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Investigation of γ softness: Lifetime measurements in 104,106Ru
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Lifetimes of the 2+
1 , 4+

1 , 6+
1 , 2+

γ , and 3+
γ states in 104,106Ru were measured by using the recoil-distance Doppler-

shift technique and the Cologne Plunger device. Low-lying excited states in both nuclei were populated in a
104Ru(18O, 18O) 104Ru* inelastic scattering and in a 104Ru(18O, 16O) 106Ru two-neutron transfer reaction using
the Cologne FN Tandem accelerator. The experimental energy levels and deduced electromagnetic transition
probabilities are compared in the context of γ softness and the mapped interacting boson model with input from
the microscopic self-consistent mean-field calculation using a Gogny interaction. The newly obtained results for
the γ band give a more detailed insight about the triaxial behavior of 104,106Ru. The results will be discussed in
the context of γ soft and rigid triaxial behavior which is present in the neutron-rich Ru isotopes.
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I. INTRODUCTION

The ruthenium (Z = 44) and palladium (Z = 46) isotopes
are located between the strontium (Z = 38), zirconium (Z =
40), and molybdenum (Z = 42) isotopes, which undergo a
transition from spherical to a strongly deformed type of struc-
ture [1–6], and the less deformed cadmium (Cd, Z = 48) and
tin (Sn, Z = 50) isotopes [7,8]. In the neutron-rich region
around Z ≈ 40 and N ≈ 60, the transition from a spherical to
a deformed type of structure of the ground-state band accom-
panied by shape coexistence is expected to happen by going
from 58 to 60 neutrons. Compared with the related Sr and
Zr isotopes, no shape coexistence is observed for 102,104Ru60

and the transition is more gradual. However, some studies
of static and dynamic quadrupole moments indicate that the
shape coexistence might still persist in this nucleus [2,9,10].

Different experiments show that the isotopic chains of
molybdenum, ruthenium, and palladium possess signatures
indicating γ -soft behavior [11–16,18]. In even-even nuclei
the 2+

1 state is related to the quadrupole deformation and
the γ band is sensitive to the triaxial motion of the nucleus.
A triaxial nucleus rotates around all three axes of the in-
trinsic body and has its potential-energy surface minimum
at γ = 30◦. Two models discussing the triaxial shape are
the Wilets-Jean γ -soft rotor model [17] and the Davydov-
Filippov rigid triaxial rotor model [18–20]. In the γ -soft
model the potential-energy surface is independent of γ and
shows a broad minimum in the γ degree of freedom, while
the rigid-rotor model has a distinct minimum at γ = 30◦. A
useful tool to distinguish between these two limits of a triaxial
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nucleus is the staggering parameter, which is defined as [21]

S(J ) = [E (J ) − 2E (J − 1) + E (J − 2)]

E
(
2+

1

) , (1)

where E (J ) represents the energy levels of the γ band with
the corresponding spin J . The staggering parameter describes
the clustering and spacing of states in the γ band where
a positive value for odd-spin levels and negative value for
even-spin levels corresponds to a γ -soft case and the oppo-
site values for a γ -rigid nucleus. In Fig. 1 the staggering
parameters for the Ru isotopes with neutron numbers from 56
to 68(100–112Ru) are shown, calculated for spin J = 4, 5, 6, 7
states of the γ band. According to the available data for 100Ru,
a γ -soft structure is expected. For the Ru isotopes with 58
to 64 neutrons (102–108Ru) a less pronounced even-odd spin
staggering is observed, which might be an indicator of a
less pronounced softness in these nuclei. 110Ru seems to be
a transitional nucleus from a γ -soft behavior occurring in
the lighter Ru isotopes to a rather more γ -rigid behavior in
112Ru. The molybdenum and palladium isotones of 104,106Ru,
i.e., 102,104Mo, and 106,108Pd also show signs of γ softness
in terms of staggering parameter and R4/2 ratio [23–26,29].
However, the signs are only weakly pronounced for 104Mo and
the neutron-rich molybdenum isotopes [29,30].

Further signatures to characterize the shape and behav-
ior of a nucleus are the R4/2 = E (4+

1 )/E (2+
1 ) and B4/2 =

B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) ratios. The R4/2 ratio for
the ruthenium isotopes increases from around 2.1 for 98Ru up
to a maximum of 2.8 for 110Ru, which is also the midshell
nucleus with N = 66. Afterwards the ratio decreases slowly
down to 2.6 for 116Ru. The R4/2 ratios of 104,106Ru, discussed
in this work, are 2.48(1) and 2.65(1), respectively. These
values are close to the γ -soft limit which is at 2.5. The B4/2
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FIG. 1. (a) The staggering parameter S(J ) for the 100–112Ru iso-
topes calculated using Eq. (1). The energy levels are taken from the
Nuclear Data Sheets [22–28].

ratio for 98Ru is 1.9(5) and thus nearly the spherical limit [31].
The 100,102,104Ru isotopes show a B4/2 ratio of ≈1.5 which
is closer to the rotational limit [22–24]. The lifetime of the
4+

1 state in 106Ru was not available in the past, but will be
determined in the course of this work. For the neutron-rich
isotopes 108,110Ru, the ratios are 1.7(5) and 1.3(5), respectively
[26,27]. The lifetime information about the 4+

1 state in 106Ru is
important to close the gap between the stable and neutron-rich
Ru isotopes, i.e., between 100–104Ru and 108–112Ru.

II. EXPERIMENT

To populate low-lying states in 104Ru and 106Ru, the
inelastic-scattering reaction 104Ru(18O, 18O

