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SS-HORSE extension of the no-core shell model: Application to resonances in 7He
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Theoretical ab initio studies of resonances in the unbound 7He nucleus are presented. We perform no-core
shell-model calculations with NN interactions Daejeon16 and JISP16 and utilize the SS-HORSE method to
calculate the S matrix for two-body channels n + 6He and n + 6He∗ with 6He respectively in the ground and
excited 2+ states as well as for the four-body democratic decay channel 4He + n + n + n. The resonant energies
and widths are obtained by numerical location of the S-matrix poles. We describe all experimentally known 7He
resonances and suggest an interpretation of an observed wide resonance of unknown spin-parity.
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I. INTRODUCTION

A modern trend of nuclear theory is the development of
methods for describing nuclear states in the continuum, res-
onances in particular, and the boundaries of nuclear stability
as either neutron number or proton number is increased to the
point where the nucleus becomes unbound. The 7He nucleus
presents an especially significant challenge since it has no
bound states and the experimental information on its reso-
nances is fragmentary. Ideally, an approach with predictive
power could help refine the current knowledge of 7He and
inform further experimental efforts. For maximal predictive
power, ab initio (“first-principles”) approaches in this field are
of primary importance since the only input is the interaction
between nucleons.

Currently there are a number of reliable methods for the
ab initio description of nuclear bound states (see, e.g., the
review [1]). Prominent methods include the Green’s function’s
Monte Carlo [2], the no-core shell model (NCSM) [3], the
coupled cluster method [4], etc. The NCSM employed here is
a modern version of the nuclear shell model which does not
introduce an inert core and includes the degrees of freedom
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of all nucleons of a given nucleus. The multiparticle wave
function is expanded in a series of basis many-body oscillator
functions (Slater determinants) which include all many-body
oscillator states with total number of excitation quanta above
the minimum needed to satisfy the Pauli principle that are
less than or equal to some given value Nmax. This makes it
possible to separate the center-of-mass motion. The degree of
convergence achieved with NCSM calculations as Nmax and/or
number of nucleons A increases is governed by the limits of
available supercomputers.

The NCSM cannot be directly applied to the description
of resonant states. Energies of resonant states are positive
with respect to some breakup threshold so that one needs to
consider decay modes. Special methods taking into account
the continuum are therefore needed for the description of
resonances.

There are well-developed methods for ab initio descrip-
tions of continuum spectrum states based on Faddeev and
Faddeev–Yakubovsky equations that are successfully applied
to systems with A � 5 nucleons (see, e.g., the review [1]
and Ref. [5]). A very important breakthrough in developing
ab initio theory of low-energy reactions in heavier systems
was achieved by combining the NCSM and the resonating
group method to build the NCSM with continuum (NCSMC)
approach [6] which has been applied to nuclear systems up
to A = 12 [7,8]. Nuclear resonances can also be obtained in

2469-9985/2022/106(6)/064320(10) 064320-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0637-6175
https://orcid.org/0000-0002-6997-0633
https://orcid.org/0000-0001-9230-9256
https://orcid.org/0000-0002-0331-6209
https://orcid.org/0000-0002-1351-7098
https://orcid.org/0000-0002-3500-4314
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.064320&domain=pdf&date_stamp=2022-12-19
https://doi.org/10.1103/PhysRevC.106.064320


I. A. MAZUR et al. PHYSICAL REVIEW C 106, 064320 (2022)

the no-core Gamow shell model (GSM) [9]. However, these
methods provide significant numerical challenges for no-core
systems [9–11]. At higher energies, above the resonance re-
gion, alternative ab initio methods are developed and applied
(see, e.g., Ref. [12]).

Recently we proposed the SS-HORSE method [13–18],
which generalizes the NCSM to the continuum states. The SS-
HORSE allows one to calculate the single-channel S matrix
and resonances by a simple analysis of NCSM eigenenergy
behavior as a function of parameters of the many-body os-
cillator basis. The SS-HORSE extension of the NCSM was
successfully applied to the calculation of the neutron-α and
proton-α scattering and resonant states in the 5He and 5Li
nuclei in Refs. [13,17]; a generalization of this approach to the
case of the democratic decay provided a prediction of a res-
onance in the system of four neutrons (tetraneutron) [19,20]
whose first low-statistics observation [21] has been followed
by its discovery and characterization in a high-statistics exper-
iment [22].

The unbound 7He nucleus presents a new challenge for
ab initio theory but is especially interesting since its exper-
imental information is fragmentary and conflicting. A few
resonances have been observed in 7He but all have weak
spin-parity assignments if any [23]. In particular, the low-
est resonance with a width of 0.18 MeV at the energy of
0.43 MeV above the n + 6He threshold [24] has a tentative
spin-parity of 3/2−. There is also a resonance at 3.36 MeV
with the width of 1.99 MeV which is tentatively assigned
Jπ = 5/2− and another resonance at 6.2 ± 0.3 MeV with
the width of 4 ± 1 MeV of unknown spin-parity [23]. The
most complicated situation is with the 1/2− resonance which
was observed in Refs. [25–27]: According to these works, its
energy ranges from 1 [27] to 3.5 MeV [26] and the width
from 0.75 [27] to 10 MeV [26]. Thus, 7He represents a very
good candidate for invoking the predictive power of ab initio
scattering theory. Therefore, we predict the resonances of 7He
within the SS-HORSE–NCSM approach. We find additional
broad resonances that suggest a new interpretation of 7He
resonant structure.

