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A consistent microscopic theory for the response of strongly coupled superfluid fermionic systems is formu-
lated. After defining the response as a two-point two-fermion correlation function in the basis of the Bogolyubov
quasiparticles, the equation of motion (EOM) method is applied using the most general fermionic Hamiltonian
with a bare two-body interaction, also transformed to the quasiparticle space. As a superfluid extension of the
case of the normal phase, the resulting EOM is of the Bethe-Salpeter-Dyson form with the static and dynamical
interaction kernels, where the former determines the short-range correlations and the latter is responsible for
the long-range ones. Both kernels as well as the entire EOM have the double dimension as compared to that
of the normal phase. Nonperturbative approximations via the cluster decomposition of the dynamical kernel
are discussed, with the major focus on a continuous derivation of the quasiparticle-phonon coupling variant
of the latter kernel, where the phonons (vibrations) are composite correlated two-quasiparticle states unifying
both the normal and pairing modes. The developed theory is adopted for nuclear structure applications, such
as the nuclear response in various channels. In particular, the finite-amplitude method generalized beyond
the quasiparticle random phase approximation, taking into account the quasiparticle-vibration coupling, is
formulated for prospective calculations in nonspherical nuclei.
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I. INTRODUCTION

The response function of a finite many-body quantum
system is one of its major characteristics, which links, in
particular, its interaction with the exterior and internal prop-
erties. Being defined on the fundamental level as a correlation
function of the fermionic field operators, it forms the common
underlying background connected across the many areas of
physics from quantum chromodynamics to quantum chem-
istry. Therefore, understanding microscopic mechanisms of
the response, in particular the phenomenon of emergent col-
lectivity, plays an important role in solving the quantum
many-body problem at different scales.

The special role of atomic nuclei in this context stems from
the very nature of the nucleon-nucleon (NN) forces. Being the
net result of the quark-gluon interaction, it has a complex mul-
tichannel structure, which is further tangled by the in-medium
dynamics. However, the same feature stipulates the relevance
of a large variety of experimental probes, which are sensitive
to certain channels and, thus, can illuminate particular aspects
of the strong interaction. These opportunities are actively ex-
plored by the rare isotope beam facilities [1,2].

Theoretical studies of the nuclear response were for
decades heading toward building a microscopic approach,
which can describe nuclear excited states as accurately as
possible. For a while, such studies were dominated by the ran-

dom phase approximation (RPA) [3], or its superfluid variant,
the quasiparticle RPA (QRPA) [4,5], which characterize quite
adequately the positions and integral strengths of collective
excitations, but produce a poor description of their fragmenta-
tion and of other excited states. The response function should
be able, in principle, to provide the full spectral picture; there-
fore, it was realized quite early that the (Q)RPA has to be
extended by configurations beyond the two-quasiparticle (2q),
or one-particle one-hole (1p1h), ones.

The most fruitful nonperturbative extensions of the
(Q)RPA appeared with the idea of coupling between the
single-particle and emergent collective degrees of freedom in
atomic nuclei [6–11]. The nuclear collective modes, phonons,
mostly of the vibrational character, were found to form com-
plex configurations by coupling to the single-particle states
and to each other. Such configurations cause fragmentation of
the (Q)RPA states, thus inducing the damping of collective
excitations.

This idea explained successfully many of the observed
nuclear phenomena, while the complex configurations were
linked to the dynamical kernels of the equations of motion
(EOM) for the correlation functions in nuclear medium [5].
The equation of motion method proposed in Ref. [12] and
further developed, e.g., in Refs. [13–18] is known to produce
a hierarchy of approximations to the dynamical kernels of the
equations for fermionic propagators. Formally, some variants
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of those kernels for the two-fermion propagators, which are
most relevant to the nuclear response, can be mapped to the
kernels of the phenomenological nuclear field theories (NFTs)
and quasiparticle-phonon models (QPMs) [6–11], in terms of
ph ⊗ phonon, phonon ⊗ phonon, and similar configurations.
Such a mapping provides an interpretation of collectivity
emerging from the underlying NN interaction, while in the
effective theories of the NFT and QPM types the presence of
collective modes and their interactions serves as an input.

Overall, the EOM method based on the bare Hamilto-
nian describes the modification of the bare interaction in
the strongly correlated medium. It reveals, in particular, that
the latter is not reducible to static “potentials” but splits,
instead, into the static and dynamical components. Both are,
in principle, calculable from the underlying interactions, al-
though their ab initio computations involve evaluations of
increasing-rank fermionic propagators: the former is respon-
sible for short-range correlations, while the latter takes into
account retardation effects of the correlated media and, thus,
long-range correlations [14–18].

The explicit coupling between the quasiparticles and
phonons, commonly referred to as the particle-vibration cou-
pling (PVC), is the leading mechanism of the long-range
correlations in nuclear medium. Semiphenomenological mod-
els of the PVC based on effective in-medium interactions
[10,19–29] provided invaluable knowledge about this phe-
nomenon in nuclear structure. During the last decades, these
models were linked to the contemporary density functional
theories in self-consistent frameworks [30–38] and widely
applied to experimental data analyses [39–43]. Furthermore,
the PVC with charge-exchange phonons [44,45] and the PVC-
induced ground state correlations [25,26,46,47], have been
addressed in applications to neutral and charge-exchange nu-
clear excitations. Some recent developments and numerical
implementations of the NFTs beyond the two-particle two-
hole (2p2h) level [18,48,49], as well as the multiphonon
QPM approach [11,27,50,51], indicate the capability of a
sufficiently advanced response theory to meet the shell-model
standards in large model spaces.

However, the problem of consistently linking those ap-
proaches to the nuclear response with the underlying bare
interactions remains unsolved, although some theoretical ef-
fort in this direction was made recently in Refs. [18,52–
54]. Another aspect, which needs special attention, is the
superfluidity, which famously manifests itself in open-shell
nuclei. Superfluid dynamical PVC kernels of the EOM for
the response function were considered in a number of reports
[11,24,27,31,37,55–57]; however, pairing correlations were
only taken into account in the Bardeen-Cooper-Schrieffer
(BCS) approximation. Meanwhile, it became evident that a
more accurate treatment of superfluidity is highly desirable
for modern nuclear physics applications.

