Ref. [7]). For this purpose, we extend the previous
study to the case of the deformed HO, using the following
definition of the wave function:

φnz,nr ,ml (r⊥, z, ϕ) = φml
nr

(r⊥)φnz (z)
eiml ϕ

√
2π

, (13)

where the corresponding Nilsson quantum numbers are de-
fined in [28].

It is relevant, in order to simplify the interpretations, to
focus on the r⊥ = 0 axis, since clusters are known to belong to
this axis, in axial symmetry (see, e.g., [17]). In this case, only
ml = 0 states remain, and one gets from Eqs. (1) and (13)

Z (z) = 2

b4
⊥b2

zπ
2

∑
nz �=n′

z

φn′
z
φnz−1

[
nzφn′

z
φnz−1 − √

nzn′
zφnzφn′

z−1
]
,

(14)

where b⊥,z denotes the oscillator lengths along the respective
coordinates.
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FIG. 3. NLF function using the deformed HO approach, for r⊥ =
0 and b⊥ = bz, for 8Be and 20Ne.

Let us first consider the case of 8Be. The only ml = 0 states
are [N nz ml �] = [0001/2] and [110 1/2]. Eq. (14) becomes

Z (z) = 2φ4
0

π2b4
⊥b2

z

. (15)

Figure 3 displays the corresponding NLF, showing a similar
shape than in the case of 16O (Figs. 1 and 2). Therefore, there
is a general mechanism at work, leading to a peaked NLF at
the surface of the nucleus. It should be noted that in the case
of 8Be, due to axial symmetry, cluster structures can appear,
contrary to the 16O case, where the spherical symmetry is not
compatible with cluster formation.

In the case of 20Ne, the ml = 0 states are, in the prolate
case: [000 1/2], [110 1/2], and [220 1/2]. This leads to the
following expression of Z:

Z (z) = 2

π2b4
⊥b2

z

[
φ4

0 + (√
2φ2

1 − φ0φ2
)2 + 2φ2

0φ
2
1

]
. (16)

The corresponding NLF is displayed on Fig. 3. A similar
effect than in the case of 8Be still at work, on the surface of the
nucleus, although additional oscillations appear in its center,
due to the larger variety of HO wave function involved. The
present results on 8Be and 20Ne are also in agreement with
microscopic calculations (Fig. 1 of [7]).

In summary, the large NLF value, close to the surface of
the nucleus, is a general mechanism, and a necessary but
not sufficient condition for α cluster formation. One of the
additional conditions is of course deformation.

III. MICROSCOPIC EDF APPROACH

A. The densities and the NLF in 20Ne

The NLF can also be computed microscopically, using
EDF. The covariant EDFs are known to describe spatially
localized α structures in light nuclei [15,17], visible in their
nucleonic density. This is less the case with Skyrme EDF,
where no such structure spontaneously appears in the ground-
state density. The difference is due to the depth of the
confining mean-field potential, which is larger in the covariant
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FIG. 4. Microscopic calculations of the density (left part of the
figures) and NLF (right part of the figures) in the ground state of
20Ne, using the SLy5 (top) and DD-ME2 (bottom) EDF.

case, being based on the scalar and vector fields, related to the
saturation properties of nuclei [15]. It should be noted that
the covariant EDF calculations realized at the projected-GCM
level, also allowed to successfully describe the rotational
bands observed in 20Ne, as well as in 12C for the Hoyle
state [21,22]. In the case of Skyrme EDF, spatially localized
structure in the densities can be obtained only at very large
deformation of very high spin states [7,23].

Therefore, the microscopic calculation of both the NLF
and the nucleonic density provides a relevant basis for under-
standing the relative roles of these two quantities. Figure 4
displays the NLF and the density of 20Ne, obtained both with
the covariant EDF, and the Skyrme one. The RMF calculations
[29] are undertaken with the DD-ME2 [30] EDF and the
Skyrme one [31] with the SLy5 [32] EDF. Both calculations
are performed considering the quadrupole degree of freedom.
The NLF are computed using Eqs. (1) and (2).

