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Digital quantum simulation of an extended Agassi model: Using machine learning
to disentangle its phase-diagram
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A digital quantum simulation for the extended Agassi model is proposed using a quantum platform with
eight trapped ions. The extended Agassi model is an analytically solvable model including both short range
pairing and long range monopole-monopole interactions with applications in nuclear physics and in other many-
body systems. In addition, it owns a rich phase diagram with different phases and the corresponding phase
transition surfaces. The aim of this work is twofold: on one hand, to propose a quantum simulation of the
model at the present limits of the trapped ions facilities and, on the other hand, to show how to use a machine
learning algorithm on top of the quantum simulation to accurately determine the phase of the system. Concerning
the quantum simulation, this proposal is scalable with polynomial resources to larger Agassi systems. Digital
quantum simulations of nuclear physics models assisted by machine learning may enable one to outperform the
fastest classical computers in determining fundamental aspects of nuclear matter.
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I. INTRODUCTION

Realistic physical systems, in general, and nuclear physics
problems, in particular, are usually too complex to be solved
exactly. Thus, many-body approximations have to be used
to get reasonably approximate results. Frequently, the com-
plexity of the problem is such that even the use of standard
many-body approximations faces insuperable difficulties. To
tackle this issue, algebraic models, either for fermions or
bosons, having only few degrees of freedom have been de-
veloped. These can be solved analytically in some particular
scenarios and numerically in general cases, even for very
large systems. These facts make them very useful to check
approximations and to provide solid references to test more
complex and fundamental calculations. Among these types
of algebraic models, with relevance in nuclear physics, one
can mention the Elliot SU(3) model [1], which played a major
role in the explanation of rotational structure emergence from
single particle degrees of freedom in nuclei, the interacting
boson model (IBM) for the study of low-lying collective states
in medium and heavy nuclei [2], or the Lipkin-Meshkov-
Glick (LMG) model [3] introduced first to check approximate
many-body techniques in nuclear models with many nucle-
ons interacting via a monopole-monopole force. Those are
examples of simple models that have been able to perme-
ate other fields of physics, e.g., condensed matter, quantum
optics, or molecular physics, due to its simplicity and abil-
ity to capture the key aspects of a large variety of physical
systems.

The Agassi model was proposed as a simple and exactly
solvable version of the far more complex pairing-plus-
quadrupole model of nuclear physics [4]. It includes a
combination of a two-level pairing model and a monopole-
monopole interaction such as the one of the LMG model. The
extended Agassi model was introduced in Ref. [5] and its main
difference with respect to the original model is the addition
of a more general pairing interaction. The model presents a
rich quantum phase diagram and, specifically, gives rise to
quantum phase transitions of different nature. This makes the
study of the extended Agassi model of much interest in the
field of quantum phase transitions (QPT’s), in particular, to
test new techniques able to identify the phase of the system
through the study of appropriate observables.

Quantum simulations provide a fast-developing and power-
ful tool to provide realizations of countless quantum systems
of great interest, such as spin models, quantum chemistry,
as well as QPT’s [6]. In the near future, quantum simulators
should be able to outperform classical computers and solve
previously intractable problems. Consequently, many experi-
mental setups are being proposed to validate the feasibility to
deal with different physical models [7]. The usefulness of the
Agassi model and its relevance in a variety of fields, including
that of QPT’s, motivates its quantum simulation. Furthermore,
tools from quantum information have been recently used, as
the quantum discord, to explore the phases in this model to
gain insight about its structure [8].

The quantum simulation of the original Agassi model has
been already proposed for a system of trapped ions with
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four sites in [9], and the quantum phase diagram of the ex-
tended Agassi model has been extensively studied through a
mean-field formalism [10]. In the present work, the quantum
simulation of the extended Agassi model with eight sites in a
system of trapped ions is worked out, as a natural followup to
these previous studies. Note that the analysis is performed in a
classical computer and the exact results are compared with the
ones from a Trotter expansion which is used to simulate the
quantum computer. In the case of the standard Agassi model
with four sites, its quantum simulation only presents two
phases: a symmetric and a broken symmetry phase. However,
the extended Agassi model with eight sites presents a richer
phase diagram with five different quantum phases. This makes
the model specially issued to be studied for two reasons: (i) It
is at the limit of what the current resources in facilities with
trapped ions could do and (ii) its rich phase diagram allows
evaluating and validating the use of machine learning methods
to identify the phase of the system.

The phase/shape of a system is a property of its ground
state. However, in Ref. [9] it was proved that it can also
be determined through the time evolution study of selected
operator matrix elements acting on a non eigenstate of the
system. However, it is not always obvious how to determine
the phase of the system through this procedure. We can find an
alternative solution to this challenge using another technique
that has seen a fast growth in the last decade, namely, machine
learning. Thanks to its great versatility, it has been tested with
large success in many and diverse fields of science, such as
medicine [11], biology [12] and astrophysics [13]. Machine
learning algorithms are specially suitable to identify features
that are not immediately apparent and they work as ideal
classifiers [14]. In this paper, two different machine learning
approaches are presented to aid in the determination of the
system phase: One simple approach using a multilayer percep-
tron (MLP) and another more complex and precise approach,
using a convolutional neural network (CNN). Both are able to
accurately predict the quantum phases of the system just tak-
ing as an input the quantum simulation of the time evolution
of an appropriate operator.