Recent many-body calculations of the 7He nucleus, ex-
plicitly accounting for the continuum spectrum effects,
include a GSM study of Ref. [28], Gamow-density-matrix
renormalization-group (G-DMRG) calculations of Ref. [29],
an investigation within the complex-scaled cluster-orbital
shell model (CS-COSM) in Ref. [30], a NCSMC study of
Refs. [31,32], and recent calculations of Ref. [33] which
we shall refer to as NCSMch where the NCSM wave
functions of 7He are matched with the wave functions
in a particular decay channel. The G-DMRG approach is
based on the GSM but utilizes the many-body technique of
the density matrix renormalization group [34,35] to speed
up the convergence. The GSM [28], G-DMRG [29], and
CS-COSM [30] calculations are performed with the 4He
core and nucleons in the psdf (GSM) or spd (G-DMRG
and CS-COSM) valence spaces interacting by phenomeno-
logical effective potentials. The NCSMC calculations of
Refs. [31,32] use a similarity renormalization group (SRG)
evolved chiral next-to-next-to-next-to-leading order (N3LO)
nucleon-nucleon (NN) potential of Refs. [36,37] while the

NCSMch calculations of Ref. [33] utilize the Daejeon16 NN
interaction [38] originating from the same chiral N3LO
interaction and adjusted with unitary transformations that
preserve the NN phase shifts to describe accurately binding
energies and spectra of p-shell nuclei without three-nucleon
(NNN) forces.

We present here ab initio SS-HORSE–NCSM calculations
performed using the code MFDn [39,40] with realistic Dae-
jeon16 [38] and JISP16 [41] NN interactions. The difference
with the approach presented in Ref. [33] is that we obtain the
resonant energies and widths by locating the S-matrix poles.
The S-matrix elements in all channels have the poles at the
same location in the complex energy plane. Therefore our
resonance widths are the total widths of resonances associ-
ated with decay in all possible channels; they may be very
different from the partial widths which are obtained within
NCSMch [33] or within the NCSMC [31,32] that characterize
the probability of the decay in a particular channel.

Our SS-HORSE-NCSM approach is sketched in Sec. II.
Results of our calculations of 7He resonances are presented in
Sec. III. Section IV includes a summary and conclusions.

II. SS-HORSE–NCSM APPROACH

Our calculations are based on the formalism of
the harmonic-oscillator representation of scattering
equations (HORSE) [42], which is a particular version
of the J-matrix formalism in quantum-scattering theory.
The J-matrix formalism was initially proposed [43] for
atomic problems with the use of the so-called Laguerre
basis convenient in atomic physics; however, a possibility
of the utilization of the harmonic-oscillator basis within this
formalism was also described in Ref. [43]. In nuclear physics,
the version of the J-matrix approach with the oscillator
basis has been later rediscovered independently [44–47].
The harmonic-oscillator basis suggests various convenient
features and simplifications of the general J-matrix formalism
(see, e.g., Refs. [42,48,49]); therefore we prefer to use the
term HORSE when using the harmonic-oscillator version
of the J-matrix formalism to distinguish it from the general
J-matrix.

The utilization of the general HORSE formalism in com-
bination with the large-scale NCSM calculations is very
challenging. However, for calculations of nuclear resonance
energies and widths based on the ab initio NCSM, one can em-
ploy its simplified version, the so-called single state HORSE
(SS-HORSE) method [13–18].

Our SS-HORSE–NCSM approach to obtaining resonance
parameters is to locate S-matrix poles. The S-matrix in the
channel with orbital momentum �, S� = e2iδ� , can be ex-
pressed through the effective range function,

K�(E ) = k2�+1 cot δ�(E ), (1)

where δ�(E ) is the phase shift, E is the energy of relative
motion in a given channel and k = √

2μE/h̄ is the rela-
tive momentum while μ is the reduced mass. The effective
range function (1) has good analytical properties and may be
expanded in a power series of the energy E (the so-called
effective range expansion). The function K�(E ) within the
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SS-HORSE method is calculated at the eigenenergies of rel-
ative motion Ei of a decaying resonant state obtained in the
NCSM as [13–15]

K�(Ei ) = −k2�+1
i

CN i+2,�(Ei )

SN i+2,�(Ei )
. (2)

Here Sn,�(E ) and Cn,�(E ) are the regular and irregular solu-
tions of the free Hamiltonian in the oscillator representation
for which analytical expressions in the case of two-body
channels can be found in Refs. [42,43] and in the case of
democratic four-body decay channels in Refs. [48,49]; N i is
the maximal oscillator quanta of the relative motion in the
decaying channel allowed in the NCSM calculation for 7He.
Note that the functions SN i+2,�(Ei ) and CN i+2,�(Ei ) depend
on the oscillator quantum h̄�i used in the respective NCSM
calculations with the maximal number of excitation quanta
Ni

max as well as the energies Ei = Ei(Ni
max, h̄�i ).