′) 104Ru
∗

and the
two-neutron transfer reaction 104Ru(18O, 16O) 106Ru were
used. The enriched 104Ru target had a thickness of 0.15
mg/cm2 that was evaporated onto a natural vanadium 0.78
mg/cm2 backing. The target was stretched in parallel to a
natural vanadium stopper foil with a thickness of 3.1 mg/cm2

inside the Cologne Plunger device [32]. Still traces of 102Ru
were observed in the reaction. The 18O beam impinged on
the target with a beam current of ≈ 1 pnA using an energy
of 57 MeV provided by the Cologne 10 MV FN-Tandem
accelerator. The stopper foil acts as a stopper for the ejectiles
produced in the reaction, i.e., recoiling 104,106Ru nuclei. The
Cologne Plunger device was used in conjunction with eleven
high-purity germanium (HPGe) detectors forming two rings
(backward and forward) around the target chamber to detect
γ rays [32]. The six backward and five forward detectors
were placed at angles of 45◦ and 142◦ with respect to the
beam direction. As in previous experiments [15,16,33,34], six
solar cells (PIN diodes) were installed at backward angles to
detect the backscattered beam-like light recoiling fragments
and to limit the kinematics of the recoiling reaction prod-
ucts. Ten target-to-stopper distances (44, 53, 63, 93, 143,
343, 843, 1543, 2843, and 3743 μm) with respect to the
electrical contact of the foils were measured in seven days

of beam time to achieve sufficient coverage and statistics
to apply the recoil distance Doppler-shift (RDDS) technique
and the differential decay curve method (DDCM) [32,35].
To determine the absolute distance, the capacitance method
described in Refs. [32,36] was used. In addition, an op-
tical distance measurement device was used to obtain the
absolute distances [37]. Both methods yield consistent re-
sults for the so-called zero distances of 43(5) μm where
the uncertainty is used as an error for each absolute dis-
tance. The zero distance is defined as the minimal distance
between target and stopper foil, where no electrical contact
occurs. To determine the velocity of the recoiling nuclei,
the Doppler shift of the most intense transitions are used.
The resulting recoil velocity amounts to v/c = 2.10(6)% and
v/c = 2.01(10)% for 104Ru and 106Ru, respectively. The red
rectangle in Fig. 2(a) indicates the asymmetric gate that has
been applied to select the backscattered 16,18O particle to
observe the coincident γ rays of the corresponding reaction
partner (either 104Ru or 106Ru). An asymmetric gate has been
applied to avoid a possible contamination of the α-transfer
channel which results in 108Pd, which is marked with a
blue rectangle in Fig. 2(a). A distinction of the inelastic-
scattering channels (102Ru and 104Ru) and the two neutron
transfer channel (106Ru) with the applied particle gate was
not possible due to the energy and angular straggling of the
recoiling 16O and 18O particles as well as the angular cov-
erage of the solar cells. In Figs. 2(b) and 2(c), the γ -ray
spectrum summing up all distances is shown for the energy
range from 170 keV up to 1750 keV. In Figs. 3(b) and
3(c) the partial level scheme is shown which was built us-
ing the information of corresponding γ -ray spectrum, where
the spins and parities are taken from the literature [24,25].
The states populated in this experiment are consistent with
previous inelastic-scattering and two-neutron transfer exper-
iments [10,25,38–41]. The arrow width in the partial level
scheme describes the intensity of the observed transition that
are summarized in Table I. The observation limit is about
0.2% and 2% relative to the 2+

1 → 0+
1 transitions of 104Ru

and 106Ru, respectively. The large difference in the obser-
vation limit results from the approximately ten-times higher
cross section for the inelastic scattering compared with the
two-neutron transfer reaction. This leads to more statistics
and hence a more sensitive observation limit. The strongest
γ rays in coincidence to the particle gate onto 16,18O be-
long to 102Ru marked with *, 104Ru and 106Ru, where the
γ rays are labeled with the corresponding transition be-
tween the two involved state, as can be seen in Figs. 2(b)
and 2(c).

III. ANALYSIS

The lifetimes of the 2+
1 , 4+

1 , 6+
1 , 2+

γ , and 3+
γ states in both

nuclei were analyzed using the Bateman equations [42] and
the well-established differential decay curve method (DDCM)
[32,35]. The DDCM has specific advantages such as the min-
imization of systematic errors, the usage of directly derived
experimental values and relative distances and the fact that
no assumptions about the shape of the decay curve R(t )
are required. To determine lifetimes using the DDCM, the
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FIG. 2. (a) The summed solar cell spectrum of all distances.
The red rectangle shows the applied gate to select the recoiling
16,18O particles to obtain a γ spectrum of 104,106Ru. The gate on
16,18O has been applied asymmetric to avoid a possible contamina-
tion of the α-transfer channel. (b), (c) The summed γ -ray spectrum
for all distances after applying a particle gate which is indicated
by the red rectangle in panel (a) for the energy range is from 170
up to 750 keV and 720 up to 1750 keV, respectively. The observed
transitions of 104Ru are marked in blue and for 106Ru in red. The
transitions marked with “*” belong to the inelastic scattering of
102Ru, which are the 2+

1 → 0+
1 and 4+

1 → 2+
1 transitions. Note that

the y scale is logarithmic in panel (b) and a linear scale is used
in panel (c).

program NAPATAU [43] was used. A detailed description of
both methods is given in Ref. [32]. Due to a lack of statistics
in γ -γ coincidences, only particle-gated single γ -ray spectra
were used to determine the lifetimes. For some low populated

FIG. 3. Partial level scheme of the observed states in 104Ru and
106Ru populated in the inelastic scattering or in the two-neutron
transfer reaction. The width of the transition arrows corresponds to
the observed intensities (see Table I) and the dashed lines indicate
known transitions not observed in this experiment.

states the method explained and applied in Refs. [15,16,44]
was used to determine the lifetimes. Therefore, the summed
spectra of all distances j was solved with the following
equation:

Rsum =
∑

j Iu
j∑

j Iu
j + ∑

j I s
j

=
∑

j

n jR(t j ), (2)

with Iu
j and Is

j being the intensities of the unshifted and
shifted components, respectively. The normalization factor nj

has been obtained by applying a gate for each distance on
the 2+

1 → 0+
1 transition of 104Ru and 106Ru corresponding to

270.1 and 358.0 keV, respectively, and integrating the result-
ing particle spectrum. The time of flight for each distance
is described by t j and R(t j ) is the decay curve described by
the Bateman equations [42]. The lifetime τ is the only free
parameter in solving this equation [15,16,44,45].

Here, a top-to-bottom approach was used to adjust the
feeding pattern influencing the lifetimes of lower-lying states.
For the cases of higher-lying states and of low statistics,
Eq. (2) has been used to derive lifetimes. This is realized
by applying a Monte Carlo approach with 107 iterations and
which varies n j , Rsum, v/c and the distance within the un-
certainties. From the resulting distribution, the lifetimes and
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TABLE I. Relative transition intensities observed in the inelastic scattering 104Ru(18O, 18O
′) 104Ru

∗
and the two-neutron transfer

104Ru(18O, 16O) 106Ru reaction. The intensities were normalized to the 2+
1 → 0+

1 transition of the respective nucleus and the energies are
taken from Refs. [24,25].

