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Spurious dipole mode in random-phase approximation and in models
based on this approximation
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The problems related to the existence of the spurious dipole mode (SDM) in self-consistent nuclear-structure
models are considered. A method is formulated that allows one to eliminate the coupling of the SDM with
the physical modes in the extended random-phase approximation (ERPA) theories, in particular, in the time
blocking approximation (TBA), which is a model of the ERPA type. It is shown that the application of this
method in realistic TBA calculations of the E1 excitations gives results which are very close to the results of
TBA calculations without using this method if the bare external-field E1 operators are replaced by effective ones.
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I. INTRODUCTION

The existence of spurious modes (or so-called ghost
modes) is a general feature of models based on the concept of
the mean field. These modes emerge as a result of the symme-
try breaking in the ground state of the quantum many-particle
system generated by the mean field, and for this reason they
are usually associated with the Nambu-Goldstone modes. The
general properties of spurious modes can be deduced within
the Green-function method from the consistency relations, see
[1–3], which are analogous to the Ward identities known in
quantum field theory. The spurious modes should have the
zero energy, but in real calculations of the excitation spec-
tra this condition is fulfilled only approximately because of
computational limitations.

In nuclear structure theory, the spurious dipole mode
(SDM) is a consequence of the breaking of translational
symmetry in finite nuclei under the condition that the
underlying exact many-body Hamiltonian is translation in-
variant. The translational symmetry is explicitly broken in the
independent-particle model (IPM) in which the dynamics of
the nucleus is fully determined by the single-particle Hamil-
tonian including the mean field. In the IPM, the SDM is mixed
with the physical modes and cannot be separated from them.
Note that the breaking of translational symmetry in the IPM
takes place even if the mean field is self-consistent, in particu-
lar if it is determined within the Hartree-Fock approximation
[4,5] or within the density functional theory (DFT; see, e.g.,
Refs. [6–8]).

The mixing of the SDM with the physical modes is the
long-standing problem existing in many nuclear-structure
models. This problem has been actively discussed in the lit-
erature since the 1950s; see, e.g., Refs. [9–11]. A number of
methods have been developed to solve it, in particular within
approaches aimed at the exact treatment of the nuclear many-
body problem (see, e.g., [12–17] and references therein).
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The simplest model in which the SDM emerges in an ex-
plicit form is the self-consistent random-phase approximation
(RPA). In this model the SDM has exactly zero energy and
thereby is separated from the physical modes; see [4,5,18].
This fact is usually treated as the restoration of the trans-
lational symmetry broken at the IPM level. Nevertheless, in
practice, the separation of the SDM from the physical modes
in the self-consistent RPA is not complete for two reasons:
(i) there is residual mixing of the SDM with the other modes
caused by the approximations of the numerical solution of
the RPA equations, and (ii) all the modes including the SDM
enter the spectral representations of both the exact and the
approximate RPA response functions on an equal footing.
This in turn leads to two problems: (i) explicit extraction of
the SDM terms from the RPA response function and elimina-
tion of the residual SDM admixtures from the RPA physical
modes, see [19–21], and (ii) elimination of the coupling of the
SDM with the physical degrees of freedom in beyond-RPA
models in which the RPA response functions (containing the
SDM terms) enter as the building blocks; see [22–26]. In the
present paper these problems are considered with the use of
the methods developed in Refs. [27,28]. The analysis is based
on the self-consistent RPA constructed within the DFT.

The paper is organized as follows. In Sec. II, the formalism
of the self-consistent RPA is outlined and the properties of the
SDM in the RPA are analyzed. In Sec. III, the problem of the
SDM in RPA-based models is considered. In particular, the
method of elimination of the SDM in extended RPA theories
is formulated. Numerical illustrations of these results are pre-
sented in Sec. IV. Conclusions are given in the last section.

II. SPURIOUS MODES IN THE SELF-CONSISTENT RPA

A. RPA framework

The RPA is a model which enables one to calculate the
energies and the transition amplitudes of the excited states
of the quantum many-particle system. It is described in many
textbooks; see, e.g., Refs. [4,5]. The main RPA equation can

2469-9985/2022/106(6)/064327(12) 064327-1 ©2022 American Physical Society

https://orcid.org/0000-0002-5587-8166
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.064327&domain=pdf&date_stamp=2022-12-26
https://doi.org/10.1103/PhysRevC.106.064327


V. TSELYAEV PHYSICAL REVIEW C 106, 064327 (2022)

be written in the form∑
34

�RPA
12,34 zn

34 = ωn zn
12 (1a)

or symbolically

�RPA|zn〉 = ωn|zn〉. (1b)

Here and in the following the numerical indices
(1, 2, 3, . . .) stand for the sets of the quantum numbers of
some single-particle basis, ωn is the excitation energy, and
zn

12 is the transition amplitude. The RPA matrix �RPA
12,34 has the

form

�RPA
12,34 = h13 δ42 − δ13 h42 +

∑
56

MRPA
12,56 V56,34, (2)

where h12 is the single-particle Hamiltonian, V12,34 is the
amplitude of the residual interaction, and MRPA

12,34 is the metric
matrix in the RPA. It is defined as

MRPA
12,34 = δ13 ρ42 − ρ13 δ42, (3)

where ρ12 is the single-particle density matrix. The matrices
ρ and h satisfy the equations

ρ2 = ρ, [h, ρ] = 0, (4)

which play the role of the single-particle equations of motion.
It is convenient to introduce the single-particle basis that

diagonalizes matrices ρ and h:

h12 = ε1δ12, ρ12 = n1δ12, (5)

where n1 is the occupation number. In what follows the indices
p and h will be used to label the single-particle states of
the particles (np = 0) and holes (nh = 1) in this basis. The
matrices �RPA

12,34 and MRPA
12,34 act in the one-particle–one-hole

(1p1h) configuration space. Correspondingly, the transition
amplitudes zn

12 have only ph and hp components.
In the self-consistent RPA based on the DFT, the single-

particle Hamiltonian and the amplitude of the residual
interaction are deduced from some energy-density functional
(EDF) E [ρ] and are determined by the formulas

h12 = δE [ρ]

δρ21

, V12,34 = δ2E [ρ]

δρ21 δρ34

. (6)

B. Elimination of the RPA spurious modes
in the general case

A conventional tool for the description of nuclear exci-
tations in the quantum many-body theory is the response
function formalism. The response function R(ω) determines
the distribution of the strength of transitions in the nucleus
caused by some external field represented by the single-
particle operator Q according to the formulas