All resonant states in 7He can decay via the n + 6He
channel with 6He in the ground state. Additionally, all ex-
amined resonances with the exception of the low-lying 3/2−
resonance, can decay also via a two-body channel n + 6He∗
with 6He in the excited 2+ state or via a four-body channel
n + n + n + 4He.

The channel wave functions of the four-body
n + n + n + 4He democratic decay, i.e., the decay where
none of the two- or three-body subsystems has a bound state
[50,51], cannot be orthogonalized to the two-body n + 6He
and n + 6He∗ channel wave functions; thus the democratic
channel should be examined separately from the two-body
channels. Most of the 7He resonances under consideration
have two or more open two-body channels. The SS-HORSE
method employed in our study is designed for treating
single-channel problems. A very appealing feature of the
SS-HORSE method is that it suggests a simple calculation
of nuclear resonance energies and widths provided that the
results of standard NCSM calculations are known. This is
very different from the NCSMC [6] or no-core GSM [9]
approaches which complexify the NCSM calculations. The
SS-HORSE extension to the multichannel case is possible
but it requires extracting some information from the NCSM
eigenfunctions which significantly complicates this approach.
We study the two-body channels n + 6He and n + 6He∗
separately. That means that we treat one of the two-body
channels n + 6He and n + 6He∗ as an open channel in
our SS-HORSE–NCSM approach; we note, however, that the
alternative channel as well as a huge number of other channels
including democratic ones are coupled to the specified open
channel as closed channels in the 7He NCSM calculation.

It is a common approximation in nuclear physics to treat
a nuclear system with few open channels as a system with a
single open channel and neglecting the contributions in the
continuum from other channels when one of the channels is
supposed to dominate or when calculating partial widths in
different channels like in the NCSMch 7He study of Ref. [33].
Even in the case of multichannel calculations, usually not
all possible channels are included as open channels; for ex-
ample, in the coupled-channel NCSMC 7He calculations of
Refs. [31,32] the channels with � � 3 were neglected in cal-
culations of negative-parity states. Open three- and four-body

channels are conventionally neglected in theoretical studies of
resonances with open two-body channels.

Contrary to most of the other theoretical studies, we calcu-
late parameters of nuclear resonances by locating numerically
the respective S-matrix poles. In a complete multichannel
investigation, all S-matrix elements should be obtained with
the poles at the same total complex energy which includes
excitation energy of the fragments. Our NCSM calculations
with large bases include all possible channels though treated
as closed. This is an approximation, however all closed chan-
nels contribute to the global features of the S matrix in a
particular single channel open by the SS-HORSE. Thus it
is interesting to compare the locations of the S-matrix poles
obtained with different open channels: These poles should be
close to each other if our approximation is accurate. We shall
see that our resonance parameters obtained with the n + 6He
and n + 6He∗ open channels are really close supporting the
validity of our approach. More, we also obtain close resonance
energies in calculations with open four-body 4He + n + n + n
democratic channels. However the democratic decays are
suppressed by the strong hyperspherical centrifugal barrier
which decreases their widths and makes two-body decays
dynamically preferable. We evaluate the accuracy of resulting
resonant energies and widths by studying the spread of results
obtained in different channels excluding the underestimated
widths obtained in democratic channels. We note that the
calculation of the S-matrix poles results in total widths of
resonances associated with decay in all possible channels.

Within our SS-HORSE–NCSM approach, we start from
the NCSM calculations of the 7He eigenenergies E7

i corre-
sponding to a set of pairs of the NCSM basis parameters Ni

max
and h̄�i, as well as, depending on the channel of interest,
the energies E6

i of the ground state (n + 6He channel) or the
lowest 2+ state of 6He (n + 6He∗ channel) or the ground-state
energy E4

i of 4He (n + n + n + 4He channel) obtained by
NCSM with the same h̄�i and the maximal excitation quanta
Ni

max or Ni
max − 1 depending on the parity of the states of

interest in 7He. The number of oscillator quanta of the relative
motion N i entering Eq. (2) is defined as

N i = Ni
max + N7

min − NA
min, (3)

where N7
min and NA

min are the minimal total oscillator quanta
consistent with the Pauli principle in 7He and AHe, A = 6 or
4 in the current work. The eigenenergies of relative motion
Ei = E7

i − EA
i .

In the case of the four-body decay channel, we use
the democratic decay approximation (also known as true
four-body scattering or 4 → 4 scattering) suggested in
Refs. [50,51]. Democratic decay implies a description of
the continuum using a hyperspherical harmonics (HH) basis.
We use here the minimal approximation for the four-body
decay mode; i.e., only HH with hyperspherical momentum
K = Kmin = 0 or 1 for positive- or negative-parity resonances,
respectively, are retained in the SS-HORSE extension of the
NCSM. This approximation relies on the fact that the decay
in the hyperspherical states with K > Kmin is strongly sup-
pressed by a large hyperspherical centrifugal barrier L (L +
1)/ρ2, where the effective momentum L = K + 3 and the
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hyperradius ρ2 = ∑4
i=1(ri − R)2, R is the center-of-mass co-

ordinate, and ri are the coordinates of decaying neutrons and
4He. Note that all possible HH are retained in the NCSM
basis; thus the hyperspherical states with K = Kmin = 0 are
treated as open channels while all the remaining hyperspher-
ical states with K > Kmin are treated as closed channels. The
accuracy of this approximation was confirmed in studies of
democratic decays in cluster models [52–55]; it was also
utilized in our successful study of the tetraneutron [19,20].
In this case we should set � = Lmin = 3 in Eqs. (1) and (2),
the relation between the HH momentum k and energy E can
be found in Refs. [48,49].