In this work, an advancement of the response theory with
the dynamical kernel is presented for superfluid fermionic
systems. The pairing correlations are treated consistently by
working in the Hartree-Fock-Bogolyubov (HFB) basis of
the Bogolyubov quasiparticles, i.e., beyond the BCS pairing.
Starting from a general many-body fermionic Hamiltonian
defined by the bare two-body interaction, the EOM formalism

for the response function is processed in the HFB space. A
connection to the variational approach is made to guide future
applications of the method to a broad class of atomic nuclei.
Namely, we show how the finite-amplitude method (FAM),
which is extremely efficient for deformed nuclei but, up until
now formulated and implemented only on the QRPA level
[58–63], can be generalized to include correlations beyond the
QRPA. These correlations are responsible for many important
nuclear characteristics, such as the neutron capture and weak
rates in stars, neutrino-nucleus interaction, neutrinoless dou-
ble β decay, and nuclear Schiff moment, i.e., the quantities
needed for major frontier applications. These quantities are
extremely sensitive to the fine structure of the nuclear exci-
tation spectra, which cannot be described by the QRPA, in
principle. The presented approach and, in particular, its FAM
variant generalized beyond the QRPA will, besides advancing
the theory alone, allow for highly accurate computation of
these quantities in a wide range of nuclear masses, isospins,
and shapes.

The main purpose of this article is to walk the reader
through the detailed formalism and, thus, provide a clear
understanding of the origin of the many-body effects, which
contribute to the response of a superfluid fermionic system.
Since the static kernel of the EOM for the superfluid re-
sponse function is, in the leading approximation, known from
the QRPA [5], we place the major focus on the dynamical
kernel, which is responsible for more nontrivial, relatively
long-range, correlations emerging from the strongly coupled
superfluid medium in finite volume. While we analyze ex-
plicitly two specific approaches to the dynamical kernel, the
model-independent nature of the exact EOM should allow
practitioners to relate different many-body models to each
other, to evaluate their accuracy and generate systematically
improvable approximations. We purposefully do not include
numerical calculations here to fully focus on the formalism,
as it is done, for instance, in Refs. [54,55,64], some aspects
of which can be related to the presented theory in certain
approximations, while a separate series of articles will be
reserved for its numerical implementations.

II. FORMALISM

A. Many-body Hamiltonian in the quasiparticle basis

The starting point for the fermionic EOM formalism is
the Hamiltonian H of a many-body system of interacting
fermions. It is conventionally formulated as

H = H (1) + V (2), (1)

where H (1) and V (2) are the one-body and two-body parts,
respectively. Higher-rank terms are neglected in the present
work as their contribution is usually less important; however,
they can be included straightforwardly, if necessary. The op-
erator H (1), in terms of the fermionic field operators, reads

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑
12

v
(MF )
12 ψ

†
1 ψ2 ≡

∑
12

h12ψ
†
1 ψ2, (2)

where the matrix elements h12 combine the kinetic energy
t and the mean-field v(MF ) portion of the interaction. The
external mean field, in case of its presence, is included in
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v(MF ). The two-fermion interaction V (2) is

V (2) = 1

4

∑
1234

v̄1234ψ
†
1 ψ

†
2 ψ4ψ3, (3)

where v̄1234 = v1234 − v1243 are the antisymmetrized matrix
elements of the interaction between two fermions in free
space. We do not specify the nature of the interaction v,
assuming only its instantaneous character. This assumption
should be quite accurate in the low-energy regime for the ma-
jority of the fermionic systems of interest. Noninstantaneous
interactions as well as the three-body and higher-rank forces
will be discussed elsewhere. The number lower indices in
Eqs. (2) and (3) stand for the complete sets of quantum num-
bers in an arbitrary basis, and the fermionic field operators ψ1

and ψ
†
1 satisfy the usual anticommutation relations.

For the description of a superfluid system of fermions, it is
convenient to proceed in the space of Bogolyubov’s quasipar-
ticles defined by the transformation [5,65]

ψ1 = U1μαμ + V ∗
1μα†

μ,

ψ
†
1 = V1μαμ + U ∗

1μα†
μ, (4)

where summation is implied over the repeated index μ, or, in
the operator form, (

ψ

ψ†

)
= W

(
α

α†

)
, (5)

where

W =
(

U V ∗
V U ∗

)
, W† =

(
U † V †

V T U T

)
. (6)

In Eq. (4) and henceforth the greek subscripts will be used to
denote fermionic states in the HFB basis, while the number
subscripts will remain reserved for the single-particle (mean-
field) basis states. The transformation W is unitary, and the
quasiparticle operators α and α† form the same anticommu-
tator algebra as the particle operators ψ and ψ†, so that the
matrices U and V satisfy

U †U + V †V = 1, UU † + V ∗V T = 1,

U T V + V T U = 0, UV † + V ∗U T = 0. (7)

In the quasiparticle basis defined by Eq. (4), Hamiltonian
(1) can be rewritten as follows [5]:

H = H0 +
∑
μν

H11
μνα

†
μαν + 1

2

∑
μν

(
H20

μνα
†
μα†

ν + H.c.
)

+
∑

μμ′νν ′

(
H40

μμ′νν ′α
†
μα

†
μ′α

†
να

†
ν ′ + H.c.

)

+
∑

μμ′νν ′

(
H31

μμ′νν ′α
†
μα

†
μ′α

†
ναν ′ + H.c.

)

+1

4

∑
μμ′νν ′

(
H22

μμ′νν ′α
†
μα

†
μ′αν ′αν + H.c.