S(E ) = − 1

π
Im �(E + i	), (7)

�(ω) = −〈Q|R(ω)|Q〉, (8)

where S(E ) is the strength function, E is an excitation energy,
	 is a smearing parameter, and �(ω) is the (dynamic) polar-
izability. In the RPA, the response function is a matrix in the

1p1h space defined as

RRPA(ω) = −(ω − �RPA)−1MRPA. (9)

The spectral representation of the matrix RRPA(ω) can be
written in the form (see [5,27])

RRPA(ω) = RRPA(phys.)(ω) + RRPA(spur.)(ω). (10)

Here R RPA(phys.)(ω) represents the “physical” part of the func-
tion RRPA(ω) and has the form

RRPA(phys.)(ω) = −
∑

n

′ sgn(ωn)|zn〉〈zn|
ω − ω n

, (11)

where ω n and |zn〉 are solutions of Eq. (1b), symbol
∑ ′ means

the sum over all the “physical” modes n (that is, the modes
with nonzero ω n) for which the following orthonormalization
relation is fulfilled:

〈zn|MRPA|zn′ 〉 = sgn(ωn) δn, n′ . (12)

The function R RPA(spur.)(ω) represents the “ghost” part of the
RPA response function caused by the symmetry breaking. It
consists of two terms having poles at ω = 0 corresponding to
the spurious modes:

RRPA(spur.)(ω) = −a( 0,1)

ω
− a( 0,2)

ω2
. (13)

The matrices a( 0,1) and a( 0,2) are Hermitian and satisfy the
equations (see [27])

�RPAa( 0,1) = a( 0,2), �RPAa( 0,2) = 0, (14)

a( 0,1)MRPA a( 0,k) = a( 0,k), k = 1, 2, (15)

a( 0,1) = −P a( 0,1)∗P, a( 0,2) = P a( 0,2)∗P, (16)

where P is the permutation operator acting in the space of
the pairs of the single-particle indices: P12,34 = δ14δ23. In
addition, the following closure relation is fulfilled:

a( 0,1) +
∑

n

′
sgn(ωn)|zn〉〈zn| = MRPA. (17)

The properties (15) of the matrices a( 0,1) and a( 0,2) enable
one to introduce a projection operator (see [28]):

P = 1 − a( 0,1)MRPA. (18)

From Eq. (15) it follows that

P2 = P, P a( 0,1) = P a( 0,2) = 0. (19)

Equations (12) and (17) yield for the “physical” modes

P|zn〉 = |zn〉. (20)

Thus, from (10), (11), (13), (19), and (20) one obtains

PRRPA(ω)P† = RRPA(phys.)(ω), (21)

that solves the problem of the elimination of the spurious
modes in the RPA in the general case if the matrix a( 0,1) is
known.

Equation (21) can be used in particular if the external field
represented by the operator Q can excite the spurious modes.
In this case the dynamic polarizability in Eq. (8) is divided
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into the “physical” and “ghost” parts analogously to Eq. (10).
From Eqs. (21) and (18) it follows that the “physical” part
of the RPA polarizability can be extracted by means of the
equation

�RPA(phys.)(ω) = −〈Qeff|RRPA(ω)|Qeff〉, (22)

where Qeff is the effective external-field operator determined
as

Qeff = P†Q = (1 − MRPAa( 0,1)) Q. (23)

The above equation is analogous to the results of Ref. [20]
obtained within the framework of the quasiparticle RPA
formalism.

C. The case of the SDM

The explicit form of the matrices a( 0,1) and a( 0,2) can
be found in the important case of the SDM. It is known
(see Ref. [4]) that the eigenvectors of this mode are non-
normalizable in the sense of Eq. (12). So, it is convenient to
proceed in the way described in Ref. [28]. The EDF E [ρ] in
Eqs. (6) can be represented as a sum of two terms,

E [ρ] = Tr (ρ h0) + Eint[ρ], (24)

where h0 is a single-particle operator and the term Eint[ρ]
contains all contributions to the total energy related to the
interaction. Actually, h0 is a simple kinetic-energy operator
but in order to deal in the following with the normalizable
solutions of the RPA equations it is convenient to include an
oscillator potential into h0 by setting

h0 = p2

2m
+ ω2

0mr2

2h̄2 , (25)

where p = −ih̄∇ is the momentum operator and m is the nu-
cleon mass (generally different for the neutrons and protons).
The functional Eint[ρ] is supposed to be invariant under the
symmetry transformations of the type

Eint[e
−iαqρ eiαq] = Eint[ρ], (26)

where q is a Hermitian single-particle operator and α is an ar-
bitrary real parameter. Differentiation of Eq. (26) with respect
to α and ρ with subsequently setting α = 0 yields

[h, q]12 +
∑

34

V12,34 [q, ρ]34 = [h0, q]12, (27)

where Eqs. (6) and (24) were taken into account. Multiplying
Eq. (27) from the left with the matrix MRPA and using defini-
tions (2) and (3) and equality [h, ρ] = 0, one gets∑

34

�RPA
12,34 [q, ρ]34 = [ [h0, q], ρ]12. (28)

Now, it should be taken into account that the functional
Eint[ρ] has to be invariant under translations and Galilean
transformations, and that it is a common property of all tra-
ditional nuclear EDFs; see [6–8] (notice, however, that in
the general case Galilean invariance is compatible with the
isotopic symmetry only under the assumption that the masses
of neutrons and protons are equal to each other). This means
that Eqs. (26)–(28) should be fulfilled for those operators q

which are the space components of the momentum operator
(p) and of the coordinate operator multiplied by the nucleon
mass (mr). In the case of the operator h0 defined by Eq. (25)
one has

[h0,∇] = −ω2
0

h̄2 mr, [h0, mr] = −h̄2 ∇. (29)

From Eqs. (28) and (29), after some algebra one arrives at the
following equation:∑

34

�RPA
12,34 z(±)

34 = ±ω0 z(±)
12 , (30)

where

z(±)
12 = h̄√

2ω0M0

(
[∇, ρ]12 ∓ ω0

h̄2 [mr, ρ]12

)
, (31)

M0 = Tr(ρm) is the total mass of the nucleus, and it is
supposed that ω0 > 0. The transition amplitudes z(±)

12 are nor-
malized according to Eq. (12). These amplitudes represent
the explicit solutions of the RPA eigenvalue equation (1a)
obtained from the symmetry properties of the EDF. They
correspond to the spurious 1− excitations. In Ref. [29], the
analogous formulas were obtained for the transition ampli-
tudes of the SDM entering the spectral representation of the
exact response function.