We perform the NCSM calculations with various choices
of the basis parameters Ni

max and h̄�i and obtain a set of values
of the effective range function K�(Ei ) using Eq. (2) in some
energy interval since Ei = Ei(Ni

max, h̄�i ). Next we perform a
parametrization of the function K�(E ) which makes it possible
to calculate the S matrix and its poles associated with the
resonant states in 7He. The effective range function K�(E )
has good analytical properties and may be expanded with a
Taylor series in E [56] except for energies in the vicinity
where the phase shift takes the values of 0, ±π , ±2π , ...(this
can happen in the resonance region) and the effective range
function K�(E ), according to Eq. (1), tends to infinity. There-
fore, we use Padé approximants to parametrize K�(E ); the
number of fit parameters in the numerator and denominator of
the Padé approximant taken individually in each case to obtain
a reasonable description of selected NCSM eigenenergies.

With any set of the Padé approximant parameters we obtain
K�(E ) as a function of energy E and solve Eq. (2) to obtain
the eigenenergies E th

i which should be obtained in the NCSM
calculations with any given combination of Ni

max and h̄�i to
describe exactly this function. These energies E th

i are com-
pared with the NCSM eigenenergies Ei; the optimal values
of the fit parameters are found by minimizing the sum of
squares of deviations of E th

i and Ei with weights enhancing
the contribution of energies obtained with larger Nmax values,

� =
√√√√1

p

p∑
i=1

[(
E th

i − Ei
)2

(
Ni

max

NM

)2]
. (4)

Here p is the number of basis parameter pairs and NM is the
largest value of Ni

max used in the fit.
After obtaining an accurate parametrization, we express

the S matrix through K�(E ) and search numerically for the
S-matrix poles in the complex energy plane, as described in
Ref. [17]. These poles produce the energies Er and widths 	

of the 7He resonances.

III. RESONANCES IN 7He

We perform the NCSM calculations of 7He with Ni
max up

to 16 for negative-parity states and up to 17 for positive-parity
states with h̄�i ranging from 10 to 50 MeV and of 6He and
4He with the same h̄�i values and respective Nmax to get the
set of relative motion eigenenergies Ei.

As stated in Refs. [13–19], we cannot use all energies Ei for
the SS-HORSE analysis. In particular, the SS-HORSE equa-

FIG. 1. Convergence of phase shifts of the n + 6He scattering
in the 3/2− state in the vicinity of the low-lying resonance in
calculations with Daejeon16 NN interaction. Symbols are phase
shifts δ1(Ei ) at selected energies Ei; curves are SS-HORSE fits to
the NCSM results from different model spaces. Energies are given
relative to the n + 6He threshold.

tions are consistent only with those Ei obtained at any given
Nmax which increase with h̄�. Therefore, from the Ei obtained
by NCSM with any Nmax we should select only those which
are obtained with h̄� > h̄�min, where h̄�min corresponds to
the minimum of the Ei.

Next, for the K�(E ) parametrization, we should select only
the results obtained with large enough Nmax and in the ranges
of h̄� values for each Nmax where the continuum state cal-
culations converge, at least, approximately. The convergence
means that the K�(Ei ) values [as well as the respective phase
shifts δ�(Ei )] obtained with different pairs of Ni

max and h̄�i

values form a single smooth curve as a function of energy. Our
method for the selection of the NCSM results is described in
detail with a number of illustrations in Refs. [13–19].

We illustrate in Fig. 1 the convergence in calculations with
Daejeon16 NN interaction of the n + 6He elastic-scattering
phase shifts for the 3/2− state in the vicinity of the low-
lying resonance. The energies Ei selected from the results of
NCSM calculations with Ni

max = 12, 14 and 16 generate a set
of the phase shifts δ1(Ei ) shown by closed symbols which
approximately form a single smooth curve. The SS-HORSE
parametrization of these three sets of 3/2− phase shifts δ3(Ei )
(solid curve labeled 12 ÷ 16) accurately describes them.

We present in Fig. 1 also the parametrizations fit to the
NCSM eigenenergies from the selection obtained individually
with each of these three Ni

max values. These three parametriza-
tions nearly coincide up to 3.1 MeV which is the largest of the
NCSM eigenenergies corresponding to the 7He ground state
included in the fit. In particular, these parametrizations are
nearly indistinguishable in the resonance region. As a result,
we obtain very similar resonance energies Er and widths 	

with these three parametrizations (see Table I).
To further elucidate the convergence trends, we present in

Fig. 1 also the phase shifts obtained from the NCSM results
with Ni

max = 10 and h̄�i ranging from 15 to 40 MeV together
with the respective parametrization. We do not include these
Ni

max = 10 results in our selection of the NCSM eigenenergies
used in Eq. (4) since the respective phase shifts δ1(Ei ) show
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TABLE I. Convergence with increasing Ni
max of energy Er (rel-

ative to the n + 6He threshold) and width 	 of the low-lying
resonance 3/2−

1 in 7He in the n + 6He channel in calculations with
Daejeon16 NN interaction.