)
, (8)

where the upper indices in the matrix elements Hi j
μνμ′ν ′ are

associated with the numbers of creation and annihilation
quasiparticle operators in the respective terms. These matrix
elements are given in Appendix A.

While the matrix H20 vanishes at the stationary point
defining the Hartree-Fock-Bogolyubov equations, the matrix
elements of H11 correspond to the quasiparticle energies, so
that H11

μν = δμνEμ, and the Hamiltonian takes the form [5]

H = H0 +
∑

μ

Eμα†
μαμ + V, (9)

where the residual interaction V includes the H40, H31, and
H22 terms of Eq. (8):

V =
∑

μμ′νν ′

(
H40

μμ′νν ′α
†
μα

†
μ′α

†
να

†
ν ′ + H.c.

)

+
∑

μμ′νν ′

(
H31

μμ′νν ′α
†
μα

†
μ′α

†
ναν ′ + H.c.

)

+ 1

4

∑
μμ′νν ′

(
H22

μμ′νν ′α
†
μα

†
μ′αν ′αν + H.c.

)
. (10)

B. Strength function and superfluid response

The response of a fermionic system to an external field F
can be deduced from the associated generic strength function
which, under the assumption of a sufficiently weak field, reads

S(ω) =
∑
n>0

[|〈n|F †|0〉|2δ(ω − ωn) − |〈n|F |0〉|2δ(ω + ωn)],

(11)
where the summation runs over all the formally exact excited
states |n〉. The square moduli of the matrix elements express
the transition probabilities [66]

Bn = |〈n|F †|0〉|2, B̄n = |〈n|F |0〉|2. (12)

Considering a superfluid system, it is convenient to rep-
resent the generic one-body operator F in terms of the
quasiparticle fields:

F = 1

2

∑
μμ′

(
F 20

μμ′α
†
μα

†
μ′ + F 02

μμ′αμ′αμ

)
,

F † = 1

2

∑
μμ′

(
F 20∗

μμ′ αμ′αμ + F 02∗
μμ′ α

†
μα

†
μ′

)
, (13)

which follows from the Bogolyubov transformation of the
second-quantized form of F . The full composition in the
quasiparticle basis contains formally also F 11 terms; however,
their contribution vanishes in the leading approximations to
the superfluid response, for instance, in the zero-temperature
QRPA [58]. The associated contributions to the response func-
tion are related to complex ground state correlations and will
be considered elsewhere. Here we also note that F 02∗

μμ′ = F 20
μμ′

if F = F †, i.e., a Hermitian operator.
While Eq. (11) is model independent, the matrix elements

in it obviously depend on the model assumptions about both
the ground |0〉 and excited |n〉 states. The generic structure of
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the transition probabilities can be recast as

|〈n|F †|0〉|2 = 1

4

∑
μμ′νν ′

(
F 02

μμ′ F 20
μμ′

)

×
(
X n

μμ′X n∗
νν ′ X n

μμ′Yn∗
νν ′

Yn
μμ′X n∗

νν ′ Yn
μμ′Yn∗

νν ′

)(
F 02∗

νν ′
F 20∗

νν ′

)
(14)

and

|〈n|F |0〉|2 = 1

4

∑
μμ′νν ′

(
F 02∗

μμ′ F 20∗
μμ′

)

×
(
Yn

μμ′Yn∗
νν ′ Yn

μμ′X n∗
νν ′

X n
μμ′Yn∗

νν ′ X n
μμ′X n∗

νν ′

)(
F 02

νν ′
F 20

νν ′

)
, (15)

via the matrix elements

X n
μμ′ = 〈0|αμ′αμ|n〉, Yn

μμ′ = 〈0|α†
μα

†
μ′ |n〉. (16)

Note here that all the matrix elements on the right-hand sides
of Eqs. (13)–(16) are antisymmetric because of the fermionic
character of the quasiparticles. Therefore, each factor 1/2 in
front of the summation over a couple of the fermionic states
{μ,μ′} can be removed by restricting the sum by μ < μ′.
Since for the antisymmetric matrices the diagonal matrix el-
ements vanish, the condition μ < μ′ is equivalent to μ � μ′.
The nonvanishing “diagonal” matrix elements may appear in
certain implementations, where the single-quasiparticle states
are degenerate with respect to one or several quantum num-
bers of the complete set {μ} and if the dependence on these
quantum numbers is explicitly excluded [31,37,56]. In the
following, depending on the context, we will use the complete
or restricted summations, which can be easily converted to
each other, if necessary.

The δ function in Eq. (11) can be represented as a limit of
the finite-width Lorentzian distribution

δ(ω − ωn) = 1

π
lim
	→0

	

(ω − ωn)2 + 	2
, (17)

so that

S(ω) = 1

π
lim
	→0

∑
n>0

[
|〈n|F †|0〉|2 	

(ω − ωn)2 + 	2

−|〈n|F |0〉|2 	

(ω + ωn)2 + 	2

]

= − 1

π
lim
	→0

Im
∑
n>0

[ |〈n|F †|0〉|2
ω − ωn + i	

− |〈n|F |0〉|2
ω + ωn + i	

]

= − 1

π
lim
	→0

Im
(ω). (18)

The polarizability 
(ω) of the system is, thus, defined as


(ω) =
∑
n>0

[ |〈n|F †|0〉|2
ω − ωn + i	

− |〈n|F |0〉|2
ω + ωn + i	

]

= 1

4

∑
μμ′νν ′

(
F 02

μμ′ F 20
μμ′

)

×
(

R[11]
μμ′νν ′ (ω + i	) R[12]

μμ′νν ′ (ω + i	)

R[21]
μμ′νν ′ (ω + i	) R[22]

μμ′νν ′ (ω + i	)

)(
F 02∗

νν ′

F 20∗
νν ′

)
,

(19)

where the matrix elements of the response function
R̂μμ′νν ′ (ω) = {R[i j]

μμ′νν ′ (ω)} with i, j = {1, 2} read

R̂μμ′νν ′ (ω) =
∑
n>0

(
X n

μμ′

Yn
μμ′

)
1

ω − ωn

(
X n∗

νν ′ Yn∗
νν ′

)