If ω0 is finite, one can substitute the solutions (31) into the
right-hand side (r.h.s.) of Eq. (11). In the limit ω0 → +0 the
contribution of these solutions into the RPA response function
takes the form of the r.h.s. of Eq. (13) with

a( 0,1)
12,34 = 1

M0

([∇, ρ]12 · [mr, ρ]43 − [mr, ρ]12 · [∇, ρ]43),

(32)

a( 0,2)
12,34 = h̄2

M0

[∇, ρ]12 · [∇, ρ]43. (33)

In the particle-hole (p-h) representation defined by Eqs. (5),
the formulas (10), (11), (13), (32), and (33) correspond to
Eq. (10.51b) of Ref. [5].

The matrices a( 0,1) and a( 0,2) defined by Eqs. (32) and
(33) are Hermitian. It is not difficult to verify that they satisfy
Eqs. (14)–(16). Therefore, the projection operator defined by
Eqs. (18) and (32) also satisfies all the conditions described in
Sec. II B.

Equations (23) and (32) can be used for determination of
the effective external-field operators in the case of the electric
dipole excitations. Consider the local vector E1 operator Q of
the form

Q = fτ (r) r, (34)

where τ is the isotopic index (τ = n, p) and r = |r|. In the
following, two kinds of the (bare) radial form factors fτ (r)
will be considered:

fτ (r) = δτ,p C1, C1 = e
√

3/4π, (35)

in which case Q in Eq. (34) is the usual electric dipole opera-
tor, see [4], and

fτ (r) = C0r2, (36)
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where C0 is a constant, in which case Q is the isoscalar E1 op-
erator. Assuming that the local single-particle density ρτ (r) is
spherically symmetric [ ρτ (r) = ∑

s ρ(r, s, τ ; r, s, τ ), where
s is the spin variable], one obtains from (23), (32), and (34)

Qeff = f eff
τ (r) r, (37)

where

f eff
τ (r) = fτ (r) − mτ

M0

f̄ , (38)

f̄ =
∑

τ

∫
drρτ (r)

[
fτ (r) + r

3
f ′
τ (r)

]
. (39)

In the case of the form factor (35), Eqs. (38) and (39) yield

f eff
p (r) = C̃1N/A, f eff

n (r) = −C̃1Z/A, (40)

where C̃1 = C1Amn/M0, A = N + Z , and M0 = Nmn + Zmp;
N and Z are the numbers of neutrons and protons, respectively.
If in addition the equality mn = mp is assumed, Eqs. (37)
and (40) correspond to the known formulas for the effective
nucleon E1 charges; see [4].

In the case of the form factor (36), assuming again the
equality mn = mp, one obtains from Eqs. (38) and (39)

f eff
τ (r) = C0

(
r2 − 5

3 〈r2〉), (41)

where 〈r2〉 = Tr(ρr2)/A, that also corresponds to the known
formula [30] for this case.

Further, from Eq. (12) it follows that the spurious ampli-
tudes (31) at finite ω0 are orthogonal to the “physical” ones
|zn〉, that is

〈zn|MRPA|z(±)〉 = 0. (42)

Using this equality and the definitions (3) and (31) one obtains

〈zn|mr〉 = 0, 〈zn|∇〉 = 0. (43)

Obviously, Eqs. (43) remain valid in the limit ω0 → +0. From
Eqs. (32) and (33) one also has

a( 0,1)|mr〉 = |[mr, ρ]〉, (44)

a( 0,2)|mr〉 = −h̄2|[∇, ρ]〉, (45)

a( 0,1)|∇〉 = |[∇, ρ]〉, (46)

a( 0,2)|∇〉 = 0. (47)

Note that, in the derivation considered above, only the
symmetry properties of the EDF E [ρ] entering the RPA
equations (1)–(6) were used. The symmetry properties of
the underlying exact many-body Hamiltonian (which includes
bare internucleon interactions) were not taken into account
explicitly, though in fact they determine the properties of
the EDF. However, this exact Hamiltonian is not immedi-
ately connected with real EDFs used in the RPA calculations.
In practice, the nuclear EDFs are frequently derived from
the Hartree-Fock expectation values of the certain effective
many-body Hamiltonians, and the symmetry properties of
these Hamiltonians may differ from the properties of the
exact Hamiltonian. In particular, the effective Hamiltonian is
not translation invariant if it includes the density-dependent
effective interactions, e.g., interactions of the Skyrme type.

Moreover, the EDF can be constructed formally without
reference to any many-body Hamiltonian; see Ref. [6] for
discussion of this point. For all these reasons, the EDF-based
analysis of the spurious modes is more adequate for the frame-
work of the self-consistent RPA as compared to the analysis
based on the properties of the many-body Hamiltonians.

Note also that the energy of the SDM can be shifted
to zero even in the non-self-consistent RPA by introducing
the additional terms of the separable form in the residual
interaction (see Refs. [31,32] and references in [32] for
recent applications of this method). In the self-consistent RPA,
these additional terms are unnecessary because the zero en-
ergy of the SDM is guaranteed by the fulfillment of Eq. (30) at
ω0 → +0, which is a consequence of the relation between the
mean field and the residual interaction determined by Eqs. (6)
and of the symmetry conditions (26).

III. SDM IN RPA-BASED MODELS

A. RPA treatment of core-polarization effects
in even-odd nuclei and the SDM

Consider the problem of describing the transition proba-
bilities for the states of even-odd nuclei supposing that these
states are single-particle ones and that the transitions between
them are caused by the external field represented by the
single-particle operator Q. In this case the transition probabili-
ties are determined by the matrix elements Q̃12 of the effective
operator Q̃ which is the sum of the bare operator Q and the
core-polarization term 	Q:

Q̃12 = Q12 + 	Q12. (48)

The treatment of the term 	Q within the RPA was developed
and described in Refs. [2,33,34] (see also discussion of this
treatment in [35]). It can be represented in the form

	Q12 = −
∑
3456

V12,34 RRPA
34,56(ε12) Q56, (49)

where the RPA response function RRPA(ω) is defined in
Eq. (9), and ε12 = ε1 − ε2 with ε1 determined by Eq. (5).

If the external field is represented by the operators Q =
mr or Q = ∇, it acts only on the center-of-mass coordinate
and thus should not give rise to the transitions between the
intrinsic states of the nucleus. So, in this case the effective
operator Q̃ should be equal to zero.