Ni
max 10 12 14 16 12 ÷ 16

Er (MeV) 0.356 0.289 0.279 0.259 0.279
	 (MeV) 0.155 0.127 0.127 0.123 0.131

more significant deviations from the common curve formed
by the NCSM results in the three larger model spaces at the
energies above the resonance region. However, the deviation
of these parametrized Ni

max = 10 phase shifts from those ob-
tained in larger model spaces is not large in the resonance
region, which is of our primary interest. As a result, the
Ni

max = 10 resonance parameters (see Table I) are within 30%
of those obtained in larger model spaces.

We use the spread of the results presented in Table I
(excluding those obtained with Ni

max = 10) to evaluate the
uncertainties of the obtained resonance and low-energy
scattering parameters. To justify these uncertainties, we per-
form also a few alternative selections of the NCSM energies
Ei, e.g., we reduce the set of selected NCSM energies obtained
with Ni

max = 12 and 14 by excluding the eigenstates above the
resonant region or extend it by adding the results of calcu-
lations with additional h̄�i values producing the phase shifts
δ1(Ei ) which deviate more from the common curve 12 ÷ 16.
Performing the phase shift parametrizations with these en-
ergy selections for Ni

max = 12 and 14 individually as well as
parametrizing all these Ni

max = 12 and 14 results together with
previously selected Ni

max = 16 energies, we obtain the spreads
of the 7He resonance parameters within the ranges shown in
Table I. We adopt the same approach for the studies of all
resonances in each channel. That is we use the results of the
NCSM calculations in the three largest model spaces, calcu-
late the resonance energy and width for each of these model
spaces individually and for the combination of all selected
results from these model spaces, and vary the ranges of energy
selections in these model spaces to obtain the spreads of reso-
nance energy and width. These spreads are used as uncertainty
estimates while their central values are used as predictions
for the energy and width. These predictions together with
their uncertainties for various 7He resonances based on our
calculations with Daejeon16 and JISP16 NN interactions in
two-body decay channels are summarized in Table II.

For comparison, we present in Table II also available res-
onance parameters from the studies within NCSMch [33],
NCSMC [31,32], GSM [28], G-DMRG [29], and CS-COSM
[30] (only widths which are given by numbers in Ref. [30]; the
energies in this paper are shown only in figures where they are
seen to be close to the respective experimental values). Note
that all these other theoretical calculations where performed
with different interactions with an exception of the NCSMch
studies of Ref. [33] where the Daejeon16 was employed.

The low-lying 3/2−
1 resonance should be clearly related

to the experimental 3/2− resonance in 7He. Daejeon16 un-
derestimates while JISP16 overestimates both its energy and

width as compared with experiment; the NCSMC overesti-
mates these resonance parameters while better estimates of
this resonance were obtained in the GSM and G-DMRG stud-
ies. We note, however, that, contrary to our NCSM and the
NCSMC ab initio calculations, both of which employ realistic
NN interactions, the GSM and G-DMRG approaches utilize
phenomenological n-4He and NN interactions fit to spectra of
light nuclei.

It is interesting to compare our results with Daejeon16
with those of the NCSMch studies. The NCSMch energy
and width of this resonance are respectively nearly twice
and three times larger than ours. The NCSMch approach of
Ref. [33] is also based on the NCSM calculations (though in
smaller model spaces) and utilizes the same Daejeon16 NN
interaction. However the resonance parameters are obtained
within NCSMch in a very different manner. In particular, the
NCSMch resonance energy is obtained using a phenomeno-
logical exponential extrapolation A5 [10]. This extrapolation
was designed for the bound states and has never been applied
to resonances before the investigations of Ref. [33]. There
are various phenomenological exponential extrapolations on
the market, all of them are known to provide similar results.
They are sometimes used to estimate resonance energies,
in particular, our group was exploiting exponential extrap-
olations of Ref. [57] in the studies of resonances, e.g., in
Refs. [58,59]. However, the applicability of the exponential
extrapolations to estimation of resonant energies is unclear.
We have shown in Ref. [60] that the NCSM eigenstates can
differ essentially from the resonance energy when the res-
onance width is comparable to its energy. The resonance
width is obtained within the NCSMch by matching the NCSM
wave function with the respective channel wave function. The
resulting width depends strongly on the resonance energy.
For example, the authors of Ref. [33] mention that switching
from their extrapolated energy of the 3/2−

1 resonance of 547
keV to the experimental energy of 430 keV results in the
change of the width 	 = 334 keV to 	 = 250 keV. Thus the
accuracy of the NCSMch results for this and other resonances
is unclear, the authors of Ref. [33] do not report an estimate
for it.

We note that our SS-HORSE approach to calculations of
resonance energies and widths was carefully tested and justi-
fied in Refs. [13,15–17] using model problems where resonant
parameters were calculated using other methods. Also, in
contrast with the NCSMch, we present the estimates of our
uncertainties, and we suggest that our predictions obtained
with the same interaction to be reliable within our quoted
uncertainties.