Both NLF exhibit two regions of high localization. On the
contrary, only the covariant density displays localized clus-
ters, with values close to the saturation density. This confirms
the previous analysis of Sec. II, namely that the NLF is not
an indicator of the spatial compactness of the α-particle itself,

i.e., cluster formation, but rather signals that a pure overlap
of four nucleons (n↑, n↓, p↑, n↓) can be detected at a given
position, irrespective of their spatial localization, or whether
their form a bound state or not.

It should be noted that the position of the α clusters in the
density and the maxima of the NLF are shifted by about 1.5
fm (bottom inset of Fig. 4). However, at the position of the
α clusters, Cqσ > 0.9, showing that the four-nucleons overlap
is already very pure. This means that the α cluster in 20Ne
ground state is predicted with only a small overlap with the
core of the nucleus. 1.5 fm further, the four nucleon overlap
is completely pure on the NLF, but there is no α cluster on
the density. This is interpreted by a position where the four-
nucleons overlap is pure, but deals only with the tails of the
wave functions.

B. α-particle emission

Recently, microscopic calculations based on covariant EDF
successfully described α decay for several nuclei of the nu-
clear chart, such as 104Xe, 108Te, 212Po, or 224Ra [24,25]. In
this approach, a multidimensional potential energy surface
is calculated considering quadrupole, octupole, and hexade-
capole degrees of freedom, in order to compute the least action
principle, leading to the formation and emission of the α

particle in these nuclei. This approach is similar to the one
which has been successfully used for fission for several years
(see [33] and references therein). Therefore, the study of both
the density and the NLF during the process of α radioactivity
could lend relevant information on their respective role with
respect to α-particle formation and localization.

Figure 5 displays these quantities, calculated in the co-
variant approach with the DD-ME2 [34] EDF, during the α

emission of 212Po. They are taken along the least action path
determined in [24], leading to the emission of an α particle
by the 212Po nucleus. Let us recall, from the discussion in
Sec. II, that the NLF is sensitive to the pure spatial overlap of
the nucleons (n↑, n↓, p↑, n↓), which is a necessary (but not
sufficient) condition for α preformation. The information of
compactness and on the binding of this four nucleons state, is
brought by the study of the density, namely localized cluster
at about the saturation density. In Fig. 5, the NLF indicates
that there is a pure four-nucleons overlap (Cqσ = 1, in inset c),
before the α particle is fully formed in the density (inset f ),
where the number of nucleons is 4. This could be interpreted
as the first step of α emission: the four nucleons first overlap
in a delocalized state (inset c). This may be a necessary step
of α-particle preformation. Later, during the emission process,
the α particle gets formed as a cluster (i.e., spatially localized
with four nucleons at saturation density, inset f) in a second
step. It should be noted that in this last case, the α cluster in
the density coincides with a NLF value Cqσ = 1, showing that
it is a totally pure four nucleon overlap. The present analysis
enlightens the mechanism of the α formation process during
the α decay: within the present approach, the α particle starts
to be preformed in a delocalized four nucleons state, and along
the process, the density probability increases, so to end as a
localized α particle, namely a cluster, as expected in the RMF
case.

064330-5



KHAN, HEITZ, MERCIER, AND EBRAN PHYSICAL REVIEW C 106, 064330 (2022)

FIG. 5. Microscopic calculations of the density (left part of the
figures) and NLF (right part of the figures) during the α decay of
212Po, using the DD-ME2 EDF.

It should be noted that the NLF in the middle step of
the process (insets c and d) corresponds to a similar picture
to the recent one discussing the formation of α particles
during the fission process [13]: NLF close to 1, with non-
localized density, at value below the saturation one. This
would mean that during the fission process, delocalized four-
nucleons overlap could be formed and detected, but maybe
not as compact α clusters, as there are no α clusters on the
predicted density profiles. It also shows the two-step process:
when the nucleonic density emerges in an empty location, first
the NLF can have value close to 1, meaning that a pure overlap
of four nucleons could be detected there. In a possible, but not
systematic, second step, the density increases and eventually
reach the saturation density, corresponding to the presence of
the four nucleons of a spatially localized and bound α particle.
But this second step may not always be reached, as indicated
by the density plots of Ref. [13], which remain below the
saturation density and show no localization at the positions
where Cqσ = 1.