104Ru 106Ru

Transition Transition energy [keV] Intensity Transition energy [keV] Intensity

2+
1 → 0+

1 358.0(1) 100.0(22) 270.1(1) 100.0(35)
4+

1 → 2+
1 530.5(1) 11.4(32) 444.6(2) 41.1(17)

6+
1 → 4+

1 667.9(3) 1.1(1) 581.1(2) 11.8(8)
2+

γ → 2+
1 535.1(1) 5.5(2) 522.2(1)

2+
γ → 0+

1 893.1(1) 4.3(2) 792.3(1) 7.4(8)
3+

γ → 2+
1 884.4(1) 0.7(2) 821.5(1) 11.8(9)

4+
γ → 2+

γ 609.5(1) 0.4(1) 515
4+

γ → 4+
1 614.2(1) 0.2(1) 592

2+
3 → 2+

1 1157.4(1) 1122.2(1) 8.1(9)
3−

1 → 2+
1 1612.4(1) 2.7(2)

0+
2 → 2+

1 630.3(3) 720.5(1) 5.2(8)

the corresponding uncertainty is derived as mean and standard
deviation.

For the determination of the lifetimes of states with higher
statistics of the decay transition, the Bateman equations were
solved. Here, a Monte Carlo approach was also used which
varies all parameters like absolute distance, R(t ), v/c, and
possible feeding contributions like feeding intensity and feed-
ing lifetime within their respective uncertainties. The adopted
values and their corresponding errors are calculated by us-
ing a Monte Carlo simulation. To account for nonstatistical
sources of uncertainty, a 5% systematic error is added to the
adopted value. Potential systematic uncertainties are caused
by various sources of contribution like opening angle of
the detectors, slowing down effects within the stopper foil
and deorientation effects which is especially pronounced for
τ > 100 ps [32].

Calculating the particle flight time using the recoil velocity
and the zero distance of 43 μm results in a minimum flight
time of ≈7 ps. Hence, we set the lower sensitivity limit of
this experimental configuration at ≈5 ps. In the following
section, the analysis procedure for the determination of the
lifetimes in 104,106Ru is explained. The analysis of the 104Ru
serves as consistency check of the experimental setup as well
as the analysis procedure. Only the lifetime of the 3+

γ state was
determined for the first time. All other determined lifetimes in
this work confirm the literature values within the uncertain-
ties. The spectra and fits for the data are only visualized for
106Ru due to its novelty. The final lifetimes of 104,106Ru are
summarized in Table II.

A. Lifetimes in 104Ru

1. Analysis of 4+
γ , 6+

1 , and 3−
1 states

The observed transitions depopulating the 4+
γ state (609.5

and 614.2 keV), the 6+
1 state (667.9 keV), and the 3−

1 (1612.3
keV) state, see Fig. 2, only show a shifted and no unshifted
component. This indicates a lifetime to short too be mea-
sured with the properties of the experimental configuration.
Therefore, an upper limit of ≈5 ps is set for these states i.e.,

τ4+
γ

< 5ps, τ6+
1

< 5ps, and τ3−
1

< 5ps. Although it is not an
absolute result, this is an important information to account for
the feeding properties of lower-lying states. The derived upper
limits of less than 5 ps for the 4+

γ , 6+
1 are in good agreement

with previously determined lifetimes of τ4+
γ

= 3.9(4) ps and

τ6+
1

= 1.92+17
−6 ps [10,24,39,40,46–48], derived as the mean

of several Coulomb excitation experiments. No information
about the lifetime of the 3−

1 is given in the literature.

2. Analysis of 2+
γ and 3+

γ states

The 2+
γ and 3+

γ states are only weakly populated and there-
fore Eq. (2) was used to obtain the lifetimes. For the lifetimes
of the 2+

γ state, the 2+
γ → 2+

1 (535.1 keV) and the 2+
γ → 0+

1
(893.1 keV) have been used to determine the lifetime. In
the forward ring an overlap between the 2+

γ → 2+
1 (535.1

keV) and 4+
1 → 2+

1 (530.5 keV) transition is observed and the
analysis using the 2+

γ → 2+
1 transition was only performed

for the backward ring. For the 3+
γ state only the 3+

γ → 2+
1

transition (884.4 keV) was observed and used to obtain the
lifetime. The weighted mean of the results leads to the life-
times of τ2+

γ
= 8.9(18) ps and τ3+

γ
= 7.3(23) ps. To investigate

possible feeding contributions for the 3+
γ state from higher-

lying unobserved states (e.g., 5+
γ state as a feeder of the

3+
γ state) and other unobserved, unknown feeding γ rays,

the simulation has been expanded to take these unobserved
feeders into account. By considering the observation limit
(≈0.2%) and the observed intensities of the decay transitions
of the 3+

γ states (see Table I), a maximum of unobserved
feeding contributions is 30%. A feeding lifetime of 100 ps is
assumed, which is sufficiently long to be considered as a pure
long-lived feeding [15,34] with the result of τ3+

γ
= 2.8(12) ps.

The lower limit derived from the maximum feeding approach
is used as the lower limit of the final lifetime. The final
result is τ3+

γ
= 7.3+23

−57 ps, where no lifetime information is
available in the literature. The lifetime of the 2+

γ with τ2+
γ

=
8.9(18) ps is in agreement with the mean lifetime measured by
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TABLE II. Lifetimes of 104,106Ru measured in the experiment using the Bateman equation (BE), the DDCM method, the Simulations (SIM)
using Eq. (2) together with the adopted values. The literature values from Refs. [49,50] are summarized in the last column.

Lifetime [ps]

Backward ring Forward ring

State Decay transition [keV] [24,25] BE DDCM SIM BE DDCM SIM Adopted Lit.

104Ru 2+
1 358.0(1) 79.5(86) 82.8(28) 79.1(66) 78.3(86) 82.4(28) 79.1(67) 80.2(66) 81.5(14)a

4+
1 530.5(1) 8.0(10) 9.0(8) 8.1(22) 8.4(13) 8.1(9)a

6+
1 667.9(3) <5 1.92+17

−6
a

2+
γ 535.1(1) 8.3(23)

⎫⎬
⎭8.9(18) 7.2(7)a

2+
γ 893.1(1) 9.2(24) 9.3(24)

3+
γ 884.1(1) 9.3(50) 7.0(20) 7.3+23

−57

4+
γ 609.5(1) <5 3.9(4)a

3−
1 1612.4(1) <5

106Ru 2+
1 270.1(1) 267(29) 261(12) 273(25) 282(30) 283(12) 279(26) 274(23) 264(4)b

375(101)c

4+
1 444.6(2) 14.6(29) 12.5(13) 13.3(15) 14.7(27) 12.4(12) 13.6(13) 13.5(15) < 20b

6+
1 581.1(2) 10.0+25

−55 10.0+25
−55 —

2+
γ 792.3(1) 13.9+52

−48 13.9+52
−48 10.8(43)b

3+
γ 821.5(1) 17.3+52

−99 17.3+52
−99 < 38b

0+
2 720.5(1) <5 <8.7b

2+
3 1122.2(1) <5 <19b

aFrom Refs. [10,24,39,40,46–48].
bFrom Ref. [49].
cFrom Ref. [50].

different Coulomb excitation experiments with a mean value
of τ2+

γ
= 7.2(7) ps [10,24,39,40,46–48].