The 3/2− phase shifts δ1(Ei ) discussed in Fig. 1 are given
in the vicinity of the lowest 3/2−

1 resonance and the symbols
in this figure correspond to the NCSM results for the 7He
ground state. Combining them with those corresponding to the
3/2− first-excited state, we obtain the phase shifts revealing
two resonances. The 3/2− phase shifts in a larger energy scale
together with other phase shifts in various two-body channels
obtained with both JISP16 and Daejeon16 interactions are
shown in Fig. 2. (The phase shift parametrizations shown
in Fig. 1 and resonant parameters presented in Table I were
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TABLE II. Energies Er (relative to the n + 6He threshold) and widths 	 of resonant states in 7He obtained with JISP16 and Daejeon16
in the channels n + 6He and n + 6He∗(2+) and our final predictions based on combining the results in these individual channels. Estimates
of uncertainties of the quoted results are presented in parentheses. Results from GSM [28], G-DMRG [29], CS-COSM [30] (only widths),
NCSMC [31,32], and NCSMch [33] calculations (in the NCSMch case the width in the line “Predictions” is obtained by summing widths in
individual channels) together with experimental data are shown for comparison. All values are in MeV unless other units are specified.

Resonance This work Other theoretical works

Jπ (7He) Jπ (6He) JISP16 Daejeon16 NCSMch NCSMC GSM G-DMRG CS-COSM Experiment

3/2−
1 0+ Er

	

0.665(12)
0.57(4)

0.28(4)
0.13(2)

0.547
0.334

0.71
0.30

0.39
0.178

0.460(7)
0.142 0.048

0.430(3)
0.182(5)

[24]

1/2+ 0+ Er

	

1.696
2.670

1/2− 0+ Er

	

2.7(8)
5.0(6)

2.7(4)
4.3(3)

2.318
2.071

2.39
2.89

1.811(6)
2.150 2.77

3.0(1)
2

[25];
3.5
10

[26];
1.0(1)
0.75(8)

[27]

5/2− 0+ Er

	

4.4(4)
1.56(4)

3.63(16)
1.36(3)

3.437
52 eV

2+ Er

	

3.85(15)
2.5(2)

3.23(25)
2.28(8)

3.437
1.941

3.13
1.07

Predictions
Er

	

4.1(7)
2.0(7)

3.4(4)
1.8(5)

3.437
1.941

3.13
1.07

3.47(2)
2.3(3)

3.311(2)
1.726 1.80

3.36(9)
1.99(17)

[23]

3/2−
2 0+ Er

	

5.8(5)
4.11(23)

5.0(3)
2.84(24)

3.921
0.229

2+ Er

	

5.3(4)
3.9(6)

4.4(4)
3.9(3)

3.921
1.459

Predictions
Er

	

5.6(7)
4.0(7)

4.7(7)
3.4(8)

3.921
1.796 2.29

3/2+ 0+ Er

	

6.5(1.6)
5.9(1.0)

3.9(6)
4.2(7)

3.492
83.4 keV

2+ Er

	

3.492
2.508

Predictions
Er

	

6.5(1.6)
5.9(1.0)

3.9(6)
4.2(7)

3.492
2.591

5/2+ 0+ Er

	

6.7(1.5)
5.8(8)

3.7(7)
4.4(9)

3.564
0.258

2+ Er

	

3.564
2.251

Predictions
Er

	

6.7(1.5)
5.8(8)

3.7(7)
4.4(9)

3.564
2.512

obtained by the fit to both the ground and first-excited states.)
The higher lying 3/2−

2 resonance can decay not only via the
n + 6He but also via the n + 6He∗ channel. The 3/2− phase
shifts in this second channel as well as phase shifts in some
other states in the n + 6He∗ channels are also presented in
Fig. 2. The energies and widths of the higher lying 3/2−

2
resonance obtained in the n + 6He∗ channel are close to those
obtained in the n + 6He channel (see Table II) thus providing
a posteriori justification of our treatment of coupled-channel
resonances in different single channels. Our final prediction
for the energy and width of the 3/2−

2 resonance and their
uncertainties presented in Table II in the line “Predictions”
are obtained by combining their spreads in different model
spaces in both channels. As was already mentioned, the res-
onance widths obtained in any open channel as well as those
quoted in the line “Predictions” are the total resonance widths
associated with the decay in all possible channels.

Within the NCSMch approach, the energy of the 3/2−
2

resonance is obtained by extrapolating the first excited 3/2−
state obtained in the NCSM calculations which is independent
from the decay channel and hence it appears the same in
all open channels. However, the width obtained by matching
the NCSM wave function with the scattering wave function,
depends strongly on the considered channel and has a meaning
of the partial width characterizing a probability of the decay
in the respective channel. Therefore the NCSMch widths are
very different in different channels and should not be com-
pared with ours in each channel. In the line “Predictions”
we present the NCSMch result for the total width by sum-
ming their widths in individual channels. These total NCSMch
widths can be compared with ours.