As follows from the results of Sec. II C, in the self-
consistent RPA from Eqs. (11) and (43) one has

RRPA(phys.)(ω)|mr〉 = RRPA(phys.)(ω)|∇〉 = 0. (50)

On the other hand, from Eqs. (5), (13), (27), (29), and (44)–
(47) it follows that∑

3456

V12,34 RRPA(spur.)
34,56 (ε12) (mr)56 = (mr)12, (51)

∑
3456

V12,34 RRPA(spur.)
34,56 (ε12) ∇56 = ∇12. (52)

Therefore, from Eqs. (10) and (48)–(52) one obtains that
Q̃ = 0 for the external-field operators Q = mr and Q = ∇ if
the quantities V , RRPA(ω), and ε12 in (49) are determined in
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the self-consistent RPA and if the contribution of the SDM is
included in the RRPA(ω).

B. Elimination of the SDM in extended RPA theories

It is well known that in the general case the response
function can be defined as a solution of the Bethe-Salpeter
equation (BSE; see, e.g., Ref. [2]). In the case of the RPA
response function defined by Eq. (9), the BSE reads

RRPA(ω) = R(0)(ω) − R(0)(ω)V RRPA(ω), (53)

where R(0)(ω) is uncorrelated p-h propagator and V is the
amplitude of the residual interaction entering the RPA matrix
(2). All the matrices in Eq. (53) are defined in the 1p1h
configuration space. The p-h propagator R(0)(ω) is defined as

R(0)(ω) = −( ω − �
(0) )−1MRPA, (54)

where

�
(0)
12,34 = h13 δ42 − δ13 h42 (55)

and MRPA is the metric matrix (3).
In the beyond-RPA models, the 1p1h configuration space

of the RPA is extended by including more complex configura-
tions, e.g., of the 2p2h, 1p1h ⊗ phonon, or two-phonon type,
where the phonons in the simplest case are superpositions of
the 1p1h configurations represented by the solutions of the
RPA equation (1). In the following, extended RPA (ERPA)
theories are considered in which the response function is
determined by the BSE of the form

RERPA(ω) = R(0)(ω) − R(0)(ω) [V + W̄ (ω)] RERPA(ω), (56)

which can be also rewritten as

RERPA(ω) = RRPA(ω) − RRPA(ω)W̄ (ω)RERPA(ω). (57)

Here W̄ (ω) is the (subtracted) amplitude of the induced in-
teraction including contributions of complex configurations.
This amplitude is the energy-dependent matrix in the 1p1h
space. It has the form

W̄12,34(ω) = W12,34(ω) − W12,34(0) (58)

with

W12,34(ω) =
∑
c, σ

σ F c(σ )
12 F c(σ )∗

34

ω − σ �c

, (59)

where σ = ±1 and c is an index of the subspace of complex
configurations. Explicit formulas for the amplitudes F c(σ )

12 and
the energies �c in the case of some models of the ERPA type
are given in Ref. [27]. Note that in the models considered
in [27] all the energies of complex configurations �c are
positive.

The subtraction of the amplitude W (0) in Eq. (58) ensures
the stability of solutions of the ERPA equations (see [27] for
more details). At present, this subtraction method is used in
beyond-RPA models including 1p1h ⊗ phonon [36–41] and
2p2h [42,43] configurations. As follows from Eq. (57), the
subtraction of W (0) also ensures the existence of the poles of
RERPA(ω) at ω = 0 if these poles (corresponding to the spu-
rious modes) exist in the RPA response function determined

by Eq. (53). This property was one of the motivations for
introducing this method in Ref. [44]. However, the subtraction
method in itself does not exclude the residual coupling of
the spurious modes with the physical ones mediated by the
amplitude W̄ (ω) at nonzero energies. As a result, though the
main component of the spurious state appears at zero energy,
its fragments can be spread out over a wide energy range.

Formally, the contribution of the spurious states is com-
pletely absent in the response function RERPA(phys.)(ω) defined
by the equation

RERPA(phys.)(ω) = RRPA(phys.)(ω)

− RRPA(phys.)(ω)W̄ (ω)RERPA(phys.)(ω), (60)

where the function RRPA(phys.)(ω) is formally determined by
Eq. (11). In the case of the SDM in the self-consistent RPA,
the function RRPA(phys.)(ω) can be determined in practice by
Eqs. (21), (18), and (32). However, such determination of
RERPA(phys.)(ω) requires first solving the RPA BSE (53), which
complicates the task.

A more convenient method for the elimination of the SDM
in the ERPA was suggested in Ref. [28]. Consider a function
RERPA+(ω) which is a solution of the equation

RERPA+(ω) = R(0)(ω) − R(0)(ω) [V + W̄ ⊥(ω)] RERPA+(ω),

(61)

where the amplitude W̄ ⊥(ω) is defined as

W̄ ⊥(ω) = P†W̄ (ω)P (62)

with the operator P defined in Eqs. (18) and (32). In fact,
Eq. (61) is analogous to Eq. (56) and is equivalent to Eq. (57)
in which the amplitude W̄ (ω) is replaced by W̄ ⊥(ω). But,
as follows from Eqs. (13) and (19), the amplitude W̄ ⊥(ω) is
orthogonal to the “ghost” part of the RPA response function,
because

PRRPA(spur.)(ω) = RRPA(spur.)(ω)P† = 0. (63)

So, the coupling of the spurious modes with the physical ones
in Eq. (61) is eliminated.

After a series of transformations, one can show that the
solution of Eq. (61) satisfies the equality

RERPA+(ω) = RERPA(phys.)(ω) + RRPA(spur.)(ω), (64)

where RERPA(phys.)(ω) and RRPA(spur.)(ω) are defined by
Eqs. (60), (13), (32), and (33). Equation (64) explicitly shows
that the SDM is fully separated from the physical modes in the
response function RERPA+(ω). At the same time, this function
is determined by only one equation, (61), which is the main
equation of the given method. In what follows the model
corresponding to this equation will be referred to as the ERPA
with projection (ERPA+).