The paper is organized as follows. In Sec. II, the extended
Agassi model Hamiltonian is presented and then it is written
in terms of the Pauli matrices using the Jordan-Wigner spin
mapping approach. In Sec. III, the feasibility of a digital quan-
tum simulation of the model is studied through its Trotterized
dynamics that can be implemented efficiently with trapped-
ion systems. In Sec. IV, a brief study of the QPT’s of the
model is presented. In Sec. V, the deep learning techniques,
used for the determination of the quantum phase are presented
and their results are reported. Finally, in Sec. VI, the conclu-
sions of the paper are summarized.

II. SPIN MAPPING OF THE EXTENDED AGASSI MODEL

The Agassi model is a two-level system in which the upper
level is labeled as σ = 1 and the lower level as σ = −1. Each
level has � degeneracy, being � an even number [4]. One can
then introduce j such that � = 2 j. Furthermore, in order to
label the states within a given level, it is introduced a magnetic
quantum number m = ±1,±2, . . . ,±�/2. In Ref. [5], an

extended Agassi model was considered, which includes a
more general pairing interaction with the additional term
−2hA†

0A0 [see Eq. (1)]. The Hamiltonian for the extended
Agassi model is written as

H = εJ0 − g
∑

σ,σ ′=−1,1

A†
σ Aσ ′

− V

2
[(J+)2 + (J−)2] − 2hA†

0A0. (1)

The operators of the Hamiltonian are all defined in terms
of fermion creation and annihilation operators,

J+ =
j∑

m=− j

c†
1,mc−1,m = (J−)†, (2)

J0 = 1

2

j∑
m=− j

(c†
1,mc1,m − c†

−1,mc−1,m), (3)

A†
1 =

j∑
m=1

c†
1,mc†

1,−m = (A1)†, (4)

A†
−1 =

j∑
m=1

c†
−1,mc†

−1,−m = (A−1)†, (5)

A†
0 =

j∑
m=1

(c†
−1,mc†

1,−m − c†
−1,−mc†

1,m) = (A0)†, (6)

where c†
±1,m and c±1,m are the fermion creation and annihila-

tion operators, respectively.
Using the Jordan-Wigner spin mapping approach [15,16],

the Hamiltonian of the extended Agassi model can be mapped
into Pauli matrices, which can later be experimentally im-
plemented into a digital quantum simulator, as it will be
discussed in the following section. In the following, a system
with eight sites ( j = 2) will be considered. Hence, to simplify
the notation, the fermions are relabeled as

c1,2 → c1, c−1,2 → c5,

c1,1 → c2, c−1,1 → c6,

c1,−1 → c3, c−1,−1 → c7,

c1,−2 → c4, c−1,−2 → c8,

(7)

and the corresponding relabeling for the creation operators
holds. The spin image of the above fermions is

c†
i = I1 ⊗ ... ⊗ Ii−1 ⊗ σ+

i ⊗ σ z
i+1 ⊗ ... ⊗ σ z

N ,

ci = I1 ⊗ ... ⊗ Ii−1 ⊗ σ−
i ⊗ σ z

i+1 ⊗ ... ⊗ σ z
N ,

(8)

where σ± are written in terms of the Pauli matrices in the
standard way

σ+ = σ x + iσ y

2
, σ− = σ x − iσ y

2
, (9)

σ x,y,z are, respectively,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
, (10)
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⊗ stands for the Kronecker product and I for the identity
operator.

The Hamiltonian can be written in terms of strings of tensor
products of Pauli matrices. Indeed, there are terms which only
depend on the Pauli matrix σ z, and there are others that need
to be written in terms of the Pauli matrices σ x and σ y, so that
they can be mapped into the corresponding quantum gates.
Once σ+ and σ− are decomposed in terms of σ x and σ y,
each of the tensor product strings will give rise to 8 different
terms. The total number of terms scales polynomially with the
number of sites.

III. FEASIBILITY OF THE IMPLEMENTATION

Given a certain time-independent Hamiltonian, the evolu-
tion operator is written as

U (t ) = e−itH , (11)

considering h̄ = 1.
For the case of a Hamiltonian written as the sum of k

different noncommuting parts, the evolution operator can be
approached using the so-called Trotter expansion as

U (t, n)T =
(∏

k

e−itHk/n

)n

≈ U (t ). (12)

The study of the many Hamiltonian terms arising from
the Jordan-Wigner mapping shows that many of them com-
mute with each other. Hence, this can be exploited by adding
these terms together in a total of eight noncommuting groups
[k = 8 in Eq. (12)], saving computational resources. Each
of these groups can then be implemented with trapped-
ion systems using a combination of single and multiqubit
(Mølmer-Sørensen) gates and simulation of the terms within
each single group can be carried out sequentially without
digital error [17–19].