−
∑
n>0

(
Yn∗

μμ′

X n∗
μμ′

)
1

ω + ωn

(
Yn

νν ′ X n
νν ′

)
. (20)

To apply the EOM formalism, it is convenient to formulate the
superfluid response function in terms of the time-dependent
field operators, in analogy to the normal case. The definition
should be compatible with Eq. (20), which represents the
Fourier image of the superfluid response function. Thus, we
adopt the definition

R̂μμ′νν ′ (t − t ′)

= − i

(〈T (αμ′αμ)(t )(α†
να

†
ν ′ )(t ′)〉 〈T (αμ′αμ)(t )(αν ′αν )(t ′)〉

〈T (α†
μα

†
μ′ )(t )(α†

να
†
ν ′ )(t ′)〉 〈T (α†

μα
†
μ′ )(t )(αν ′αν )(t ′)〉

)
,

(21)

where the time-dependent operator products should be under-
stood as those in the Heisenberg picture:

(αμ′αμ)(t ) = eiHtαμ′αμe−iHt , (α†
να

†
ν ′ )(t ) = eiHtα†

να
†
ν ′e−iHt ,

(22)

with the h̄ = 1 convention; T is the time ordering operator,
and the averaging is performed over the formally exact ground
state. For processing the response function R̂μμ′νν ′ (t − t ′) in
the EOM framework, it is useful to recast it in terms of the
quasiparticle pair operators, namely,

R̂μμ′νν ′ (t − t ′)

= −i

(〈TAμμ′ (t )A†
νν ′ (t ′)〉 〈TAμμ′ (t )Aνν ′ (t ′)〉

〈TA†
μμ′ (t )A†

νν ′ (t ′)〉 〈TA†
μμ′ (t )Aνν ′ (t ′)〉

)
, (23)

where the latter operators are introduced according to

Aμμ′ = αμ′αμ, A†
μμ′ = α†

μα
†
μ′ . (24)

Indeed, inserting the operator unit I = ∑
n |n〉〈n|, in terms

of the full set of the eigenstates |n〉 of the Hamiltonian H ,
between the quasiparticle pair operators in each of the matrix
elements, one gets, after the Fourier transformation to the
frequency (energy) domain,

R̂μμ′νν ′ (ω) =
∑
n>0

(
X n

μμ′X n∗
νν ′ X n

μμ′Yn∗
νν ′

Yn
μμ′X n∗

νν ′ Yn
μμ′Yn∗

νν ′

)
1

ω − ωn + iδ

−
∑
n>0

(
Yn∗

μμ′Yn
νν ′ Yn∗

μμ′X n
νν ′

X n∗
μμ′Yn

νν ′ X n∗
μμ′X n

νν ′

)
1

ω + ωn − iδ
,

(25)

where δ → +0 is the infinitesimal imaginary part of the en-
ergy variable introduced for convergence of the integrals for
both the retarded and advanced contributions. Thus, one can
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see that Eq. (20) is reproduced with the definition of Eq. (21),
if the different origins of the imaginary parts 	 and δ of
the energy variable are taken into account. Remarkably, the
response function in the form of Eq. (23) has the same struc-
ture as the single-quasiparticle Gorkov propagator discussed
within the EOM framework, in particular, in Refs. [54,67],
with the correspondence ψ1 → Aμμ′ , ψ

†
1 → A†

μμ′ . It should

be, thus, straightforward to handle it with an analogous EOM
method.

C. Equation of motion for the superfluid response

The time derivative ∂t of the superfluid response function
(23) reads

∂tR̂μμ′νν ′ (t − t ′) = −iδ(t − t ′)
(〈[Aμμ′, A†

νν ′ ]〉 〈[Aμμ′, Aνν ′ ]〉
〈[A†

μμ′, A†
νν ′ ]〉 〈[A†

μμ′, Aνν ′ ]〉

)
+

(〈T [H, Aμμ′ ](t )A†
νν ′ (t ′)〉 〈T [H, Aμμ′ ](t )Aνν ′ (t ′)〉

〈T [H, A†
μμ′ ](t )A†

νν ′ (t ′)〉 〈T [H, A†
μμ′ ](t )Aνν ′ (t ′)〉

)
. (26)

At this step, when one foresees evaluation of the commutators appearing in the EOM, it is convenient to separate the H0 and
H11 parts of the full Hamiltonian (8) from the remaining terms as in Eq. (9). Thus, one finds explicitly that

[H, Aμμ′ ] = −(Eμ + Eμ′ )Aμμ′ + [V, Aμμ′],

[H, A†
μμ′ ] = (Eμ + Eμ′ )A†

μμ′ + [V, A†
μμ′], (27)

and Eq. (26) leads to the first EOM, which can be written as follows:[
i∂t −

(
1 0
0 −1

)
(Eμ + Eμ′ )

]
R̂μμ′νν ′ (t − t ′) = δ(t − t ′)N̂μμ′νν ′ + i

(〈T [V, Aμμ′](t )A†
νν ′ (t ′)〉 〈T [V, Aμμ′](t )Aνν ′ (t ′)〉

〈T [V, A†
μμ′](t )A†

νν ′ (t ′)〉 〈T [V, A†
μμ′](t )Aνν ′ (t ′)〉

)
, (28)

where the norm matrix N̂μμ′νν ′ is defined as

N̂μμ′νν ′ =
(〈[Aμμ′ , A†

νν ′ ]〉 0
0 〈[A†

μμ′, Aνν ′ ]〉
)

. (29)

Analogously to the nonsuperfluid case, the second EOM is generated for the dynamical term on the right-hand side of Eq. (28).
Denoting this term as