3. Analysis of 4+
1 and 2+

1 states

After the determination of the lifetime of higher-lying
states, this information can be used to obtain the lifetimes
of the two lowest states, namely the 4+

1 and 2+
1 states. The

4+
1 → 2+

1 transition (530.5 keV) has an overlap with the
2+

γ → 2+
1 transition (535.1 keV), hence, only the backward

angles could be used to determine the lifetime. Here, the
Bateman equation, the DDCM using the program NAPATAU

[43] as well as Eq. (2) were used to determine the life-
time. The weighted mean of all results was used to adopt
as lifetime and results in τ4+

1
= 8.4(13) ps. The result is in

good agreement with the adopted value of τ4+
1

= 8.1(9) ps,
given in the literature [24]. The 2+

1 → 0+
1 (358.0 keV) tran-

sition in combination with the Bateman equations, DDCM,
and Eq. (2) were used to determine the lifetime of the 2+

1
state. The final lifetime of τ2+

1
= 80.2(66) ps agrees within

its uncertainties to the adopted literature value of 81.5(14)
ps [10,24,39,40,46–48].

B. Lifetimes in 106Ru

1. Analysis of 2+
3 and 0+

2 states

The observed decay branches of the 2+
3 → 2+

1 state (1122.2
keV) and 0+

2 → 2+
1 state (720.5 keV) only show a shifted

component, suggesting a lifetime to short too be measured

with the experimental configuration. Just as for some states in
104Ru, an upper limit of 5 ps can be determined, representing
the level of sensitivity in this case. No lifetime information for
these two states are given in the literature.

2. Analysis of 2+
γ , 3+

γ , and 6+
1 states

The 2+
γ , 3+

γ , and 6+
1 states have a low population and hence

Eq. (2) has been employed to obtain the lifetimes. The fits to
the data are shown in Figs. 4(a) and 4(b). The resulting life-
times are τ6+

1
= 10.0(25) ps and τ3+

γ
= 17.3(52) ps assuming

no feeding. However, to investigate possible feeding contribu-
tions from unobserved higher-lying states (e.g., 8+

1 state as a
feeder of the 6+

1 state) and other unobserved feeding γ rays,
the simulation has been expanded to take these feeders into
account. By considering the observation limit (≈2%) and the
observed intensities of the decay transitions of the 6+

1 and 3+
γ

states (see Table I), maximal contribution of unobserved feed-
ing are in the order of 15% and 20%, respectively. Assuming
a feeding lifetime of 100 ps which is sufficiently long to be
considered as a pure long-lived feeding [15,34] the resulting
lifetimes amount to τ6+

1
= 6.6(21) ps and τ3+

γ
= 11.3(39) ps.

The lower limit of the simulation is used as the lower limit
of the lifetime and the final results are τ6+

1
= 10.0+25

−55 ps and

τ3+
γ

= 17.3+52
−99 ps. The results of the simulation with and with-

out feeding are shown in Figs. 4(c) and 4(d). The determined
value for the 3+

γ state is consistent with the upper limit of
τ3+

γ
< 38 ps given in Ref. [49].
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FIG. 4. (a), (b) Particle-gated γ -ray spectrum detected by the backward detectors of the 6+
1 → 4+

1 (581.1 keV), 2+
γ → 0+

1 (792.3 keV), and
3+

γ → 2+
1 (821.5 keV) decay transitions in 106Ru with the corresponding shifted peaks. A peak at 585 keV has included in the fit procedure to

account for its contribution [see panel (a)], marked in green. However, the origin of the γ ray is unclear. The γ -ray spectra of all distances are
summed up due to low statistics and the fits of the shifted (blue) and unshifted (red) peaks are shown. (c)–(e) The result of the Monte Carlo
simulation using Eq. (2), where no feeding is assumed (green) and the case where feeding is taken into account (red). Also the final lifetimes
with the error bars are shown. See text in Sec. III B 2 for more details.

For the 2+
γ state only the feeding of the 3+

γ state has been
considered which results in a final lifetime of τ2+

γ
= 13.9+5.2

−4.8

ps. The simulation for the 2+
γ state with its error bar is shown

in Fig. 4(e). The final result is in agreement with a previous
measurement with a result of τ2+

γ
= 10.8(43) ps [49]. The

determined lifetimes and literature values are summarized in
Table II.

3. Analysis of 4+
1 and 2+

1 states

As the lifetimes of the higher-lying states have been de-
termined, they can be used to obtain the lifetimes of the 4+

1
and 2+

1 states. The evolution of the shifted and unshifted
components for these states is shown in Fig. 5 for four selected
distances (53, 143, 843, and 2843 μm) for the backward de-
tectors. The solution of the Bateman equations and the DDCM
using the program NAPATAU [43] are shown in the lower part
of Fig. 5. For the 4+

1 state the 444.6 keV transition (4+
1 → 2+

1 )
has been used to determine the lifetime. The feeding contri-
bution of the 6+

1 and 3+
γ states have been taken into account.

The final lifetime is calculated using the weighted average of
the six measurements [backward and forward each Bateman
equations, DDCM and simulations using Eq. (2)]. The final
result for the lifetime of the 4+

1 state is τ4+
1

= 13.5(15) ps
and in agreement with the upper limit of τ4+

1
< 20 ps given

in Ref. [49].
The decay transition of the 2+

1 state (270.1 keV) has been
used to determine the lifetime. Here, the contributions of
the 4+

1 , 3+
γ , and 2+

γ states were considered. The intensity of
the contribution of the 2+

γ → 2+
1 (522.2 keV) transition has

been calculated using the intensities given in Ref. [25]. The
intensity of the 522.2 keV transition could not be determined

due to a overlap of the shifted components of the 530.5 keV
(4+

1 → 2+
1 ) and 535.1 keV (2+

2 → 2+
1 ) transitions which are

populated in the inelastic-scattering reaction of 104Ru. The
final lifetime is calculated the same way as discussed before
and the adopted value is τ2+

1
= 274(23) ps. This result is in

agreement with the results of two previous lifetimes measure-
ments, resulting in lifetimes of 264(4) ps [49] and 375(101)
ps [50].