The accuracy of this approximation can be measured by its
fidelity, defined as

F (t, nT ) = |〈φ|U (t, nT )†
T U (t )|φ〉|2. (13)

This observable depends on time, t , and on the number
of Trotter steps nT . The considered initial state to which
we apply the evolution will be along the rest of the paper
| ↓1↓2↓3↓4↑5↑6↑7↑8 〉, where | ↓i〉 and | ↑i〉 stand for the
eigenvectors of σ z

i with eigenvalues −1 and 1, respectively.
Hence, the trial state is not a Hamiltonian eigenstate, except
for V = g = h = 0.

Figure 1 shows the fidelity as a function of both t and
nT . In a previously studied case with four sites ( j = 1), it
was seen that already nT = 5 Trotter steps provided enough
accuracy [9]. Here, the fidelity drops faster as time increases
and for nT = 5 the approximation only remains accurate at
small times (t < 1) [panel (a)], but this drop is greatly reduced
for nT = 15 [panel (c)]. This is expected, since eight sites are
considered and, therefore, there exist many more terms that
need to be considered for the Trotterized Hamiltonian, which
in turn means that a significantly higher amount of Trotter
steps are required to attain the same accuracy in a given time
range. In panels (b) and (d) the value of the fidelity is depicted

FIG. 1. Fidelity as a function of t for (a) nT = 5 and (c) nT = 15
and as a function of nT for (b) t = 0.5 and (d) t = 5. The initial state
in all cases is | ↓1↓2↓3↓4↑5↑6↑7↑8 〉 and the Hamiltonian parameters
are ε = 1, g = 0.25, V = 0.25, and h = 0.25. The highlighted points
correspond to nT = 5, 15 and t = 0.5, 5, respectively.

as a function of the Trotter steps, nT , for two different values
of time

Figure 2 shows as an example the survival probability,
|〈φ(t )|φ(0)〉|2, computed for both the exact and the Trotter-
ized evolution operator with different values of V = 0.25 (top
row) and V = 1.5 (bottom row) and nT = 5, 15 [panels (a)
and (b)] and nT = 5, 30 [panels (c) and (d)], keeping con-
stant g = 0.5 and h = 1.5. For a small value of V = 0.25, a
good fidelity can be achieved with only nT = 5 Trotter steps.
However, this is not true in general. There are situations where
an accurate study require a larger number of Trotter steps as it
is seen in Fig. 2, panels (c) and (d).

The implementation of the simulation is efficient, that is,
it scales with polynomial resources. However, considering the
need of two Mølmer-Sørensen gates for each tensorial product
and two single-qubit gates for each σ x and σ y to be changed
into a σ z and back (assuming σ z as the basis), around two
thousand quantum gates would be needed to implement this
model for j = 2. It is important to note that the aggregated
error from all the gates will then increase with the number
of Trotter steps needed for a precise approximation. Nev-
ertheless, the estimations seem to agree that this proposal
should be achievable in the near future as a good progress is
being made in scaling trapped ion systems to the hundreds or
thousands of qubits [20,21]. Some approaches with promis-
ing results are the implementation of high fidelity fast gates
[22,23] and two-dimensional ion traps, since the fidelities
in each dimension are independent from one another [24].
The use of a higher-order Trotter expansion would also help
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FIG. 2. Survival probability |〈φ(t )|φ(0)〉|2 as a function of t us-
ing the exact and the Trotterized evolution operator. In all cases,
the initial state is | ↓1↓2↓3↓4↑5↑6↑7↑8〉 and ε = 1, g = 0.5, and
h = 1.5. Top row: V = 0.25 and (a) nT = 5 and (b) nT = 15. Bottom
row: V = 1.5 and (c) nT = 5 and (d) nT = 30.

reducing the required number of Trotter steps for an accurate
approximation [15].

IV. EXPLORING PHASE TRANSITIONS

The original Agassi model presents a rich quantum phase
diagram with a symmetric, a parity broken phase and a su-
perconducting one [25]. By adding the additional pairing
interaction term of the extended Agassi model, the quantum
phase diagram becomes even richer. In order to explore the
phase diagram and the appearance of QPT’s it is customary to
rescale the parameters of the Hamiltonian (1) by introducing
the new parameters χ , �, and �,

V = εχ

2 j − 1
, g = ε�

2 j − 1
, h = ε�

2 j − 1
. (14)

The phase diagram of the extended Agassi model presents
five different quantum phases, as shown in Fig. 3. They
appear in the following areas of the phase diagram (see
Ref. [10] for a detailed study of the quantum phases of the
system):

(i) Symmetric or spherical solution:
χ < 1, � < 1, � < 1.

(ii) Hartree-Fock (HF) deformed solution:
χ > 1, � < χ, � <

1+χ2

2χ
.

(iii) Bardeen-Cooper-Schrieffer (BCS) deformed solu-
tion:

χ < �, � > 1, � < 1+�2

2�
.