The problem of extracting the “physical” part of the
RPA response function in a beyond mean-field model was
considered in Ref. [26]. Within the formalism described
above, the method of Ref. [26] corresponds to introducing
the corrected RPA response function R̃RPA(ω) = P̃RRPA(ω),
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where

P̃ = 1 − ã( 0,1)MRPA, (65)

ã( 0,1)
12,34 = 1

M0

[∇, ρ]12 · [mr, ρ]43. (66)

Comparing Eqs. (65) and (66) with Eqs. (18) and (32) for the
operator P, one can see that

P = P̃ − ã( 0,1)†MRPA. (67)

The absence of the last term of Eq. (67) in the operator P̃ leads
to the incomplete elimination of the “ghost” part of RRPA(ω)
in this method. Indeed, from Eqs. (13), (32), (33), (65), and
(66) it follows that

P̃RRPA(spur.)(ω) = − ã( 0,1)†

ω
. (68)

The remainder determined by the r.h.s. of Eq. (68) does not
contribute to the strength function defined by Eqs. (7) and
(8) in the case of the local external-field operators Q consid-
ered in [26]. However, the contribution of this remainder can
be nonzero in the other cases arising in beyond mean-field
models.

IV. NUMERICAL RESULTS

In this section the results of the fully self-consistent cal-
culations of the electric dipole (E1) excitations performed in
the models based on the Skyrme EDF are presented. Two
main models are considered: RPA and the time blocking
approximation (TBA), which is a model of the ERPA type
including 1p1h ⊗ phonon configurations on top of the 1p1h
configuration space of the RPA. The general scheme of the
TBA is described by Eqs. (56), (58), and (59) of Sec. III B.
The detailed formulas of the self-consistent version of this
model are given in Refs. [38,39]. Numerical details of the cal-
culations are the following. The RPA and TBA equations were
solved in the representation of the discrete p-h basis obtained
from the solution of the Skyrme-Hartree-Fock equations (4)
and (6) with the box boundary condition. The basis included
all the hole states and all the particle states of the single-
particle spectrum with energies εp < εmax . In what follows
two versions of the RPA and TBA are used. In the discrete
versions (DRPA and DTBA) the effect of the single-particle
continuum is not included. In the continuum versions (CRPA
and CTBA) this effect is included in the discrete basis repre-
sentation according to the method described in [39].

A. SDM results in the RPA

In the calculations of the E1 excitations within the self-
consistent RPA and RPA-based models, the deviation of the
SDM energy (ωSDM) from zero can serve as a criterion of
accuracy of the calculation scheme. The rigorous equality
ωSDM = 0 implies full self-consistency, that is, exact fulfill-
ment of Eqs. (4) and (6); however, the value of ωSDM strongly
depends also on the numerical details, in particular on the size
of the p-h basis determined by the parameter εmax . In Fig. 1,
the dependence of ωSDM on the value of εmax is shown. The

FIG. 1. Dependence of the energy of the spurious dipole mode,
ω

SDM
, on the maximum energy of the states of the single-particle

spectrum, εmax . Calculations within the fully self-consistent DRPA
based on the Skyrme-EDF parametrization SLy4 for 16O, 48Ca, and
208Pb.

results were obtained in the DRPA for three doubly magic nu-
clei: 16O, 48Ca, and 208Pb. The Skyrme-EDF parametrization
SLy4 [45] was used. The box radius was taken to be 15 fm
for 16O and 48Ca and 18 fm for 208Pb. At the increase of εmax
from 100 to 500 MeV, the value of ωSDM decreases from 2.13
to 0.12 MeV in 16O, from 1.59 to 0.07 MeV in 48Ca, and
from 0.88 to 0.03 MeV in 208Pb. The decrease of ωSDM is
monotonic and almost exponential at εmax < 300 MeV, but is
slowed down at greater εmax . In particular, ωSDM ≈ 3 keV in
16O at εmax = 2000 MeV.

The separation of the SDM from the physical modes can
be estimated with the help of the ratio of the reduced prob-
ability of the E1 transition for the SDM, B(E1)SDM, to the
reduced probability B(E1)max for the DRPA state having the
largest B(E1) in the given strength distribution. For the effec-
tive E1 operator defined by Eqs. (37) and (40), the limiting
value of B(E1)SDM is equal to zero. The calculated values
of B(E1)SDM/B(E1)max � 1.5×10−5 in the case of εmax =
100 MeV and � 3.3×10−9 in the case of εmax = 500 MeV
for all three nuclei under consideration. Thus, a fairly good
separation of the SDM is achieved in the DRPA already at
εmax = 100 MeV.

B. Center-of-mass motion in the response function formalism

In the ERPA theories, separation of the SDM is attained
with the help of the method described in Sec. III B. Consider
its implementation in the TBA. The efficiency of this method
can be estimated by comparing the calculated response of the
nucleus to the external field represented by the operator of the
center-of-mass coordinate (c.m.c.),

Q = m

M0

r, (69)

with the known exact result.
From Eqs. (8), (10), (11), (13), (43)–(45) it follows that the

polarizability �(ω) corresponding to the operator (69) in the
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FIG. 2. Energy dependence of the function Dc.m. (E ), Eq. (71),
as the measure of deviation of the calculated polarizability from the
exact formula (70) for the response of the nucleus to the external
field represented by the operator of the center-of-mass coordinate
(c.m.c.). Calculations for 48Ca are shown for the following fully self-
consistent models: DRPA (black dashed line), DTBA (red full line),
and DTBA+ (green full line) based on the Skyrme-EDF parametriza-
tion SLy4. The smearing parameter 	 = 200 keV was used.

self-consistent RPA is equal to

� c.m. (ω) = 3h̄2

M0ω
2
. (70)

As follows from Eqs. (60), (61), and (64), the same result for
the polarizability is obtained in the self-consistent ERPA+
described in Sec. III B; that is, in the case of the response
function R(ω) = RERPA+(ω) in Eq. (8). On the other hand,
in the ERPA without projection the c.m.c. polarizability does
not coincide with Eq. (70) in the general case. However, the
result expressed by Eq. (70) is not exactly achieved even in
the self-consistent RPA and ERPA+ calculations because of
the numerical limitations and inaccuracies. The measure of
deviation from this exact expression can be determined with
the help of the function

Dc.m. (E ) = |�(E + i	)/� c.m. (E + i	) − 1|, (71)

where �(ω) is the calculated polarizability, E is the real
energy variable, and 	 is the smearing parameter.