F̂μμ′νν ′ (t − t ′) = i

(〈T [V, Aμμ′](t )A†
νν ′ (t ′)〉 〈T [V, Aμμ′](t )Aνν ′ (t ′)〉

〈T [V, A†
μμ′](t )A†

νν ′ (t ′)〉 〈T [V, A†
μμ′](t )Aνν ′ (t ′)〉

)
(30)

and taking its derivative with respect to t ′ leads to

∂t ′F̂μμ′νν ′ (t − t ′) = −iδ(t − t ′)

(〈[[V, Aμμ′], A†
νν ′ ]〉 〈[[V, Aμμ′], Aνν ′ ]〉

〈[[V, A†
μμ′], A†

νν ′ ]〉 〈[[V, A†
μμ′], Aνν ′ ]〉

)

−
(〈T [V, Aμμ′](t )[H, A†

νν ′ ](t ′)〉 〈T [V, Aμμ′](t )[H, Aνν ′ ](t ′)〉
〈T [V, A†

μμ′](t )[H, A†
νν ′ ](t ′)〉 〈T [V, A†

μμ′](t )[H, Aνν ′ ](t ′)〉

)
. (31)

After processing the commutators with the Hamiltonian according to Eq. (27), the second EOM takes the form

F̂μμ′νν ′ (t − t ′)
[
−i

←−
∂t ′ − (Eν + Eν ′ )

(
1 0
0 −1

)]
= δ(t − t ′)T̂ 0

μμ′νν ′ + T̂ r
μμ′νν ′ (t − t ′), (32)

where T̂ 0
μμ′νν ′ and T̂ r

μμ′νν ′ (t − t ′) define the static and dynamical (retarded) parts of the two-fermion T̂ matrix in the quasiparticle
space:

T̂ 0
μμ′νν ′ = −

(〈[[V, Aμμ′], A†
νν ′ ]〉 〈[[V, Aμμ′], Aνν ′ ]〉

〈[[V, A†
μμ′], A†

νν ′ ]〉 〈[[V, A†
μμ′], Aνν ′ ]〉

)
, (33)

T̂ r
μμ′νν ′ (t − t ′) = i

(〈T [V, Aμμ′](t )[V, A†
νν ′ ](t ′)〉 〈T [V, Aμμ′](t )[V, Aνν ′ ](t ′)〉

〈T [V, A†
μμ′](t )[V, A†

νν ′ ](t ′)〉 〈T [V, A†
μμ′](t )[V, Aνν ′ ](t ′)〉

)
. (34)

Combining Eqs. (28) and (32), namely, acting by the operator in the square brackets of Eq. (32) on Eqs. (28), the new EOM for
the quasiparticle propagator is obtained as

[i∂t − σ̂3Eμμ′]R̂μμ′νν ′ (t − t ′)[−i
←−
∂t ′ − σ̂3Eνν ′ ] = δ(t − t ′)N̂μμ′νν ′[−i

←−
∂t ′ − σ̂3Eνν ′ ] + δ(t − t ′)T̂ 0

μμ′νν ′ + T̂ r
μμ′νν ′ (t − t ′), (35)
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where we have further denoted

Eμμ′ = Eμ + Eμ′ , σ̂3 =
(

1 0
0 −1

)
. (36)

At this step, it is convenient to make a Fourier transforma-
tion. The transformation of Eq. (35) to the energy (frequency)
domain yields

[ω − σ̂3Eμμ′]R̂μμ′νν ′ (ω)[ω − σ̂3Eνν ′ ]

= N̂μμ′νν ′ [ω − σ̂3Eνν ′ ] + T̂ 0
μμ′νν ′ + T̂ r

μμ′νν ′ (ω). (37)

Then, after defining the free response as

R̂0
μμ′νν ′ (ω) = [ω − σ̂3Eμμ′]−1N̂μμ′νν ′ , (38)

Eq. (37) takes the form of a T -matrix equation,

R̂μμ′νν ′ (ω) = R̂0
μμ′νν ′ (ω)

+ 1
4R̂

0
μμ′γ γ ′ (ω)T̂γ γ ′δδ′ (ω)R̂0

δδ′νν ′ (ω), (39)

with the energy-dependent T -matrix T̂γ γ ′δδ′ (ω) such that

T̂γ γ ′δδ′ (ω) = 1
4N̂

−1
γ γ ′μμ′

(
T̂ 0

μμ′νν ′ + T̂ r
μμ′νν ′ (ω)

)
N̂−1

νν ′δδ′ , (40)

while we assume that the inverse norm matrix is defined
according to the following identity:

1

2

∑
δδ′

N̂−1
μμ′δδ′N̂δδ′νν ′ = δμμ′νν ′ = δμνδμ′ν ′ − δμν ′δμ′ν . (41)

Again, as in the nonsuperfluid case, the T -matrix equation can
be transformed to the Bethe-Salpeter-Dyson equation (BSDE)
by introducing the irreducible with respect to R̂0 interac-
tion kernel K̂(ω) = K̂0 + K̂r (ω), which plays the role of
the self-energy for the two-point two-fermion correlation

function R̂(ω):

K̂0
γ γ ′δδ′ = 1

4N̂
−1
γ γ ′ηη′ T̂ 0

ηη′ρρ ′N̂−1
ρρ ′δδ′ ,

K̂r
γ γ ′δδ′ (ω) = 1

4

[
N̂−1

γ γ ′ηη′ T̂ r
ηη′ρρ ′ (ω)N̂−1

ρρ ′δδ′
]irr

. (42)

Thus, the BSDE takes the familiar form

R̂μμ′νν ′ (ω) = R̂0
μμ′νν ′ (ω)

+ 1
4R̂

0
μμ′γ γ ′ (ω)K̂γ γ ′δδ′ (ω)R̂δδ′νν ′ (ω),

(43)

but with the 2 × 2 matrix structure in the quasiparticle basis.

III. INTERACTION KERNELS

The interaction kernels (33) and (34) require evaluation of
commutators of the residual interaction V of Eq. (10) with
the quasiparticle pair operators Aμμ′ and A†

μμ′ as well as the
double commutators of Eq. (33) and the commutator products
of Eq. (34). The relevant generic commutators are given in
Appendix B, while further treatment of the kernels is pre-
sented in the next two sections.