IV. CALCULATIONS

To describe the nuclei of interest calculations using
the proton-neutron interacting boson model (IBM-2) [51]
were performed, which are based on the microscopic en-
ergy density functional (EDF) [52–54]. The parameters of
the mapped-IBM-2 Hamiltonian are determined by mapping
the deformation-energy surface, which is provided by the
constrained Gogny-D1M SCMF calculations [55], onto the
expectation value of the mapped-IBM Hamiltonian computed
with the boson condensate intrinsic wave function [56–59].
With the resulting mapped-IBM Hamiltonian energy levels
and transition probabilities can be determined. In the left part
of Fig. 6 the potential-energy surface (PES) of the mean-
field Gogny-D1M energy density functional exhibits only a
single minimum. Therefore, the single configuration of the
Hamiltonian described in Ref. [56] is used. In this section,
only a short description of the calculations is given. A more
detailed description of the calculations is given in Ref. [56].
The Hamiltonian ĤB is defined as

ĤB = εn̂d + κQ̂π · Q̂ν + κ ′ ∑
ρ ′ �=ρ

T̂ρρρ ′ , (3)
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FIG. 5. The evolution of the shifted (blue) and unshifted (red)
components in the backward ring for the 2+

1 → 0+
1 (left panel) and

4+
1 → 2+

1 (right panel) transitions for four selected distances, namely
53, 143, 843, and 2843 μm. Furthermore, the decay curves for the
lifetimes of the 2+

1 and 4+
1 states using the Bateman equations to fit

the data are shown. The DDC method for the 2+
1 and 4+

1 states using
the program NAPATAU [43] for the backward angle. The individual
obtained lifetimes are shown in the upper panel, and the lower panel
shows the evolution of the shifted (red) and unshifted (blue) compo-
nent. In addition the fit of the data is shown, which is used to obtain
the derivative d

dx Ri(x). Note that the x scale is logarithmic for the
decay curves.

where n̂d = n̂dν + n̂dπ and n̂dρ = d†
ρ · d̃ρ (ρ = ν, π ) describes

the d-boson number operator. The quadrupole operator is de-
fined as Q̂ρ = s†

ρ d̃ρ + d†
ρ s̃ρ + χρ[d†

ρ × d̃ρ](2) (ρ = ν, π ) and
the third term is a specific three-boson interaction term with
T̂ρρρ ′ = ∑

L[d†
ρ × d†

ρ × d†
ρ ′ ](L) · [d̃ρ ′ × d̃ρ × d̃ρ](L) with L be-

ing the total angular momentum in the boson system [60–62].
To calculate the electromagnetic E2 transition rates the fol-
lowing relation is used:

T̂ (E2) = eB,π Q̂π + eB,νQ̂ν, (4)

with eB,π and eB,ν being the effective charges and Q̂π and
Q̂ν the quadrupole operators described before. The boson

FIG. 6. Contour plot of the deformation-energy surface in the
(β, γ ) plane for 104Ru (top) and 106Ru (bottom) computed with the
constrained SCMF method by using the Gogny functional D1M
(left) and with the mapped IBM (right). The red dot indicates the
minima of the energy surface plots and the difference between two
neighboring contours is 100 keV

numbers were obtained by using the shell closures at Z =
N = 50 and half the number of valence protons and neutrons.
The 104,106Ru nuclei have six protons and are ten (twelve)
neutrons away from the closed shell. The proton boson num-
ber is Nπ = 3 and the neutron boson number is Nν = 5 and
Nν = 6, respectively. The minimized Hamiltonian parameters
for 104Ru are ε = 0.40 MeV, κ = −0.078 MeV, χν = −0.10,
χπ = −0.10, κ ′ = 0.25 MeV. For 106Ru the parameters ε =
0.37 MeV, κ = −0.067 MeV, χν = 0.08, χπ = −0.05, κ ′ =
0.25 MeV were used. An effective charge of eB,π = eB,ν =
0.108 e b (104Ru) and eB,π = eB,ν = 0.104 e b (106Ru) has
been used. The effective g factors for both nuclei are gν = 0
for neutrons and gπ = 1 for protons which are given in units
of μN . An E0 operator of −0.068 fm2 for proton and neutron
bosons has been used to obtain the ρ(E0) value for 106Ru. In
Fig. 6 the mean-field Gogny-D1M (left) and the mapped-IBM
potential-energy surfaces (PESs) (right) are shown for 104Ru
and 106Ru. For 104Ru, the mean-field PES shows a distinct
minimum around β ≈ 0.25 and γ ≈ 20◦ which was used to
obtain the mapped-IBM parameters. The minimum in the
mapped-IBM PES shows a minimum around β ≈ 0.25 and
γ ≈ 25◦. In the case of 106Ru, similar values are visible with
a minimum around β ≈ 0.25 and γ ≈ 20◦ in the Gogny-D1M
PES and β ≈ 0.25 and γ ≈ 30◦ for the mapped-IBM PES.

V. DISCUSSION

The experimental results of 104,106Ru will be discussed and
compared with the previously explained mapped-IBM calcu-
lations and to the values of the Wilets-Jean γ -soft model [63]
(hereafter called the γ -soft model) taken from Ref. [17]. The
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FIG. 7. The experimental (Expt.) and calculated (γ soft and mapped IBM) low energy level scheme for 104Ru (top) and 106Ru (bottom).
The deduced B(E2) transition probabilities values are placed on the corresponding arrow and are given in Weisskopf units. Due to a lack of
multipole mixing ratios, some B(E2) values are calculated in the limits of a pure E2 transitions, which are marked with #. The transition
probability of the 0+

2 → 0+
1 is given in 103 × ρ(E0).