In Fig. 2, the calculated dependencies Dc.m. (E ) for the
nucleus 48Ca are shown for three fully self-consistent models:
DRPA (black dashed line), DTBA (red full line), and DTBA+
(green full line) based on the Skyrme-EDF parametrization
SLy4. The p-h basis included all single-particle states up to
the energy εmax = 1000 MeV, which gives ωSDM = 7 keV.
The phonon basis in the DTBA and DTBA+ included three
low-lying most collective RPA states with Lπ = 2+, 3−, and
5−, having energies equal to 3.37, 5.61, and 6.03 MeV, respec-
tively. In the calculations of Dc.m. (E ), the smearing parameter
	 = 200 keV was used. The DRPA and DTBA+ results
practically coincide with each other, which demonstrates well
performance of the projection method used in the DTBA+.
The maximum value of Dc.m. (E ) in both these models is
attained at E = 0 and is about 10−3 ≈ ω2

SDM/	2. At the large
values of E , the function Dc.m. (E ) ≈ ω2

SDM/E2 and becomes

less than 10−6 at E > 10 MeV. This dependence of Dc.m. (E )
is well approximated by the function

D̃c.m. (E ) = ω2
SDM√(

E2 − ω2
SDM − 	2

)2 + 4E2	2
, (72)

which is obtained from the definitions (69)–(71) and from
Eqs. (8), (11), and (31) at finite ω0 = ωSDM. Thus, the de-
gree of separation of the SDM in the ERPA+ calculations is
determined by the proximity of ωSDM to zero.

In the DTBA without projection [but with subtraction ac-
cording to Eq. (58)], the values of Dc.m. (E ) oscillate within the
range from 0.01 up to 0.17 in the considered energy interval,
which shows the existing residual coupling of the SDM with
the physical modes in this model.

C. Elimination of the SDM in realistic TBA calculations

In this subsection, application of the method of the elimi-
nation of the SDM in realistic calculations of E1 excitations
is considered. The calculations were performed in the nuclei
48Ca, 48Ni, and 208Pb within the renormalized version of the
TBA (RenTBA) developed in Ref. [46]. The final equations of
both the RenTBA and the TBA have the form of Eqs. (56),
(58), and (59) of Sec. III B, but the phonon space in the
RenTBA is determined by the system of nonlinear equations.
The details of its solution are described in [46] and here are
the same as in Ref. [47] except for the space of the phonon
renormalization, which in the present paper is common for
phonons of electric and magnetic types.

1. E1 excitations in 48Ca and 48Ni

In the calculations of giant resonances in the light nuclei
and especially in the light exotic nuclei, the contribution of
the single-particle continuum is large. For this reason, it was
included in the calculations for 48Ca and proton-rich 48Ni. The
abbreviations CTBA and CTBA+ refer here to the RenTBA
results. The details of the calculation scheme are the follow-
ing. The Skyrme-EDF parametrization SV-m64k6 was used.
This parametrization was suggested in Ref. [48] (where it
was denoted as SV-m64-O) for the description of giant dipole
resonances (GDR) in light nuclei. To avoid the spin instability
of the ground state, the so-called spin surface terms of the
EDF have been omitted (see Ref. [49] for more details). It
corresponds to the option η	s = 0 in terms of Ref. [49]. The
p-h basis was restricted by the parameter εmax = 100 MeV.
The box radius was equal to 15 fm in 48Ca and 18 fm in 48Ni.
It gives ωSDM = 1.58 MeV in 48Ca and 1.53 MeV in 48Ni.
The resulting phonon space of the RenTBA in 48Ca included
eight phonons of electric type with multipolarities 2 � L � 6
and eight phonons of magnetic type with multipolarities 1 �
L � 5. The phonon space in 48Ni included fourteen phonons
of electric type with multipolarities 2 � L � 6 and seven
phonons of magnetic type with multipolarities 2 � L � 5. All
the obtained phonons’ energies are less than 12 MeV.

In general, the numerical scheme described above is
conventional for most TBA and RenTBA calculations. Nev-
ertheless, consider the influence of some elements of this
scheme on the results in the case of isoscalar (IS) E1
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FIG. 3. Strength distribution of the IS E1 resonance in 48Ca
calculated within the CRPA based on the Skyrme-EDF parametriza-
tion SV-m64k6. The black full line corresponds to the fully
self-consistent CRPA with εmax = 100 MeV. The red dotted line
represents the difference between the results obtained in fully self-
consistent CRPA with εmax = 100 MeV and εmax = 1000 MeV.
The green dashed line represents the difference between the results
obtained in fully self-consistent and non-self-consistent CRPA with
εmax = 100 MeV. The smearing parameter 	 = 100 keV was used.
See text for more details.

excitations. Dependence of the SDM energy on the parameter
εmax was analyzed in Sec. IV A. Dependence of the strength
distributions of giant IS E1 resonances on this parameter is
much less pronounced. Figure 3 shows such a distribution in
48Ca calculated in the CRPA in terms of the fraction of the IS
E1 energy-weighted sum rule (IS E1 EWSR) determined by
the function

F (E ) = E S(E )/mRPA
1 , (73)

where S(E ) is the strength function (7), and

mRPA
1 =

∫ ∞

0
E SRPA(E ) dE (74)

is the first moment of the RPA strength function SRPA(E ).
The function S(E ) was calculated for the effective IS E1

operator determined by Eqs. (37) and (41). For this operator,
the analytic formula for mRPA

1 is known (RPA EWSR; see
Ref. [30]). The black full line in Fig. 3 represents the function
F s.c.

100 (E ) calculated according to Eq. (73) within the fully
self-consistent CRPA with εmax = 100 MeV and the smearing
parameter 	 = 100 keV. The analogous function F s.c.

1000(E ) was
calculated with εmax = 1000 MeV (note that ωSDM = 11 keV
for this value of εmax). The curves corresponding to F s.c.

100 (E )
and F s.c.

1000(E ) are hardly distinguishable from each other in the
given scale, so only the difference

δF s.c.(E ) = F s.c.
100 (E ) − F s.c.

1000(E ), (75)

denoted as δCRPA (s.c.), is shown in Fig. 3 by the red dotted
line. This difference is not negligible only for three narrow
peaks in the region of 11–16.2 MeV which are shifted down
in the function F s.c.

1000(E ) by the value δE from 30 to 130 keV.
The difference δF s.c.(E ) practically vanishes in the region of
the giant IS E1 resonance at E > 20 MeV.

FIG. 4. Upper panel: strength distributions of the isoscalar E1
excitations in 48Ca calculated within the CRPA (green dashed line)
and CTBA (black full line) based on the Skyrme-EDF parametriza-
tion SV-m64k6. The red dotted line represents the difference δCTBA
between the CTBA+ and CTBA results multiplied by the factor of
20. The smearing parameter 	 = 100 keV was used. Experimental
data (magenta full line with error bars) are taken from Ref. [50].
Lower panel: same as in the upper panel but for 48Ni.