FIG. 3. Graphical representation of the phase diagram of the
extended Agassi Hamiltonian. Red vertical planes represent sec-
ond order QPT surfaces. The green surface (� = 1 for χ < 1 and
� < 1, � = 1+χ2

2χ
for χ > �, and � = 1+�2

2�
for χ < �) and the

blue vertical one (χ = � and � < 1+�2

2�
) correspond to first or-

der critical surfaces. Red sphere, blue oval, black oval, black thick
oval, and crossed green ovals correspond to the symmetric solution,
the HF deformed solution, the BCS deformed solution, the closed
valley solution, and the HF-BCS deformed solution, respectively.
Figure adapted from [5].

(iv) Combined HF-BCS deformed solution:
� > 1 for χ < 1 and � < 1 ; � >

1+χ2

2χ
for χ >

� > 1 ; � > 1+�2

2�
for � > χ > 1.

(v) Closed valley solution: χ = �, � < 1+�2

2�
.

It is important to note that this phase diagram has been
obtained using a mean-field approach, which is only valid for
the large N limit, where N is the number of sites, and it allows
to calculate the value of the order parameters as a function
of the control parameters. Here, N = 8 and therefore, finite-N
effects become relevant, causing the QPT’s to be diffuse and
harder to be distinguished.

In previous studies, time evolution of a correlation function
has been successfully used as a tool to explore the QPT’s
of the standard Agassi model with j = 1 [9]. In the rest of
this work, we will use precisely this observable to study the
phase diagram of the extended Agassi model with j = 2. A
correlation function between two given sites can be defined as

Cα,β (i, j) = 〈
σα

i ⊗ σ
β
j

〉 − 〈
σα

i

〉 〈
σ

β
j

〉
, (15)

where α, β = x, y, or z. In our case, we will focus on a
correlation function for sites 1 and 2 and α = β = z,

Cz(1, 2) ≡ 〈
σ z

1 ⊗ σ z
2

〉 − 〈
σ z

1

〉 〈
σ z

2

〉
. (16)

Figure 4(a) shows the systematics of the correlation function
Cz(1, 2) as we move through a line of fixed χ = 1.5 and
� = 0 from the HF phase (� < χ ) to the BCS phase (� > χ )
as a function of time. The correlation function oscillates with
time and, despite the fact that the transition is not apparent,
if we move away from the critical surface, e.g., at slices A
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FIG. 4. (a) Time evolution of the correlation function Cz(1, 2) from � = 0.5 to � = 2.5, with χ = 1.5, � = 0, and an initial state
| ↓1↓2↓3↓4↑5↑6↑7↑8〉. The phase transition point � = χ = 1.5 is marked by a dashed red line and the points χ = 1.5, � = 0.7 (slice B)
and χ = 1.5, � = 2.3 (slice A) with blue dashed lines. (c) Maximum value of the amplitude of the oscillations of Cz(1, 2) as a function of �

value. (b) Time evolution of Cz(1, 2) for � = 2.3 (slice A) and (d) for � = 0.7 (slice B).

and B, we can see a clear difference in the amplitude of these
oscillations. Hence, it increases as one moves towards the
BCS phase, as shown in panel (c) of Fig. 4. In panels (b)
and (d), the time evolution of the correlation function for the
points A and B are depicted. These two panels clearly show
how the amplitude and the period of the oscillation greatly
change depending on the value of the control parameter. In
the Appendix, other examples are gathered showing the vari-
ety of behaviors that one can get depending on the position
in the phase diagram. Other correlation functions between
different sites, applied to the same and/or different initial
states, yield similar results (not shown in this work), except
when they vanish, which proves that correlation functions
are good observables to obtain information about the phase
of the system without the need of computing the ground
state.

Even in the case where differences between quantum
phases can be appreciated in the time evolution, it is hard,
and sometimes impossible, to visually identify the quantum
phase of the system, specially when looking at a single point
in the phase space. Hence, two machine learning models will
be trained for quantum phase classification using the time
dynamics of the correlation function Cz(1, 2). The benefit
of using machine learning methods for classification is that,
given the data to classify, the method can determine itself the
optimal procedure and, moreover, it will be able to accurately
label not previously considered cases.

V. MACHINE LEARNING METHODS FOR
CLASSIFICATION

A. Multilayer perceptron

A multilayer perceptron (MLP) is a supervised machine
learning algorithm that learns a nonlinear function which,
given a set of features as input X = x1, x2, . . . , xm, is able to
approximately predict a target output y. The algorithm learns
this function via gradient descent, modifying its weights by
minimizing a loss function based on how accurate the predic-
tions y′ are in relation to the real target values y, which are
known in the training process, as with any supervised method
[26]. Once optimized, it can reliably predict the target y′ ≈ y
for inputs for which the real target is not already known.