A. The static kernel

With respect to the static kernel, at this point it is useful to
benchmark the obtained EOM in the BSDE form (43) to the
well-established equation of the quasiparticle random phase
approximation. The latter can be derived by (i) neglecting the
irreducible part of the dynamical kernel T̂ r [Eq. (34)] and
(ii) approximating the ground state wave function by the HFB
wave function. Under these assumptions, Eq. (43) at the pole
of the response function ω → ωn takes the form [68]

⎛
⎝X n

μμ′X n∗
νν ′ X n

μμ′Yn∗
νν ′

Yn
μμ′X n∗

νν ′ Yn
μμ′Yn∗

νν ′

⎞
⎠ = 1

4

∑
δδ′,γ γ ′

[ω − σ̂3Eμμ′]−1

(
Aμμ′δδ′ − Eμμ′δμδδμ′δ′ −Bμμ′δδ′

−B∗
μμ′δδ′ A∗

μμ′δδ′ − Eμμ′δμδδμ′δ′

)

×N̂−1
δδ′γ γ ′

(
X n

γ γ ′X n∗
νν ′ X n

γ γ ′Yn∗
νν ′

Yn
γ γ ′X n∗

νν ′ Yn
γ γ ′Yn∗

νν ′

)
, (44)

where

Aμμ′δδ′ = −〈HFB|[[V, Aμμ′], A†
δδ′ ]|HFB〉 + Eμμ′δμδδμ′δ′ ,

Bμμ′δδ′ = 〈HFB|[[V, Aμμ′], Aδδ′ ]|HFB〉,
N̂−1

δδ′γ γ ′ = σ̂3δδδ′γ γ ′ . (45)

Equation (44) further simplifies to

(X n
μμ′X n∗

νν ′ X n
μμ′Yn∗

νν ′

Yn
μμ′X n∗

νν ′ Yn
μμ′Yn∗

νν ′

)
=

∑
δ�δ′

⎛
⎝Aμμ′δδ′−Eμμ′ δμδδμ′δ′

ω−Eμμ′
Bμμ′δδ′
ω−Eμμ′

− B∗
μμ′δδ′

ω+Eμμ′
−A∗

μμ′δδ′ +Eμμ′ δμδδμ′δ′
ω+Eμμ′

⎞
⎠(X n

δδ′X n∗
νν ′ X n

δδ′Yn∗
νν ′

Yn
δδ′X n∗

νν ′ Yn
δδ′Yn∗

νν ′

)
, (46)

which, after eliminating the obvious redundancies, yields the QRPA equations for the X n and Yn amplitudes in the conventional
form

ωX n
μμ′ =

∑
δ�δ′

(
Aμμ′δδ′X n

δδ′ + Bμμ′δδ′Yn
δδ′

)
,

ωYn
μμ′ =

∑
δ�δ′

( − B∗
μμ′δδ′X n

δδ′ − A∗
μμ′δδ′Yn

δδ′
)
, (47)
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or, in terms of block matrices,(
A B

−B∗ −A∗

)(
X n

Yn

)
= ω

(
X n

Yn

)
. (48)

The explicit forms of the A and B matrices, from Eq. (45),
are

Aμμ′νν ′ = Eμμ′δμνδμ′ν ′ + H22
μμ′νν ′ , (49)

Bμμ′νν ′ = 4!H40
μμ′νν ′ , (50)

which follows from the direct evaluation of the double com-
mutators of Eq. (33).

The exact form of the static kernel in the absence of
pairing correlations was presented and discussed, e.g., in
Refs. [18,53,69]. Besides the pure contribution from the bare
fermionic interaction, it contains the terms with contractions
of the interaction with the correlated parts of the two-body
fermionic densities which include, in principle, a feedback
from the dynamical kernel. The superfluid analogs of these
terms will be discussed elsewhere.

Another remark pertains to the norm matrix defined by
Eq. (29), which should have a nondivergent inverse in order
for the whole approach to be well defined. This require-
ment is fulfilled in the HF(B) approximation implied in this
work; however, difficulties may occur in the case of corre-
lated ground states. As it has been pointed out in Ref. [16],
the norm matrix must have nonzero eigenvalues; other-
wise, the approach generates spurious components, which
should be eliminated. An example of the latter procedure
is given by the generator coordinate method discussed, e.g.,
in Ref. [5].

B. The dynamical kernel

The dynamical kernel defined by the time-dependent com-
mutator products of Eq. (34) can be evaluated component by
component. The upper left component reads

T r[11]
μμ′νν ′ (t − t ′) = i〈T [V, Aμμ′](t )[V, A†

νν ′ ](t ′)〉 (51)

with the commutators given by Eqs. (B10) and (B11). It is
straightforward to see that each term in Eq. (51) contains a
product of eight quasiparticle operators, four at time t and four
at time t ′, i.e., a fully correlated two-times four-quasiparticle
propagator, contracted with two matrix elements of the

residual interaction. As in the nonsuperfluid case, the ap-
pearance of higher-rank propagators in the dynamical kernel
signals generating a hierarchy of coupled EOMs for growing-
rank propagators. Approximations have to be applied to treat
such dynamical kernels, and various approximations of in-
creasing accuracy constructed by a factorization procedure
are possible, some of which were discussed, for instance, in
Ref. [18] for the nonsuperfluid case.