Our results for the 3/2−
2 resonance show that this resonance

is one of the candidates for the description of the experimen-
tally observed resonance of unknown spin-parity at the energy
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FIG. 2. Phase shifts in the n + 6He and in some n + 6He∗ channels with the Daejeon16 (left) and JISP16 (right) NN interactions. See Fig. 1
for details.

of 6.2 MeV with the width of 4 MeV. With Daejeon16 we
obtain slightly smaller than experimental values for both its
energy and width while JISP16 suggests energy and width
closer to the experiment. This resonance has been studied
theoretically before within the CS-COSM approach where
its width was estimated approximately 30%–40% smaller
than in our calculations. The NCSMch predicts the width of
this resonance that is approximately two times smaller than
ours; the NCSMch energy of this resonance is approximately
1 MeV smaller than ours.

The 1/2+ scattering phase shifts are found to decrease
monotonically with energy without any signal of a resonant
state in calculations with both Daejeon16 and JISP16 inter-
actions. This result is in an agreement with the experimental
data and the GSM predictions of Ref. [28] and the NCSMC
predictions of Refs. [31,32]. From our parametrization of the
effective range function K�(E ) we obtain the scattering length
a0 = 2.2(4) fm and the effective radius r0 = 2.1(1.1) fm for
the n + 6He s-wave scattering.

The NCSMch studies of Ref. [33] propose the 1/2+ res-
onance at the energy Er = 1.696 MeV with the width 	 =
2.670 MeV. We note here that, as was clearly demonstrated in
Ref. [60], not all NCSM eigenstates should be associated with
a resonance. Furthermore, the nonresonant scattering requires
an appearance of some NCSM eigenstates for compatibility
with the respective phase shifts. However, any NCSM eigen-
state with positive energy with respect to any threshold can be
matched with any open channel thus producing a theoretical
prediction for a resonance which may not correspond to a

physical resonance. We suppose this is a drawback of the
NCSMch approach which is in particular manifested in the
case of the spurious 1/2+ resonance. We should note, how-
ever, that, according to the NCSMch predictions, the width of
the 1/2+ resonance is much larger than its energy; thus this
resonance will not be pronounced in a scattering experiment
though may be detected in other reactions. This latter situation
seems to occur in the case of the tetraneutron resonance where
theory [19] and some experiments [21] suggest its width is
larger than its energy.

The results for the 1/2− resonance presented in Table II,
contrary to the 3/2−

2 resonance, were obtained only in the
channel n + 6He with the 6He in the ground state. This reso-
nance with the width of approximately 4 MeV or more should
have the energy less than 1 MeV in the n + 6He∗ channel.
Clearly, the n + 6He∗ phase shift will be nearly unaffected
by the respective S-matrix resonant pole and hence it is not
feasible to deduce the pole location from these phase shifts.
We obtain the same energy of this resonance with Daejeon16
and JISP16 interactions which are slightly larger the results of
other theoretical studies. The widths predicted by Daejeon16
and JISP16 are close to each other and approximately twice
as large as those reported in other theoretical papers.

The experimental situation for the 1/2− resonance is not
clear. While the resonant energies of Refs. [25,26] are com-
parable, the widths are very different. The results of our work
and other theoretical works for the resonance energy are in fair
agreement with the neutron pickup and proton-removal reac-
tion experiments [25]. However for the width of this resonance
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we obtain a value that is approximately two times larger than
in experiment [25] and approximately two times smaller than
in experiment [26]. It is clear that our results do not support
the interpretation of experimental data on one-neutron knock-
out from 8He of Ref. [27] advocating a low-lying (Er ≈ 1
MeV) narrow (	 < 1 MeV) 1/2− resonance in 7He.

We obtain very similar results for the 5/2− resonance in the
n + 6He and n + 6He∗ channels as well as in calculations with
Daejeon16 and JISP16 interactions. It may look surprising
that we got a wide resonance in the n + 6He channel where the
orbital momentum � = 3 produces a high centrifugal barrier.
We note again that the respective S-matrix resonant pole ap-
pears due to the coupling to other (closed) channels within the
NCSM calculations and provides information about the total
resonance width associated with all possible channels and
may be very different from the partial width associated with
the decay probability in one particular channel: The partial
width in this channel of 52 eV obtained by the NCSMch
is four orders of magnitude smaller. The large width of the
5/2− resonance obtained in the n +6 He channel with the
high centrifugal barrier presents an impressive illustration of
our proposition that we obtain total resonance width in each
channel and justification of our approach. Our results for the
energy and total width of the 5/2− resonance are seen to be in
good agreement with experiment and with the other available
theoretical studies performed with different interactions and
using different approaches.

Our results for the positive parity 3/2+ and 5/2+ reso-
nances presented in Table II were obtained only in the n + 6He
channel. Note that these resonances are wide: Their widths
obtained with Daejeon16 are more than 4 MeV and are larger
than their energies; their widths obtained with JISP16 are
close to 6 MeV and their energies are only slightly larger. In
the n + 6He∗ channel their energies become smaller than their
widths. Therefore the resonances are not well resolved in this
channel and we do not attempt to extract resonance parameters
from the n + 6He∗ phase shifts.

The 3/2+ and 5/2+ phase shifts are seen in Fig. 2 to nearly
coincide and behave very similar to the 3/2− phase shifts in
the n + 6He∗ channel that is most noticeable in the case of
JISP16. Therefore we obtain the 3/2+ and 5/2+ resonances at
energies close to that of the 3/2−

2 resonance but their widths
are slightly larger. As a result, we suppose that the wide
resonance observed around 6 MeV is formed as a complicated
overlap of the 3/2−

2 , 3/2+ and 5/2+ resonances. Note that this
wide experimental resonance overlaps partially also with the
1/2− and 5/2− resonances.