Wilets-Jean model is similar to the O(6) limit for N → ∞ in
the IBM [64]. The results from the calculations as well as the
experimental B(E2) values are visualized in Fig. 7. Addition-
ally, all transition strengths and ratios including energies as
well as transitions strength are summarized in Tables III and
IV, which will be discussed in the context of triaxiality. The
ratios that have been calculated are defined as follows:

R4/2 = E4+
1
/E2+

1
, (5)

R6/2 = E6+
1
/E2+

1
, (6)

R8/2 = E8+
1
/E2+

1
, (7)

R2γ /2 = E2+
γ
/E2+

1
, (8)
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B4/2 = B(E2; 4+
1 → 2+

1 )

B(E2; 2+
1 → 0+

1 )
, (9)

B2γ /2 = B(E2; 2+
γ → 2+

1 )

B(E2; 2+
1 → 0+

1 )
, (10)

B′
2γ /2 = B(E2; 2+

γ → 2+
1 )

B(E2; 2+
γ → 0+

1 )
. (11)

Due to asymmetric uncertainties, the lower and upper limits
of the last two ratios (B2γ /2 and B′

2γ /2) were calculated using

TABLE III. The experimental, the mapped-IBM calculated and
γ -soft model (taken from Ref. [17]) reduced transition probabil-
ities of 104Ru. The branching ratios are taken from the Nuclear
Data Sheets [24]. For transitions with unknown multipole mixing
ratios, the corresponding transition strength are calculated in the limit
of pure E2 and M1 transitions and are marked with an asterisk.
The B(E2), B(E1), and B(M2) values are given in W.u. and the
B(M1) values are given in 10−4μ2

N . Furthermore, the ratios defined
in Eqs. (5)–(11), were calculated for a comparison with the mapped-
IBM and the γ -soft limit to discuss triaxiality.

Reduced transition strength Experiment IBM γ soft [17]

B(E2; 2+
1 → 0+

1 ) 58.7(53) 58.7 58.7
B(E2; 4+

1 → 2+
1 ) 79(14) 79 84

B(E2; 6+
1 → 4+

1 ) >42 85 98
B(E2; 2+

γ → 0+
1 ) 2.3+6

−4 0.56
B(E2; 2+

γ → 2+
1 )a 42+11

−7 68 84
B(M1; 2+

γ → 2+
1 )a 1.9+34

−10 0.66
B(E2; 3+

γ → 2+
1 )b 4.5+53

−13 0.77
B(M1; 3+

γ → 2+
1 )b 7.3+88

−29 9.7
B(E2; 3+

γ → 4+
1 )* 44+52

−17 29 28
B(M1; 3+

γ → 4+
1 )* 110+130

−40 4.4
B(E2; 3+

γ → 2+
γ )* 120+141

−39 70 70
B(M1; 3+

γ → 2+
γ )* 300+350

−100 1.7
B(E2; 4+

γ → 2+
1 ) >0.3 0.068

B(E2; 4+
γ → 4+

1 )* >21 27 46
B(M1; 4+

γ → 4+
1 )* >160 30

B(E2; 4+
γ → 2+

γ ) >37 34 51
B(E1; 3−

1 → 2+
1 )c >2 × 10−5 / >8 · 10−7

B(M2; 3−
1 → 2+

1 )c >4 × 10−2 / >36
R4/2 = E4+

1
/E2+

1
2.48(1) 2.53 2.5

R6/2 = E6+
1
/E2+

1
4.35(1) 4.58 4.5

R8/2 = E8+
1
/E2+

1
6.48(1) 7.17 7

R2γ /2 = E2+
γ
/E2+

1
2.49(1) 2.35 2.5

B4/2 = B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
1.35(27) 1.35 1.43

B2γ /2 = B(E2;2+
γ →2+

1 )

B(E2;2+
1 →0+

1 )
0.73+7

−20
d 1.18 1.43

B′
2γ /2 = B(E2;2+

γ →2+
1 )

B(E2;2+
γ →0+

1 )
22+22

−21
d 121 ∞

aA M1/E2 mixing ratio of δ = −36+14
−54 was used [65].

bA M1/E2 mixing ratio of δ = −3.2(4) was used [65].
cA E1/M2 mixing ratio of δ = 0.01 or 5.2+18

−11 was used [65]. How-
ever, the results with the large mixing ratio of δ = 5.2+18

−11 seem
unreasonable.
dDue to asymmetric uncertainties, the error is calculated using a
maximum value estimation. See text for more details.

the maximum value of the numerator and the minimum of the
denominator as the upper limit and vice versa for the lower
limit. Note that this does not result in an 1σ error.

A. 104Ru

1. Energy levels

Level energies and B(E2) transition probabilities derived
for the experiment and from the calculations of the mapped-
IBM and γ -soft model for 104Ru are shown in Fig. 7. The
level energies of the 2+

1 and 4+
1 are well described by both

calculations. The energy levels of the 6+
1 and 8+

1 state are
overestimated by both calculations, where the γ -soft calcu-
lations has a smaller deviation. The energy levels of the γ

band are slightly overestimated by the γ -soft calculations.
However, the clustering of the (3+

γ , 4+
γ ) and (5+

γ , 6+
γ ) states

TABLE IV. Same as Table III but for 106Ru. The branching ratios
are taken from the Nuclear Data Sheets [25].

Transition strength Experiment IBM γ soft [17]

B(E2; 2+
1 → 0+

1 ) 67(6) 67 67
B(E2; 4+

1 → 2+
1 ) 116(14) 90 96

B(E2; 6+
1 → 4+

1 ) 40+38
−8 98 112

B(E2; 2+
γ → 0+

1 ) 2.6+14
−7 0.17

B(E2; 2+
γ → 2+

1 )a 29+15
−8 83 96

B(M1; 2+
γ → 2+

1 )a 3.5+36
−15 12

B(E2; 3+
γ → 2+

1 )b 2.9+29
−8 0.22

B(M1; 3+
γ → 2+

1 )b 3.3+61
−18 7.5

B(E2; 3+
γ → 4+

1 )* 18+19
−11 40 32

B(M1; 3+
γ → 4+

1 )* 5.3+57
−33 2.1

B(E2; 3+
γ → 2+

γ )* 88+87
−38 90 80

B(M1; 3+
γ → 2+

γ )* 160+160
−70 26

B(E2; 2+
3 → 0+

1 ) >0.16 0.009
B(E2; 2+

3 → 2+
1 )c >0.11 0.24

B(M1; 2+
3 → 2+

1 )c >49 2.6
B(E2; 2+

3 → 4+
1 ) >6 0.000039 0

B(E2; 2+
3 → 0+

2 ) >24 0.31 45
ρ(E0; 0+

2 → 0+
1 )d >3 3.5

B(E2; 0+
2 → 2+

1 ) >28 0.085

R4/2 = E4+
1
/E2+

1
2.65(1) 2.54 2.5

R6/2 = E6+
1
/E2+

1
4.80(1) 4.60 4.5

R8/2 = E8+
1
/E2+

1
7.31(1) 7.07 7

R2γ /2 = E2+
γ
/E2+

1
2.93(1) 2.10 2.5

B4/2 = B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
1.82(29) 1.33 1.43

B2γ /2 = B(E2;2+
γ →2+

1 )