The simplest approximation can be obtained by the
complete factorization of the correlated four-quasiparticle
propagator into one-quasiparticle ones, which would be the
superfluid analog of the second random phase approxima-
tion [70]. In this work we will, however, focus on the other
types of factorization, which lead to more accurate approx-
imations because of retaining important effects of emergent
collectivity. These effects are especially significant in the
strong-coupling regimes. Namely, we will (i) perform fac-
torizations into pairwise products of the fully correlated
two-quasiparticle propagators and then (ii) relax the corre-
lations in one correlation function of each pair. The latter
approach will be, thus, the superfluid version of the con-
ventional particle-vibration coupling dynamical kernel, which
we will address as quasiparticle-vibration coupling (qPVC),
and the former one will correspond to the superfluid two-
phonon model. We note here that the phonons appearing in
these factorizations are formally exact and, in general, are
not associated with any partial resummations or perturbative
expansions. This means that such approaches can include, in
principle, arbitrarily complex 2n-quasiparticle configurations
of the certain kinds. However, approximations can always be
applied to calculations of these phonons.

Although the form of the two-quasiparticle response func-
tion (21) is analogous to the one of the pair propagator
discussed, for instance, in Ref. [52], the residual interaction
(10) has now a more complicated structure. It was established,
in particular, in Ref. [5] that the terms associated with H40 are
responsible for the complex ground state correlations, while
the H22 contributions have the same operator structure. The
leading contributions, thus, come from the H31 terms. As one
can see from Eq. (B10), there are three types of operator
products at H31: (i) those containing only A and A† operators,
(ii) those with only Cμν = α†

μαν operators, and (iii) products
of A (A†) and C operators.

Let us consider the first group of terms (“AA”). Their
contribution to T r[11]

μμ′νν ′ (τ ) reads

T r[11]AA
μμ′νν ′ (τ ) = −i

〈
T

∑
ρρ ′γ

[(
H31

ρρ ′μγ (A†
ρρ ′Aμ′γ )(t ) + H31∗

ρρ ′γμ(Aμ′γ Aρρ ′ )(t )
) − (μ ↔ μ′)

]

×
∑
ηη′δ

[(
H31∗

ηη′νδ (A†
ν ′δAηη′ )(t ′) + H31

ηη′δν (A†
ηη′A

†
ν ′δ )(t ′)

) − (ν ↔ ν ′)
]〉

, (52)

where τ = t − t ′. The products of the terms listed explicitly admit a number of irreducible factorizations. Let us consider those
without breaking the two-quasiparticle pairs in the operators Aμμ′ and A†

μμ′ :

〈T (A†
ρρ ′Aμ′γ )(t )(A†

ν ′δAηη′ )(t ′)〉 ≈ 〈TA†
ρρ ′ (t )A†

ν ′δ (t ′)〉〈TAμ′γ (t )Aηη′ (t ′)〉 + 〈TA†
ρρ ′ (t )Aηη′ (t ′)〉〈TAμ′γ (t )A†

ν ′δ (t ′)〉
= −R[21]

ρρ ′ν ′δ (τ )R[12]
μ′γ ηη′ (τ ) − R[22]

ρρ ′ηη′ (τ )R[11]
μ′γ ν ′δ (τ ), (53)
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〈T (A†
ρρ ′Aμ′γ )(t )(A†

ηη′A
†
ν ′δ )(t ′)〉 ≈ 〈TA†

ρρ ′ (t )A†
ηη′ (t ′)〉〈TAμ′γ (t )A†

ν ′δ (t ′)〉 + 〈TA†
ρρ ′ (t )A†

ν ′δ (t ′)〉〈TAμ′γ (t )A†
ηη′ (t ′)〉

= −R[21]
ρρ ′ηη′ (τ )R[11]

μ′γ ν ′δ (τ ) − R[21]
ρρ ′ν ′δ (τ )R[11]

μ′γ ηη′ (τ ), (54)

〈T (Aμ′γ Aρρ ′ )(t )(A†
ν ′δAηη′ )(t ′)〉 ≈ 〈TAμ′γ (t )A†

ν ′δ (t ′)〉〈TAρρ ′ (t )Aηη′ (t ′)〉 + 〈TAμ′γ (t )Aηη′ (t ′)〉〈TAρρ ′ (t )A†
ν ′δ (t ′)〉

= −R[11]
μ′γ ν ′δ (τ )R[12]

ρρ ′ηη′ (τ ) − R[12]
μ′γ ηη′ (τ )R[11]

ρρ ′ν ′δ (τ ), (55)

〈T (Aμ′γ Aρρ ′ )(t )(A†
ηη′A

†
ν ′δ )(t ′)〉 ≈ 〈TAμ′γ (t )A†

ηη′ (t ′)〉〈TAρρ ′ (t )A†
ν ′δ (t ′)〉 + 〈TAμ′γ (t )A†

ν ′δ (t ′)〉〈TAρρ ′ (t )A†
ηη′ (t ′)〉

= −R[11]
μ′γ ηη′ (τ )R[11]

ρρ ′ν ′δ (τ ) − R[11]
μ′γ ν ′δ (τ )R[11]

ρρ ′ηη′ (τ ). (56)

The corresponding contribution to Kr[11]AA reads

Kr[11]AA
μμ′νν ′ (τ ) ≈

{[
i
∑
ρρ ′γ

∑
ηη′δ

[
H31

ρρ ′μγ H31∗
ηη′νδ

(
R[22]

ρρ ′ηη′ (τ )R[11]
μ′γ ν ′δ (τ ) + R[21]

ρρ ′ν ′δ (τ )R[12]
μ′γ ηη′ (τ )

)

+ H31
ρρ ′μγ H31

ηη′δν
(
R[21]

ρρ ′ηη′ (τ )R[11]
μ′γ ν ′δ (τ ) + R[21]

ρρ ′ν ′δ (τ )R[11]
μ′γ ηη′ (τ )

)
+ H31∗

ρρ ′γμH31∗
ηη′νδ

(
R[12]

ρρ ′ηη′ (τ )R[11]
μ′γ ν ′δ (τ ) + R[11]

ρρ ′ν ′δ (τ )R[12]
μ′γ ηη′ (τ )

)
+ H31∗

ρρ ′γμH31
ηη′δν × (

R[11]
ρρ ′ηη′ (τ )R[11]

μ′γ ν ′δ (τ ) + R[11]
ρρ ′ν ′δ (τ )R[11]