The 3/2+ and 5/2+ resonances in the n + 6He channel are
characterized by the orbital momentum � = 2 or higher. Our
phase shifts reflect the pole structure of the S matrix. How-
ever the orbital momentum � = 2 suggests a high centrifugal
barrier. Therefore, the partial widths of these resonances in
the n + 6He channel are suppressed as is manifested in the
NCSMch calculations. The total width of the 3/2+ and 5/2+
resonances in the NCSMch is dominated by contributions
from other channels and appears to be much smaller. The
energies of these resonances deduced in the NCSMch by
exponential extrapolations is also smaller than our predictions
with the same interaction and this distinction seems to be a

common feature for all wide resonances reported here. As a
result, as seen in Table II, the NCSMch predicts comparable
energies and similar total widths for the 5/2−, 3/2−

2 , 3/2+,
and 5/2+ resonances in 7He. In other words, according to the
NCSMch, the resonance in 7He at the energy of 3.36 MeV
with the width of approximately 2 MeV which spin-parity
has a tentative assignment of 5/2−, appears as a complicated
overlap of 5/2−, 3/2−

2 , 3/2+, and 5/2+ resonances while, at
the same time, there is no NCSMch indication of the wide
resonance around 6 MeV.

We also examined the democratic four-body 4He + n +
n + n decay channels of all 7He resonances with the exception
of the lowest 3/2− resonance which is below the respective
threshold. In all cases we obtain resonances with energies
close to those of respective two-body channels but with much
smaller widths—at least three times smaller and sometimes
more than an order of magnitude smaller. We conclude that
the direct democratic four-body decays of 7He resonances
are suppressed due to the large hyperspherical centrifugal
barrier L (L + 1)/ρ2 which dynamically pushes the system
to form 6He in the ground or excited resonant 2+ states in
the decay process. Therefore we do not present the results for
these direct democratic decays of 7He resonances in Table II
and in the figures. The democratic decay channels should be
treated separately and cannot be included in a multichannel
calculation together with two-body decay channels since the
democratic and two-body decay channel wave functions can-
not be orthogonalized. We note, however, that the four-body
4He + n + n + n decays of 7He resonances occur as two-step
processes in the n + 6He∗ channels when 7He first emits a
neutron leaving the excited 6He∗ 2+ state which emits 4He and
two neutrons.

IV. SUMMARY AND CONCLUSIONS

Motivated by experimental uncertainties in the properties
of the unbound nucleus 7He, we solved for 7He resonances
using the SS-HORSE extension of the ab initio NCSM with
the realistic Daejeon16 and JISP16 NN interactions.

The four-body 4He + n + n + n direct democratic decays
of 7He resonances were found to be suppressed. All examined
resonances may decay via the n + 6He channel with 6He in the
ground state and, with an exception of the 3/2−

1 resonance,
via the n + 6He∗ channel with 6He in the excited 2+ state.
That excited 2+ state subsequently decays emitting 4He and
two neutrons thus resulting in the four-body 4He + n + n + n
final state. The resonance energies and widths quoted in
Table II simulate the results of a multichannel calculation; in
particular, the widths are a reasonable approximation to the
total widths of the resonances as confirmed by similar results
obtained with different open channels.

Our predictions for the low-lying narrow 3/2−
1 resonance

are in reasonable agreement with experiment and with results
quoted in the GSM [28], G-DMRG [29], NCSMch [33], and
NCSMC [31,32] theoretical studies.

The 1/2− resonance is predicted at the energy in reason-
able agreement with the NCSMC [31,32] and NCSMch [33]
calculations and results of experiments of Refs. [25,26] and
about 1 MeV higher than suggested by the G-DMRG studies
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[29]. The width of this resonance is found to be more than 4
MeV which is larger than the width predicted in the NCSMch,
NCSMC, G-DMRG, and CS-COSM [30] calculations and
larger than the experimental width of Ref. [25]. However,
our 1/2− resonance width is less than half the experimen-
tal width of Ref. [26]. Our results as well as those of the
above-mentioned NCSMch, NCSMC, GSM, G-DMRG, and
CS-COSM calculations disagree with the indication of a low-
lying narrow resonant 1/2− state suggested in Ref. [27].

Our predictions for the relatively wide 5/2− resonance
are in reasonable agreement with experiment and with results
quoted in the NCSMC, NCSMch, GSM, G-DMRG, and CS-
COSM studies.

We found a wide 3/2−
2 resonance around the energy of 5

MeV which was also predicted in the CS-COSM calculations
[30] as well as wide 3/2+ and 5/2+ resonances at nearby en-
ergies. Based on our results, it appears reasonable to propose
that the observed resonance at the energy of 6.2 MeV with
the width of 4 MeV of unknown spin-parity mentioned in the
compilation of Ref. [23] is formed as an overlap of the 3/2−

2
resonance with 3/2+ and 5/2+ resonances.

We do not find a resonance in the 1/2+ state which is
consistent with the findings of the GSM [28], NCSMC [31,32]
studies and with the experimental situation.
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