The implementation of this model is very simple thanks to
the existing standardized machine learning software packages,
e.g., SCIKIT-LEARN [27], but first it is needed to define a set
of training and test data for the model to learn with. For
this purpose, we compute the exact as well as the Trotterized
(using a number of Trotter steps nT = 6) time evolution of the
correlation operator Cz(1, 2) for a large set of points through-
out the phase diagram. We create a mesh of points with the
parameters χ , �, and � in the interval [0,2] with 21 steps each
for a total of 9261 points. For each of them, we compute the
time dynamics for 100 time steps. This information together
with the knowledge of the phase diagram (see Sec. IV) feeds
the model as part of the training process.
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Once the dataset is ready, it is randomly split into two
sets. One set, the training set, will be used to train the model,
while the other, the test set, will be used to test the accuracy
of the model. It is compulsory for the model to be tested
with data not used during the training process to be sure that
the algorithm is not simply remembering the already used
data. Therefore, it is important to have enough data points
for testing and to reach an acceptable metric, while keeping
as many points as possible for training. In most cases, to use
from 10 to 20 % of data for testing is enough. In our case, we
will use 10% of data points for testing.

SCIKIT-LEARN provides us with several optimization algo-
rithms to perform training on the data. In this particular case,
the default Adam solver gives optimal results. Adam solver
is an optimization algorithm that is based on the stochastic
gradient descent [28]. It combines the advantages of two
other extensions of the stochastic gradient descent known as
adaptive gradient algorithm (AdaGrad) and root mean square
propagation (RMSProp). For a general overview on the theo-
retical and practical aspects of the learning algorithms based
on stochastic gradient descent, see, e.g., Ref. [29].

The model actually computes the probability for each
quantum phase and classifies the data based on which one is
the most probable. The classification with the MLP correctly
predicts the quantum phase in the 96.7% of the points in the
test data when trained and tested with the exact time evolution.
When the MLP is trained and tested with the Trotterized time
evolution, it has an accuracy of 93.4% (nT = 6). These results
are very valuable, since it proves that the quantum phase can
be determined using the correlation function without the need
of computing the ground state, but it also shows that they
can be identified despite using the Trotter approximation with
a relative small number of steps, for which the agreement
with the exact results is limited. Note that when reducing the
number of Trotter steps, the aggregated error of the quantum
gates is reduced too.

In Fig. 5, the results for the MLP method are presented
through different trajectories in the parameter space of the
model. Generally, the incorrect predictions occur near the
critical points, which is expected, since the QPT’s are not
clearly defined because of finite-N effects (N = 8 in our
case). Note that at the critical points (denoted by a dashed
line), two or three quantum phases can coexist, therefore, it
is considered that the model correctly classifies the quantum
phase of the system when it predicts either of the two phases,
except in the case of the closed valley solution, where that
phase is considered the only valid answer. This is done to
ensure that the model learns to identify this specific phase
instead of choosing any of the other two phases with which it
coexists.

Perhaps the most surprising case is, in fact, the one re-
garding this solution. In the results portrayed in Fig. 5(d),
the model is able to predict the quantum phase of the system
as it crosses the closed valley solution at χ = � = 1.5 when
trained with the exact solution. As mentioned, the model is
not completely accurate in some cases [as can be seen from
Fig. 5(c)-Trotter], but the QPT’s are still fairly clear. In next
section we will present a more accurate machine learning
model.

B. Convolutional neural network

Convolutional Neural Networks (CNN) are types of deep
learning algorithms that are well suited for image recognition.
Their efficacy for extracting features and learning to classify
images has been proven in multiple instances [30–32]. In our
case, instead of feeding two-dimensional (2D) arrays of pixel
values, one-dimensional (1D) arrays containing the time dy-
namics of the correlation function will be used. When working
with 2D CNN, the data have actually the shape (x, y, z), being
z the value contained in the pixel, while x and y are its po-
sitions. 1D CNN work effectively in the same way, just with
data of shape (x, y), being y the value of the variable of interest
at time x. The general structure of a CNN includes more than
one convolution layer, so that one can extract higher level
features. They also include additional layers, e.g., the pooling
and the fully connected layers, each with a different purpose.
For the present model the used layers are

(i) Convolution layer: The layer responsible of perform-
ing the convolution operation.

(ii) Activation layer: The layer that applies the activation
function together with the filter of the convolution
layer.

(iii) Pooling layer: The pooling layer performs a di-
mension reduction of the data, collapsing data by
connecting clusters of neurons to a single neuron
each.

(iv) Dropout layer: This optional layer temporarily de-
activates, or drops out, randomly selected training
parameters from the previous layer that has trainable
parameters. Its goal is to avoid the “overfitting”.

(v) Fully connected layer: Also know as dense layers,
they connect every neuron of the input to every neuron
of the output.

(vi) Softmax layer: This layer is a fully connected or
dense layer that applies a specific kind of activation
function, called a softmax function, which is a nor-
malized exponential function.