B(E2;2+
1 →0+

1 )
0.45+24

−13
e 1.24 1.43

B′
2γ /2 = B(E2;2+

γ →2+
1 )

B(E2;2+
γ →0+

1 )
11.5+127

−60
e 512.5 ∞

aA M1/E2 mixing ratio of δ = 7.1+16
−11 was used [41].

bA M1/E2 mixing ratio of δ = −3.8+9
−16 was used [41].

cA M1/E2 mixing ratio of δ = −0.24+13
−12 was used [41].

dThe electric monopole transition strength between 0+ states is given
in 103 × ρ2(E0) and were calculated using the method explained in
Refs. [66,67].
eDue to asymmetric uncertainties, the error is calculated using a
maximum value estimation. See text for more details.
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resembles the expectations from the γ -soft model. Although
the mapped-IBM predicts the states of the γ band higher than
the experimental observations, it gives a reasonable descrip-
tion of these states and breaks down starting with 6+

γ state.
The experimental ratios of the ground-state band (see

Table III), namely, the R4/2 = 2.48(1), R6/2 = 4.35(1), and
R8/2 = 6.48(1) are overestimated by the mapped-IBM by a
small margin and lie closer to the ratios of the γ -soft rotational
limits which are 2.5, 4.5, and 7.

The experimental R2γ /2 = E2+
γ
/E2+

1
ratio cannot be repro-

duced by the mapped-IBM but is in good agreement with the
γ -soft limit which has a value of 2.5. The experimentally
observed spacing in the sequence 2+

γ , 3+
γ , 4+

γ , 5+
γ , and 6+

γ

states of the γ band is rather constant. This is supported by
the staggering parameters S(4) = −0.25(1), S(5) = 0.31(1),
and S(6) = −0.13(1) that lie around zero (see Fig. 1), which
translates to a constant spacing between the states. However,
these values show weak signs of a γ -soft type of nucleus
where the staggering parameter is negative for even spins and
positive for odd spins [21]. Although the mapped-IBM calcu-
lations overestimate all of the level energies, the spacing in
the γ band is also constant with the exception of the 6+

γ state.
From an energy-level point of view, the 104Ru nucleus show
signs of γ softness which is supported by the prediction of the
γ -soft model and indicated by the mapped-IBM calculations.

2. Reduced transition probabilities

To further discuss γ softness in this nucleus, a closer look
to the reduced transition rates is necessary. The mapped-
IBM and γ -soft calculations are adjusted to the experimental
B(E2; 2+

1 → 0+
1 ) value. The B(E2; 4+

1 → 2+
1 ) value is in

good agreement with both calculations within the given uncer-
tainties. The mapped-IBM B(E2; 6+

1 → 4+
1 ) value of 85 W.u.

is able to describe the experimental lower limit of 42 W.u.
of this work. In comparison, the adopted literature value
of the B(E2; 6+

1 → 4+
1 ) = 110+4

−9 W.u. [10] is lower than
the prediction by the IBM. However, the literature value
has a very good agreement with the expected at the γ -soft
limit. The B(E2; 2+

γ → 0+
1 ) value is underestimated and the

B(E2; 2+
γ → 2+

1 ) value is overestimated by both theoretical
approaches. For the E2 transitions decaying from the 3+

γ state,
all the values are predict to low by both calculations. Note that
the B(E2; 3+

γ → 4+
1 ) strength and B(E2; 3+

γ → 2+
γ ) strength

are calculated assuming a pure E2 transition due to a lack of
information of multipole mixing ratios. Hence, these experi-
mental values might be significantly lower depending on the
mixing ratio. The γ -soft model as well as the mapped-IBM
are capable to describe the B4/2 ratio within the uncertainties
in contrast to the overestimation of the B2γ /2 and B′

2γ /2 ratios.

B. 106Ru

1. Energy levels

Level energies and B(E2) transition probabilities derived
for the experiment and from the calculations of the mapped-
IBM and γ -soft model for 106Ru are shown in Fig. 7. The
level energies of the 2+

1 and 4+
1 are well described by both

calculations. But for both calculations, the energy levels of

the 6+
1 and 8+

1 state are overestimated, where the γ -soft calcu-
lations have a smaller deviation. The γ -soft model is able to
predict a reasonable energy level for the 2+

γ state and 4+
γ state.

Note that the mapped-IBM calculations predict the 2+
γ state

below the 4+
1 state. This is an indicator that can be found in

a rigid triaxial deformation. The 3+
γ , 5+

γ , and 6+
γ states in the

γ -soft calculations are overestimated while the mapped-IBM
calculation underestimates the experimental energy levels of
these states. The R4/2, R6/2, R8/2, and R2γ /2 ratios for the
experiment, for the mapped-IBM calculations and for a γ -
soft nucleus, according to the Ref. [17], are summarized in
Table IV. The experimental ratios for the yrast band are
predicted with reasonable accuracy by both approaches. The
R2γ /2 ratios including the 2+

γ of the γ band cannot be predicted
by either calculation.

2. Reduced transition probabilities

In Table IV the experimental B(E2) and B(M1) val-
ues are summarized and compared with the results from
the mapped-IBM calculations and the γ -soft calculations.
In Fig. 7 the B(E2) strengths given in Weisskopf units are
shown for the experiment, the mapped-IBM calculations,
and the γ -soft calculations. The calculations have been ad-
justed to reproduce the B(E2; 2+

1 → 0+
1 ) transition strength.

The mapped-IBM and γ -soft value for the B(E2; 4+
1 → 2+

1 )
strength lies within the 3σ range of the experimental observa-
tion. The B(E2; 6+

1 → 4+
1 ) on the other hand is overestimated

by both calculations, where one has to note the large uncer-
tainties of the experimental transitions strength. The M1/E2
mixed 2+

γ → 2+
1 transition has been calculated using a multi-

pole mixing ratio of δ = 7.1+1.5
−1.1 [41] and suggests a strong E2

component. Both calculations overestimate the B(E2) value
and the mapped-IBM calculation underestimates the corre-
sponding B(M1) value. The mapped-IBM B(E2; 2+

γ → 0+
1 )

strength is an order of magnitude smaller than the exper-
imental value, while the γ -soft limit predicts a vanishing
transition strength. The experimental B(E2; 3+

γ → 4+
1 ) and

B(E2; 3+
γ → 2+

γ ) values are described by both theoretical ap-
proaches within the uncertainties. Note that both values were
calculated assuming a pure E2 transition due to the lack of
information about the mixing ratios. For the remaining 3+

γ →
2+

1 transition, the mapped-IBM calculations is not capable of
describing the value while the γ -soft approach is not capable
of calculating a value. The B4/2 ratio calculated using the
mapped-IBM and the γ -soft limit lies within the 2σ interval
of the experimental ratio. The experimental ratio lies closer
to the vibrational limit (B4/2 = 2), whereas the calculated
ratios suggest a more rotational or γ -soft behavior with both
limits being B4/2 = 1.43. The calculated B2γ /2 value slightly
overestimate the experimental ratio. The experimental B′

2γ /2

value is order(s) of magnitudes smaller than the calculated
values.