FIG. 6. Microscopic calculations of the density (left part of the
figures) and NLF (right part of the figures) for 4He (left) and 16O
(right), using the DD-ME2 EDF.

C. Criteria for α cluster formation in nuclei

The present study allows defining criteria in order to pre-
dict the presence of an α cluster in nuclei. Based on the above
analysis, a cluster implies that the NLF is close to one at
the cluster location, and that the nuclear density is close to
the saturation value predicted by the model. An additional
geometric condition has to be added, to monitor the compacity
of the cluster: the density should drop fast enough over the
typical size of an α particle. This last condition shall avoid to
consider clusterization in the ground state of 16O, despite its
larger values of the NLF on the surface: as discussed above,
α clusters cannot occur in spherically symmetric states. For
this purpose, a good indicator of the density variation is the
F factor, introduced in [35] to study density variations in
possible bubble candidates. It has been used subsequently and
has proven to be relevant, see, e.g., [36] and references therein.
We propose here to generalize this definition by using

F (r) = ρmax − ρ(r)

ρmax
, (17)

where ρmax is the maximum of the density of the nucleus.
In the present cases, ρmax is usually close to the saturation
density and occurs for the center of nuclei. When F (r) is
close to one, this indicates a location of low density, such as
a depletion. For instance, the value of F (0) is used to monitor
possible bubble effects in the center of nuclei [35,36]. In the
present case, a value of F close to one is therefore expected at
positions that delimit the α cluster, where the density drops.

Figure 6 displays the density of 4He predicted with the co-
variant DD-ME2 EDF. Of course, over the α radius Rα 	 1.9
fm, the density significantly drops. Hence, F (Rα ) close to one
is a good indicator that the density drops over the typical size
of an alpha particle. In a nucleus, F being close to one, at a
distance Rα from the cluster position, shall indicate some level
of compactness of the cluster.

In the case of nuclei, F should also be evaluated in two
directions, to ensure its compactness. In order not to be con-
taminated by the core, one should choose those directions
respectively opposite and orthogonal to the core. It should be
noted that these relevant directions could be found by looking
to increasing values of NLF (pointing towards the surface).

In summary, a sound indication for an alpha cluster pre-
diction in a nucleus, is obtained when all the following four
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TABLE I. The four criteria for α cluster in nuclei, and their
values in 4He, 16O, and 20Ne using the DD-ME2 functional in mean-
field calculations. In the case of 20Ne, the value obtained with the
Skyrme SLy5 functional is also displayed.

Cqσ ρ/ρmax F (Rα )‖ F (Rα )⊥

Criteria for cluster >0.9 >0.8 >0.6 >0.6
4He (DD-ME2) 1 1 0.82 0.82
20Ne (DD-ME2) 0.95 1 0.75 0.70
20Ne (SLy5) 0.6 1 0.45 0.25
16O (DD-ME2) 0.9 1 0.79 0.41

conditions are met, at the position where the cluster is ex-
pected: i) Cqσ > 0.9, ii) ρ > 0.8 ρmax, and considering the
two above mentioned directions: iii) F (Rα )‖ > 0.6, and iv)
F (Rα )⊥ > 0.6. These threshold values for the criteria have
been established considering the corresponding values for
4He, which is known to be well described by RMF calcula-
tions, with a binding energy of 27.82 MeV, to be compared to
28.51 MeV for the measured value, and charge radius of 1.98
fm, to be compared to 1.68 fm [37].