For comparison, the function F n.s.c.
100 (E ) for the IS E1 ex-

citations in 48Ca was calculated by the formula (73) within
non-self-consistent CRPA with εmax = 100 MeV. In this
calculation the spin-orbit and Coulomb contributions to the
residual interaction V in Eq. (2) have been omitted, which
leads to the increase of ωSDM from 1.58 to 2.74 MeV. The
difference

δF n.s.c.(E ) = F s.c.
100 (E ) − F n.s.c.

100 (E ) (76)

is shown in Fig. 3 by the green dashed line denoted as δCRPA
(n.s.c.). As can be seen, this difference does not vanish in the
wide region from 10 to 50 MeV.

The results of the CTBA calculations of the IS E1 excita-
tions in 48Ca and 48Ni are shown in Fig. 4. They are presented
in terms of the fractions of the RPA EWSR determined by
Eq. (73). The strength functions in Eq. (73) were calculated
with the same smearing parameter 	 = 100 keV as in Fig. 3.
The narrow peaks of the CRPA strength distribution in 48Ca
in the region below 20 MeV are strongly fragmented in the
CTBA, in agreement with the experimental data for this nu-
cleus from Ref. [50]. However, the theory does not describe
the large increase of IS E1 strength above 30 MeV found
experimentally. This discrepancy takes place also in the other
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FIG. 5. Differences of the strength distributions of the IS E1
resonance in 48Ca calculated within the CTBA based on the Skyrme-
EDF parametrization SV-m64k6. The black full line corresponds
to the difference δCTBA between the CTBA+ and CTBA results
obtained for the bare IS E1 operator, (34) and (36). The red dotted
line represents the analogous difference for the effective IS E1 oper-
ator, (37) and (41), multiplied by the factor of 30. The green dashed
line represents the difference δCTBA+ between the CTBA+ results
obtained for the bare and effective IS E1 operators multiplied by the
factor of 10. The smearing parameter 	 = 100 keV was used.

RPA calculations of the IS E1 giant resonance in 48Ca; see
Ref. [51].

The effect of the elimination of the SDM in the CTBA+
can be estimated with the help of the difference (denoted
as δCTBA in Fig. 4) between the functions F (E ) calculated
within the CTBA+ and CTBA. As can be seen from Fig. 4,
the relative difference is very small in both nuclei and only
scaled δCTBA (multiplied by the factor of 20) is visible. This
difference is much less than the differences between the CRPA
distributions shown in Fig. 3 and between the DTBA+ and
DTBA results for the c.m.c. response shown in Fig. 2. The
latter fact needs an explanation.

It should be specified that the results shown in Fig. 4
were obtained for the effective IS E1 operator determined
by Eqs. (37) and (41). But this operator itself suppresses
the spurious admixtures in the excited states as follows from
its general definition (23). For this reason, the effect of the
projection method used in the CTBA+ is better seen in the
calculations of the IS E1 response for the bare operator de-
termined by Eqs. (34) and (36). However, in this case the
main component of the SDM (fragmented in the TBA without
projection) gives the large background in the strength function
if the smearing parameter 	 in Eq. (7) is not very small.
The calculations for 48Ca were performed with 	 = 100 keV,
and to remove this background the contribution of the main
component of the SDM into the strength functions was elim-
inated with the help of subtraction of the SDM term with the
minimum energy from the polarizability (8). The difference
δCTBA(Qbare) between the functions F (E ) calculated within
the CTBA+ and CTBA for the bare IS E1 operator is shown
in Fig. 5 by the black full line. As can be seen, the absolute
values of δCTBA(Qbare) are on average much larger than the
values of the analogous difference δCTBA(Qeff ) calculated

TABLE I. Integral characteristics of the differences of the
strength distributions shown in Fig. 5. The relative mean-square
deviation ||δS||R is determined by Eqs. (77)–(79).

Interval ||δS||R
(MeV) δCTBA(Qbare) δCTBA(Qeff ) δCTBA+
5–25 0.43 0.008 0.05
0–60 0.31 0.006 0.04

for the effective IS E1 operator, which are shown in Fig. 5 by
the red dotted line. On the other hand, the difference δCTBA+
between the CTBA+ results obtained for the IS E1 operators
Qbare and Qeff (shown by the green dashed line) is small.

Differences of the strength distributions shown in Fig. 5
can be quantified with the help of the following relative mean-
square deviation:

||δS||R = ||δS||/||S||, (77)

with

||δS||2 =
∫ E2

E1

(S̃(E ) − S(E ))2dE , (78)

||S||2 =
∫ E2

E1

S2(E ) dE , (79)

where S(E ) is the strength function calculated within the
CTBA+ (for the IS E1 operator Qeff in the case of δCTBA+)
and S̃(E ) is the strength function calculated within the ver-
sions of the CTBA and CTBA+ shown in Fig. 5.

For the energy intervals 5–25 and 0–60 MeV in Eqs. (78)
and (79), the values of ||δS||R are listed in Table I. The large
values of ||δS||R for the difference δCTBA(Qbare) show that
the coupling of the SDM with physical modes in the CTBA
response function for the IS E1 excitations is quite apprecia-
ble. However, the small values of ||δS||R for δCTBA(Qeff )
and δCTBA+ suggest, first, that this coupling is effectively
eliminated in the CTBA+ response function and, second,
that the strength of the SDM fragments resulting from this
coupling in the excitation spectrum of the CTBA is strongly
suppressed by the effective IS E1 operator Qeff, as mentioned
above.

In Fig. 6, the results for the GDR in 48Ca and 48Ni are
shown. The E1 photoabsorption cross section shown in this
figure is connected with the strength function (7) for the effec-
tive isovector E1 operator, Eqs. (37) and (40), by means of the
known formula (see, e.g., [36]). The strength functions for this
operator were calculated with the smearing parameter 	 =
500 keV. The curve denoted as 100×δCTBA corresponds here
to the difference between the cross sections calculated within
the CTBA+ and CTBA multiplied by the factor of 100. As in
the case of the IS E1 excitations, this difference is very small.
It vanishes below 10 MeV, where the isovector E1 strength in
48Ca and 48Ni is absent.