A fast and efficient way of implementing such a model
is through the use of the Keras library [33], a deep learning
application programming interface built on top of the machine
learning platform Tensorflow [34]. Keras provides the ability
to apply all the necessary layers sequentially, giving the model
the final structure shown in Table I. Four cycles are applied,
consisting on convolution, activation, pooling and dropout,
allowing for a hierarchical decomposition of the input and the
extraction of higher level features, as previously mentioned.
Similarly, five additional fully connected (dense) layers are
applied before the final output layer. The model includes a
layer named “Flatten”. This layer simply reshapes the output
of the previous layer into a single dimension array so that it
can be passed as the input to the dense layer.

Table I shows, alongside the layers, the shape of the output
and the number of trainable parameters of each layer. Note
that only the convolution and dense layers have trainable
parameters and the rest of the layers simply apply a chosen
transformation to the data which is never changed throughout
the training process. The convolution layers are applied with
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FIG. 5. Quantum phase prediction of the system via the MLP method applied to the Cz(1, 2) correlation function. The different panels show
the probability for the system of being in a given phase for specific values of the Hamiltonian parameters. Left panels correspond to the results
using the exact time evolution, while right ones using the Trotter approach with nT = 6. In all cases, the initial state | ↓1↓2↓3↓4↑5↑6↑7↑8 〉 is
used. (a) � = 0.5 and � = 0.5 moving from χ = 0 (symmetric phase) to χ = 2 (HF phase); (b) χ = 0.5 and � = 0.5 moving from � = 0
(symmetric phase) to � = 2 (BCS phase); (c) χ = 0.5 and � = 0.5 moving from � = 0 (symmetric phase) to � = 2 (combined HF-BCS
phase); (d) χ = 1.5 and � = 0.5 moving from � = 0 (HF phase) to � = 2 (BCS); (e) χ = 1.5 and � = 0.5 moving from � = 0 (HF phase)
to � = 2 (combined HF-BCS phase); (f) χ = 0.5 and � = 1.5 moving from � = 0 (BCS phase) to � = 2 (combined HF-BCS phase). The
dashed black line in each panel marks the theoretical critical point.

padding to match the first dimension of the output with the
size of the corresponding input. The second dimension will
be equal to the number of applied filters, 32, 64, 128, and
256 for the first, second, third, and fourth convolution layers,
respectively. For convolution layers, the trainable parameters
define each of the filters. Since the filters have a size 3, each

one will have three parameters or weights for each of the input
channels, plus one bias weight. This number, multiplied by the
number of applied filters, gives the total number of trainable
parameters shown on the right column of Table I. In the case
of the dense layers, each connection has its own weight and
all input neurons are connected to all output ones, so the
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TABLE I. Number of parameters and shape of the output of the
used convolution layers.

Layer Output shape # of parameters

Convolution 1D (1) 100 × 32 128
Leaky ReLU (1) 100 × 32 0
Avg. pooling 1D (1) 34 × 32 0
Spatial dropout (1) 34 × 32 0
Convolution 1D (2) 34 × 64 6208
Leaky ReLU (2) 34 × 64 0
Avg. pooling 1D (2) 12 × 64 0
Spatial dropout (2) 12 × 64 0
Convolution 1D (3) 12 × 128 24704
Leaky ReLU (3) 12 × 128 0
Avg. pooling 1D (3) 4 × 128 0
Spatial dropout (3) 4 × 128 0
Convolution 1D (4) 4 × 256 98560
Leaky ReLU (4) 4 × 256 0
Avg. pooling 1D (4) 2 × 256 0
Spatial dropout (4) 2 × 256 0
Flatten 512 0
Dense (1) 512 262656
Leaky ReLU (1) 512 0
Dropout (1) 512 0
Dense (2) 512 262656
Leaky ReLU (2) 512 0
Dropout (2) 512 0
Dense (3) 512 262656
Leaky ReLU (3) 512 0
Dropout (3) 512 0
Dense (4) 512 262656
Leaky ReLU (4) 512 0
Dropout (4) 512 0
Dense (5) 512 262656
Leaky ReLU (5) 512 0
Dropout (5) 512 0
Softmax 5 2562
Total parameters 1445445

total number of parameters will be the size of the input times
the size of the output, plus one bias weight for each output
neuron.

Once the layer structure is defined, the model should be
trained in a similar manner to the MLP case. The data are
divided in three sets, namely, the test, the training and the
validation set. The training one is used to get the trainable
parameters, the validation one to check the consistency of the
results and eventually to modify the network layer structure
and hyperparameters (such as the number of neurons or fil-
ters), finally, the test dataset is used to report the prediction
accuracy of the process. When working with neural networks,
a common problem is the overfitting of the model, specially
when the available data for training is limited. The model
may “memorize” the training data and achieve good results for
that input specifically, but becomes unable to generalize and
predict correctly for data outside of the training set. In Fig. 7,
training and validation accuracy are shown across the epochs
of the training process. In the training case, the accuracy in
predicting the phase is computed using the training data, while

in the validation accuracy a separate set of data is used, i.e.,
the validation set. Note that neither of these sets contain the
test dataset. One can see that both training and validation
accuracies steadily increase at a similar pace, which suggests
that the model is not overfitted. In the case of overfitting, the
training accuracy would increase faster than the validation
accuracy [14] or the latter would stagnate at an earlier epoch,
which is not the case. The total number of training epochs
considered in this work was 200, as further cycles do not
significantly increase the accuracy, assuring that the model has
converged. In our case, we get an accuracy in the prediction
of the phase, using the test dataset, of a 98.7% (corresponding
to the exact evolution). Note that this reported accuracy do
not use data neither from the validation dataset nor from the
validation one.