Table I provides the corresponding values for these criteria
in the case of the benchmark 4He case, and for 16O and 20Ne,
calculated with the covariant DD-ME2 EDF. The values for
20Ne, calculated with the Skyrme EDF, are also displayed. The
values of Table I are taken at the location of the maximum
of the density, where an α cluster is suspected. Of course, the
values for 4He fulfill all the criteria, as it is the benchmark case
that allowed to define the corresponding threshold values for
these four constraints. In the case of the DD-ME2 calculation
on 20Ne, all the criteria are fulfilled as well, indicating a sound
prediction for the presence of an α cluster. In the case of the
SLy5 calculation on 20Ne, the NLF value is already too low
at the suspected cluster position from the inspection of the
density. Moreover, none of the F criteria are fulfilled in this
case.

Finally, in the case of the DD-ME2 prediction on the spher-
ical 16O nucleus, both the density and the NLF criteria are met,
as can be seen in Fig. 6. However, the geometrical criteria are
not all fulfilled, as shown by the F⊥ value on the orthogonal
axis. This is due to the fact that the localized behavior in
this nucleus corresponds to a ring, not a cluster. Therefore,
the present four necessary criteria for α cluster occurrence in
nuclei seem robust enough to take into account the various
cases and detect α cluster predictions.

IV. CONCLUSION

The respective roles of the nucleonic density and of the nu-
cleonic localization function have been studied in the frame-
work of α-particle formation and clusterization. The analytic
derivation of the NLF, in the 3D HO approximation, shows
that large values (i.e., close to 1) are obtained in the locations
where the centrifugal effect vanishes or is small: in the case
where only the � = 0 state is filled (α particle itself) or in
the surface of the nucleus. In the spherical case, the NLF
is driven by the ratio of the typical internucleon distance to
the distance to the center of the nucleus. On the surface, this

ratio is small, leading to a large value of the NLF. Beyond the
surface, the internucleon distance suddenly increases, leading
to the vanishing of the NLF far out of the nucleus.

However, the NLF is not sensitive to the spatial com-
pactness of the α particle itself: the NLF microscopically
calculated in the Skyrme EDF and in the RMF cases are
similar whereas the corresponding nucleonic densities differ:
delocalized in the case of the Skyrme one, and localized in the
case of the RMF one. The NLF indicates the location of pure
four-nucleons overlap, independently of their compactness.
In a complementary way, the covariant density displays the
locations where the α particle gets localized, in a cluster state.
This interpretation is confirmed by the microscopic study of α

decay in heavy nuclei, where the NLF indicates, in a first step,
the possible detection of pure four-nucleons overlap at the
surface of the nuclei, before the density shows the formation
of an alpha cluster, well localized and with four nucleons.
Based on the present analysis, four criteria could be extracted
from the NLF and the density, all to be fulfilled, in order to
assert the prediction of α-particle clusters.

It should be noted that a better indicator for alpha clus-
terization should be based on a four particles correlator
measurement. Such an investigation could be undertaken in
the future by considering beyond mean-field approaches.

APPENDIX: DERIVATION OF A RELATION
INVOLVING SPHERICAL HARMONICS

We derive the following relation on spherical harmonics,
which we could not find in textbooks, such as [38–41],

l∑
m=−l

∣∣∂θY m
l (θ, φ)

∣∣2 = l (l + 1)(2l + 1)

8π
. (A1)

The kinetic energy density is defined by [26]

τqσ (�r) =
∑
n,l,m

�∇�∗
n,l,m(�r). �∇�n,l,m(�r). (A2)

Using the spherical symmetry case of Eq. (3), one gets

τqσ (r) =
∑
n,l

2l + 1

4π
(∂rϕnl (r))2 + ϕ2

nl (r)

r2 sin2 θ

×
l∑

m=−l

m2
∣∣Y m

l (θ, φ)
∣∣2 + ϕ2

nl (r)

r2

l∑
m=−l

∣∣∂θY m
l (θ, φ)

∣∣2
.

(A3)

Inserting the following tabulated relation [40]:

l∑
m=−l

m2
∣∣Y m

l (θ, φ)
∣∣2 = l (l + 1)(2l + 1)

8π
sin2 θ, (A4)

in Eq. (A3), and equalizing Eq. (A3) with Eq. (5), yields
Eq. (A1).
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90, 054329 (2014).

[18] J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C
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