C. γ softness in 104,106Ru

Both nuclei are located in a region where triaxiality
and γ softness have been suggested by different works
[11–16,20,30,68,69]. First, the R4/2 ratio for this two nuclei in
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particular are around the typical γ -soft ratio of ≈2.5 [70]. The
corresponding molybdenum and palladium isotones of 104Ru,
i.e., 102Mo and 106Pd, have similar ratios. The higher Z isotone
of 106Ru, namely, 108Pd shows a similar ratio, whereas 104Mo
is closer to a ratio of R4/2 ≈ 3 [24]. Furthermore, the energy
levels of the 4+

1 and 2+
γ states in 104,106Ru are almost equal,

which is a hint for triaxiality. Note that the mapped-IBM
calculations predict the 2+

γ state below the 4+
1 state for both

nuclei, which can be found in a rigid triaxial deformation.
Although the even-odd staggering is not well pronounced,
it reveals signs of γ softness (see Fig. 1). This is also sup-
ported by the neighboring 102Ru and 108Ru isotopes which
have similar staggering parameter S(4) ≈ −0.3, S(5) ≈ 0.35,
S(6) ≈ −0.15, and S(7) ≈ 0.3 values. The same holds for
the corresponding isotones 106,108Pd and 102Mo, but not for
104Mo.

The mapped-IBM calculation delivers a capable descrip-
tion of the low-spin 2+

γ , 3+
γ , and 4+

γ states of the γ band in
104,106Ru. As shown in Fig. 6, the corresponding potential-
energy surfaces show pronounced γ -soft and triaxial minima
for both nuclei. The lifetimes of the 2+

γ state in both nu-
clei revealed a more collective B(E2; 2+

γ → 2+
1 ) strength as

well as an almost noncollective B(E2; 2+
γ → 0+

1 ) transition
probability. Both transition probabilities are comparable to
the mapped-IBM calculation and the γ -soft calculations. The
experimental transition rates of the 3+

γ state are in agreement
with both calculations showing a large B(E2; 3+

γ → 2+
γ ) and

a small B(E2; 3+
γ → 2+

1 ) value.
For the investigation of γ softness, the inclusion of

quadrupole moments can be insightful [71]. Therefore, the
quadrupole moments up to the sixth order of the mapped-
IBM approach have been calculated. They are defined as a
relative dimensionless shape invariant parameter according to
the following relation [71]:

Kn = qn

q n/2
2

for n ∈ {3, 4, 5, 6}, (12)

where qn are the quadrupole moment of the nth order. The
shape invariant Kn can be used to determine the fluctuation of
the effective deformation and are defined as [71]

σβ = K4 − 1, (13)

σγ = K6 − K2
3 . (14)

A more detailed description of the calculation of these values
is given in Ref. [71]. The resulting shape invariant of the
mapped-IBM calculations are summarized in Table V and
compared with the dynamical symmetry limits of the mapped
IBM, namely, the U(5) (spherical vibrator) and γ -soft limit.
The K3 shape invariant is rather small for both nuclei. K4

is an important invariant to distinguish between the U(5)
and γ -soft symmetry, where the mapped-IBM calculations
lie close to the γ -soft value for both nuclei. The same holds
for the K6 invariant which is significantly closer to the γ -soft
limit compared with the U(5) limit. For both fluctuations of
the effective deformation (σβ and σγ ) the values are better
described by the γ -soft limit as well. The calculated effective
βeff and γeff given in Table V are consistent with the global

TABLE V. The quadrupole shape invariant Kn generated from the
IBM calculations for 104,106Ru. For comparison the U(5) symmetry
as well as the γ -soft limit is shown.

104RuIBM
106RuIBM γ soft U(5)

q2 [e2 b2] 0.814 1.011
K3 0.157 0.074 0 0
K4 1.009 1.010 1 1.4
K5 0.192 0.068 0 0
K6 0.278 0.264 1

3 0.84
βeff 0.269 0.297
γeff 27.0◦ 31.6◦ 30.0◦ 30.0◦

σβ 0.009 0.009 0 0.4
σγ 0.253 0.257 1

3 0.84

minima of the potential-energy surfaces. In general, most of
the γ -soft invariant are capable of describing the properties of
104,106Ru. This fact in addition with the staggering parameter
and the reduced transition strength that are well described by
the γ -soft limit, suggest that both nuclei show signatures of
softness in the γ degree of freedom.

VI. CONCLUSIONS

The lifetimes of the 2+
1 , 4+

1 , 2+
γ , 3+

γ states and upper limits
for the lifetimes of the 6+

1 , 4+
γ , and 3−

1 states in 104Ru were
measured using the RDDS technique. Furthermore, the life-
times of the 2+

1 , 4+
1 , 6+

1 , 2+
γ , 3+

γ states and upper limits for the
lifetimes of the 0+

2 and 2+
3 states were determined in 106Ru.

The results were compared with previous measurements and
to a mapped-IBM calculation which is based on a microscopic
energy density functional and to the γ -soft limit. The mapped
IBM describes the energy levels and transition strength of the
ground-state band and the low-spin states of the γ band for
both nuclei with reasonable accuracy. The deduced transition
strength of the γ band in combination with the energy level
and the energy spacing within the γ band reveal signatures of
γ -soft behavior in 104,106Ru. This is supported by the mapped-
IBM calculations which show a broad minimum at γ ≈ 30◦
that spreads in the γ degree of freedom. The even odd stag-
gering underlines the γ soft behavior and pointing towards
slight γ softness. The transition strengths were compared with
the γ -soft limit which further manifest the γ softness of these
nuclei. Higher-order quadrupole moments were used to calcu-
lated shape invariants. These invariants are used as signatures
of triaxiality and also indicated γ softness in 104,106Ru.
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