The increase in accuracy from 96.7% using the MLP to
98.7% using the CNN model is small, but significant. In
particular, now the model has a better performance in the
most complicated regions, i.e., near the QPT’s. This is clearly
seen in Fig. 6, especially for the cases b), c), and d) where
the QPT becomes much more clear. The main reason is that
not only the model is more precise, but also that inaccura-
cies are mainly limited to points with values of χ and/or
� equal to or near zero, with only a few cases occurring
at the critical points. The reason for these inaccuracies is
that the amplitude of the correlation function is very small
when both χ and � are small, and as such, it presents
very little variation as one moves across �. Hence, this in-
accuracy is mostly present between the symmetric and the
combined HF-BCS phases. In both cases, the time evolution
is quite similar but the model seems to slightly favor the com-
bined HF-BCS phase as the amplitude is generally lower in
this case.

It is worth to mention once again, that the results are robust
to the error introduced from the Trotter approximation even
in the case of a relatively small number of Trotter steps. As
a matter of fact, the model was trained and tested using the
Trotterized time dynamics of the correlation function Cz(1, 2)
computed for nT = 6 and nT = 20 with accuracies of 99.2%
and 98.9%, respectively, to be compared with 98.7% of the
exact evolution.

As a conclusion of this section, we can say that the ac-
curacy in determining the phase is larger for the CNN than
for the MLP method, which is expected, specially in regions
nearby the QPT’s. Moreover, a really appealing fact is that the
accuracy of the procedure is even larger when using the Trot-
ter approximation with a small value of nT , which has clear
practical advantages. A possible explanation is that the larger
oscillations observed in the approximate evolution, compared
with the exact one, somehow helps the CNN to better predict
the most problematic situations (see Appendix). The use of
a relatively small number of Trotter steps reduce the num-
ber of needed quantum gates and, therefore, will reduce the
experimental error. Because the above reasons, the practical
implementation of this algorithm in a real quantum computer
seems to be feasible and potentially valid to determine the
phase of the system. As a matter of fact, the impact of noise on
the learning accuracy, assuming it is small, it is not expected
to affect the phase prediction.
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FIG. 6. Same caption as Fig 5 but using the CNN.

C. Further exploration

Other correlation functions, as well as different initial
states were studied. There is a lot of combinations of differ-
ent possible correlation functions and different initial states
to evolve. On the one hand, it is obvious that equiva-
lent correlation functions will give the same results, in this
case Cz(1, 2) = Cz(1, 3) = Cz(2, 4) = Cz(3, 4) = Cz(5, 6) =
Cz(5, 8) = Cz(6, 8) = Cz(7, 8) and their conjugates for the
initial state | ↓1↓2↓3↓4↑5↑6↑7↑8 〉. On the other hand, the rest
of the studied cases give comparable, although less accurate
results. The CNN trained and tested on Cz(1, 4) for the initial
state | ↓1↓2↓3↓4↑5↑6↑7↑8 〉 obtained an accuracy of 94.2%,

while using the correlation function Cz(1, 2) for a different
initial state | ↑1↑2↑3↓4↑5↓6↓7↓8 〉 achieved only an accuracy
of 86.5%. Initial states that are eigenstates of one or more of
the terms of the Hamiltonian are unsuitable as the information
of the time evolution is partially (or totally) lost. Similarly,
some correlation functions may vanish, for instance, σx or σy

when using initial states in the z basis. Even when computing
the time dynamics of the correlation function Cx(1, 2) for
an initial state | ↓x

1↓x
2↓x

3↓x
4↑x

5↑x
6↑x

7↑x
8 〉 (where | ↓x

i 〉 and | ↑x
i 〉

stand for the eigenvectors of σ x
i with eigenvalues −1 and 1,

respectively) which does not vanish, the CNN was unable of
providing valuable results, i.e., it fails in finding the phases of
the system.
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FIG. 7. Training and test accuracy of the CNN as a function of
the number of epochs used in the training process.

At the moment, it is not evident how to discern which
correlation function would be optimal to train the model and
to classify the quantum phases of the system, apart of the
visual inspection of the correlation function dynamics at dif-
ferent points in the phase space. Those with the most obvious
differences to the naked eye seem to be also the ones that the
CNN is able to better classify.

VI. SUMMARY AND CONCLUSIONS

In this work, an experimental setup for the quantum
simulation of the extended Agassi model with N = 8 sites
was proposed. The feasibility of this implementation with
a Jordan-Wigner spin-mapping approach using trapped ions
was studied. The estimations suggest that this protocol should
be achievable in the near future as the fidelity of quantum
gates will increase and new technologies will be developed.