The agreement between the theory and experiment in 48Ca
is noticeably improved in the CTBA as compared to the
CRPA. The form of the experimental E1 photoabsorption
cross section is on the whole reproduced in the CTBA, though
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FIG. 6. Upper panel: the E1 photoabsorption cross section for
48Ca calculated within the CRPA (green dashed line) and CTBA
(black full line) based on the Skyrme-EDF parametrization SV-
m64k6. The red dotted line represents the difference δCTBA between
the CTBA+ and CTBA results multiplied by the factor of 100. The
smearing parameter 	 = 500 keV was used in the calculations of the
strength functions. Experimental data from Ref. [52] are represented
by magenta squares. Lower panel: same as in the upper panel but
for 48Ni.

the position of the main peak in the CTBA is shifted upward
by about 1.3 MeV with respect to the experiment.

2. Pygmy dipole resonance in 208Pb

Calculations of the pygmy dipole resonance (PDR) in 208Pb
were performed with the use of the Skyrme-EDF parametriza-
tion SKXm−0.49 from Ref. [47]. The spin-orbit and spin-spin
parameters of SKXm−0.49 were fitted with the aim of describ-
ing the M1 resonance in 208Pb within the RenTBA. The other
parameters coincide with parameters of the original Skyrme
interaction SKXm [53]. In the present paper, as mentioned
above, a modified version of the renormalization scheme of
the RenTBA is used. In this case the results of Ref. [47] for
the M1 resonance in 208Pb are reproduced at the slight change
of the spin-spin Landau-Migdal parameters g and g′. Note that
these parameters do not affect the ground-state properties of
the even-even spherical nuclei. In the calculations presented
below the values g = 0.086 and g′ = 0.87 are used (the other
parameters of SKXm−0.49 are the same as in Ref. [47]). The
box radius in 208Pb was equal to 18 fm and the parameter
εmax = 100 MeV. It gives ωSDM = 0.78 MeV. The result-
ing phonon space of the RenTBA included 124 phonons of

FIG. 7. Upper panel: pygmy dipole resonance in 208Pb calculated
within the DRPA (green dashed line) and DTBA (black full line)
based on the Skyrme-EDF parametrization SKXm−0.49. The red dot-
ted line represents the difference δDTBA between the DTBA+ and
DTBA results multiplied by the factor of 30. The smearing param-
eter 	 = 10 keV was used. Lower panel: experimental E1 strength
distribution in 208Pb from Ref. [54]. See text for more details.

electric type with multipolarities 1 � L � 12 and 73 phonons
of magnetic type with multipolarities 0 � L � 14. All the
obtained phonons’ energies are less than 11 MeV.

On the upper panel of Fig. 7, the strength distributions of
the PDR in 208Pb calculated within the fully self-consistent
DRPA and DTBA are shown. The single-particle continuum
was not included because it plays a minor role here. The
strength functions for the effective isovector E1 operator de-
termined by Eqs. (37) and (40) have been calculated with
the small smearing parameter 	 = 10 keV to expose the
fine structure of the PDR. The curve denoted as 30×δDTBA
corresponds to the difference between the functions S(E )
calculated within the DTBA+ and DTBA multiplied by the
factor of 30. This difference is small as in the cases of calcu-
lations for 48Ca and 48Ni discussed above.

The experimental data from Ref. [54] are presented in
the lower panel of Fig. 7 in the form of the distribution of
the summed B(E1) strengths in the energy bins divided by
the width of the bin 	E . Such a distribution corresponds to the
strength function S(E ) with the energy-dependent smearing
parameter 	. For the isolated 1− states below 7 MeV, the
value of 	E was taken to be 20 keV in accordance with
the value of the smearing parameter in the DRPA and DTBA
calculations.
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FIG. 8. Summed strength of the E1 excitations in 208Pb in the
region of the pygmy dipole resonance calculated within the DRPA
(green dashed line) and DTBA (black full line) based on the Skyrme-
EDF parametrization SKXm−0.49. The red dotted line represents the
difference δDTBA between the DTBA+ and DTBA results multi-
plied by the factor of 300. The black dash-dotted line represents the
DTBA result shifted down by 0.9 MeV. The experimental data from
Ref. [54] are represented by magenta squares.

As was noted in Ref. [55], the PDR in 208Pb can be divided
into two parts: a lower one from 4.8 to about 5.7 MeV and an
upper one from 5.7 to 8.23 MeV. At higher energies, according
to analysis of Ref. [54], the distribution of the E1 strength
corresponds to the low-energy tail of the GDR. However, the
E1 strength below 5.7 MeV is absent both in the DRPA and
in the DTBA distributions shown in Fig. 7. In general, it is
a problem of many self-consistent calculations of the PDR
in 208Pb; see [55] for a more detailed discussion. Although
a comparison of the theory with the experimental data is not
the aim of the present paper, consider how the situation looks
for the summed E1 strength in 208Pb in the PDR region. The
respective results are shown in Fig. 8. First, one can see that
the difference between the DTBA+ and DTBA results for the
summed E1 strength is practically absent below 8 MeV and is
negligibly small in the interval 8–9 MeV. Second, the DTBA
curve fairly well reproduces the data (except for the region
around 7 MeV) if this curve is shifted down by 0.9 MeV.
The DTBA itself gives a downward shift of the E1 strength

as compared to the DRPA but this shift is insufficient. One
of the possible ways to diminish this discrepancy between
the theory and experiment is generalization of the RenTBA
including so-called ground-state correlations beyond the RPA
(see Refs. [56,57] for more details).

V. CONCLUSIONS

In this work, the range of the problems related to the ex-
istence of the spurious dipole mode (SDM) in self-consistent
nuclear-structure models is considered.

An explicit form of the SDM terms of the RPA response
function was derived from the symmetry properties of the
underlying energy-density functional. This form was used to
construct the projection operator P which enables one (i)
to eliminate the SDM contributions from the RPA response
function and (ii) to eliminate coupling of the SDM with the
physical modes in the extended RPA (ERPA) theories. The
equation for the response function in the ERPA with pro-
jection (ERPA+, in which the above-mentioned coupling is
eliminated) is formulated. It is shown that the action of the
operator P on the bare external-field E1 operators yields the
well-known isoscalar and isovector effective E1 operators.

Numerical examples of the application of the projection
method are considered. As the model of the ERPA type, the
time blocking approximation (TBA) is used. It is shown that
the TBA+ version of the model is quite efficient for elim-
inating the coupling of the SDM with the physical modes.
However, the difference between the results of the realistic
calculations of the E1 excitations within the TBA and TBA+
is very small if the effective external-field E1 operators are
used. The reason is that the strength of the SDM fragments
in the TBA response function is strongly suppressed by the
effective operators. At the same time, the difference between
the TBA and TBA+ results becomes appreciable in the case
of the bare E1 operators.
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