The rich quantum phase diagram of the extended Agassi
model has been studied, showing that the time dynamics of a
quantum correlation function, calculated with a particular ini-
tial state, can give information about the quantum phase of the
system even though the quantum phase transitions regions are
diffuse due to the finite size of the system. Two supervised ma-
chine learning models were trained to extract this information
and work as classifiers of the quantum phase of the system,
namely, a simple MLP and a more complex CNN. The MLP
has been proven to be an appropriate tool to explore the QPT’s
of the system, with an accuracy in determining the phase of the
system of a 96.7%. The CNN achieved a significantly better
result with an accuracy of a 98.4% in determining the phase
and its performance is much better than the one of the MLP
case to correctly classify the quantum phase near the critical
points, giving a cleaner and more precise view of the quantum
phase diagram. As previously mentioned, for j = 2, finite N
effects make the differences between phases less apparent,
but by increasing j (and therefore N), the previously blurred
QPT’s become better defined. For that reason, it is remarkable
that the machine learning procedure is capable of classifying
the quantum phase of the system for a small size of the system
N , as well as for a low value of nT Trotter steps. From an

FIG. 8. Time evolution of the correlation function Cz(1, 2) for (a)
χ = 0.5 and (b)χ = 1.5 with � = 0.5 and � = 0 and an initial state
| ↓1↓2↓3↓4↑5↑6↑7↑8〉.

experimental point of view, keeping both quantities low makes
the quantum simulation of the system much feasible with
current technology.

One must note that supervised machine learning algorithms
require previous knowledge of the target system. In this case,
the quantum phase diagram of the extended Agassi model
is known thanks to mean field theory, and therefore, one
can compute the necessary training data for the employed
algorithms through an exact diagonalization in a classical
computer. Naturally, cases where previous knowledge of the
quantum phases is not available would be of special interest,
for which different methods would be necessary. Despite lim-
ited by this fact, the presented approach serves as a proof of
concept for future development, showing that machine learn-
ing algorithms can be powerful tools to extract quantum phase
information from the time evolution of certain observables.
It is then reasonable to think that, inspired by this idea, one
could be able to obtain partial information of the phase dia-
gram of an unexplored Hamiltonian using training data, in a
more general manner, from known cases. Another option is

FIG. 9. Same caption as Fig. 8 but with χ = 0.5, � = 0 and (a)
� = 0.5 and (b) � = 1.5.
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FIG. 10. Same caption as Fig. 8 but with (a) � = 0.5 and (b)
� = 1.5, χ = 0.5, and � = 0.5.

to make use of unsupervised machine learning algorithms to
deduce the quantum phases of a generic Hamiltonian without
any prior knowledge of such phases, though this supposes
a new set of challenges. Namely, unsupervised classification
algorithms rely somehow on grouping the data accordingly
on how similar they are, but cases near critical points are
expected to present a similar behavior. Therefore, it is unlikely
that popular unsupervised algorithms would be able to give a
precise prediction of the position of the QPT’s, but could still
be useful to get a general qualitative idea of the quantum phase
diagram of a model.

The use of the time evolution of a correlation function to
determine the phase of the Agassi model was already intro-
duced in Ref. [9], but in the present work, its use has been
improved through the implementation of machine learning
models. It is worthy to mention that the phase of a system
is a property of its ground state, however the time evolu-
tion of a given observable depends on the whole Hilbert
space and on its energy spectrum. The quantum phase of the
system strongly determine its spectrum and, therefore, will
control the time evolution of any operator. An extreme case
is the presence of excited state quantum phase transitions
(ESQPTs) [35] in the spectrum which can be understood
as a prolongation of the ground-state phase transition to the
excited states and suppose a pileup of states at a particular
energy, corresponding to a singularity in the density of states
in the thermodynamic limit. The presence of a ESQPT in the
spectrum has deep consequences on the time evolution of a
non-eigenstate, as can be readily observed in works on the
evolution of the fidelity [36] or the out-of-time-order correla-
tors [37].
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APPENDIX: TIME EVOLUTION OF Cz(1, 2)
FOR SELECTED CASES

Time evolution of the correlation function Cz(1, 2) Eq. (16)
for selected points of the phase diagram of the extended
Agassi model. See Figs. 8–10. It can be seen that the time
dynamics of this correlation function is significantly different
for each quantum phase of the system, even though the differ-
ences are difficult to be described quantitatively.

In Fig. 11, it can be seen how the Trotter expansion differs
from the exact evolution. The larger oscillations at higher
times are a probable explanation for the enhanced perfor-
mance of the CNN when trained and tested on the Trotterized
data. Note that the error introduced from using the Trotter
expansion is not arbitrary noise, it explicitly depends on the
various terms of the Hamiltonian, so it still carries the infor-
mation about the phase of the system. This error likely makes
the features of the input data easier to recognize by the CNN
than the much smoother exact evolution.
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