μ′γ ηη′ (τ )
)]] − [μ ↔ μ′]

}
− {ν ↔ ν ′}. (57)

At this point it may be instructive to use the explicit form of the components of the superfluid response R[i j], in particular
the fact that the residues of each component factorize with respect to the first and second pairs of the quasiparticle indices
(25). Therefore, it is convenient to perform the Fourier transformation of the dynamical kernel to the frequency domain. For the
generic product of two components like those figuring in Eq. (57), we have

[
R[i j]

μμ′νν ′R
[kl]
ηη′ρρ ′

]
(ω) =

∫ ∞

−∞
dτeiωτ R[i j]

μμ′νν ′ (τ )R[kl]
ηη′ρρ ′ (τ ) = − i

∑
nm

∑
σ=±

σ
Zn(iσ )

μμ′ Zn( jσ )∗
νν ′ Zm(kσ )

ηη′ Zm(lσ )∗
ρρ ′

ω − σ (ωnm − iδ)
, (58)

where

Zn(1+)
μμ′ = X n

μμ′, Zn(2+)
μμ′ = Yn

μμ′,

Zn(1−)
μμ′ = Yn∗

μμ′, Zn(2−)
μμ′ = X n∗

μμ′, (59)

the upper indices i, k, l, m = {1, 2}, and ωnm = ωn + ωm.
Furthermore, analyzing the structure of the contributions

to Kr[11]AA, one can separate them into two groups. They
are represented by the first and the second terms in the
round brackets of Eq. (57) and can be associated with the
graphs Figs. 1(a) and 1(b), respectively. As we will see in
the following, all the remaining H31-associated contributions
to Kr[11] will also belong to these two classes. The graphs
of the type in Fig. 1(a) are of special interest as they have
the topological structure analogous to that appearing in the
nonsuperfluid theory of the particle-vibration coupling (see
for instance, Ref. [18]). The group in Fig. 1(b) is associated

R

R

[ij ]

[k l ]

(b)

R

R

[ij ]

[k l ]

(a)

H31 H31
H31

H31

FIG. 1. Two types of the leading (H31-associated) irreducible
contributions to the dynamical kernel Kr after factorization into the
products of two two-quasiparticle correlation functions.

with a rearrangement of correlations between the two two-
quasiparticle pairs of the four-quasiparticle propagator and
represents a further extension of the qPVC approach. The
analogous cluster decomposition and a similar grouping can
be obtained for the terms associated with the permutations of
the quasiparticle operators αμ and α†

μ belonging to different
two-quasiparticle pairs as well as for the terms of the “CC”
and “AC” types, which are given in Appendix C, processed
along with the “AA” terms.

Summing up all the terms, the total contribution of the type
in Fig. 1(a) to the dynamical kernel in the energy domain can
be recast as follows:

Kr[11]cc
μμ′νν ′ (ω) =

∑
γ δnm

[
�(11)n

μγ Xm
μ′γXm∗

ν ′δ �
(11)n∗
νδ

ω − ωnm + iδ

−�(11)n∗
γμ Ym∗

μ′γYm
ν ′δ�

(11)n
δν

ω + ωnm − iδ

]
− AS, (60)

where the “combined” vertices �(11)n are introduced as

�(11)n
μγ = 1

2

(
θn
μγ + ξ n

μγ + ξ̄ n
μγ

)
= [U †gnU + U †γ n(+)V − V †gnT V − V †γ n(−)T U ]μγ ,

(61)

with the “partial” vertices θn, ξ n, and ξ̄ n defined in Eqs. (C2)
and (C4). The additional index “cc” in Eq. (60) is used
to mark the approach with two correlated two-quasiparticle
propagators in the dynamical kernel. In Eqs. (60) and (61) we
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employed (i) the explicit definition of H31 [Eq. (A5)]; (ii) the
notions of the normal and anomalous transition densities

ρn
12 = 〈0|ψ†

2 ψ1|n〉,
κ

n(+)
12 = 〈0|ψ2ψ1|n〉,

κ
n(−)∗
21 = 〈0|ψ†

2 ψ
†
1 |n〉, (62)

in connection to X n and Yn amplitudes, which follows from
the Bogolyubov transformation (4),

ρn
12 = (UX nV T + V ∗YnT U †)12,

κ
n(+)
12 = (UX nU T + V ∗YnT V †)12,

κ
n(−)
12 = (V ∗X n†V † + UYn∗U T )12, (63)

in the approximation of vanishing δR11 components (see the
definition of δR in the next section); (iii) the definition of the
normal and pairing phonon vertices, respectively [18,54],

gn
13 =

∑
24

v̄1234ρ
n
42,

γ
n(+)
12 = 1

2

∑
34

v̄1234κ
n(+)
34 , γ

n(−)T
12 = 1

2

∑
34

v̄∗
1234κ

n(−)∗
34 ;

(64)

and (iv) the obvious properties of the antisymmetrized bare
interaction: v̄1234 = −v̄2134 = −v̄1243 = v̄∗

3412.
As one can see from Eq. (61), the obtained combined

vertex has the familiar structure of the (11) component of a
single-particle operator in the quasiparticle space [5]. This
fact is reflected by the upper index “(11)”. This vertex was
obtained in our previous work [54] devoted to the EOM
for a single-quasiparticle propagator and, in particular, to
its dynamical kernel. The vertex �(11)n enters the forward-
going component of the dynamical qPVC self-energy, while
its counterpart �(02)n was found to be responsible for the
backward-going component, i.e., the ground state correlations
induced by the qPVC. As expected, the latter vertex does not
appear in the kernel of Eq. (60) because it does not include the
qPVC-induced ground state correlations GSC-qPVC. These
correlations may, in some cases, play a non-negligible role;
however, taking them into account is a difficult task, which
was up until now implemented only rarely and only to non-
superfluid phases [47,71–73], although a superfluid version
of GSC-qPVC was formulated in Ref. [55] for the BCS-type
superfluidity. The full HFB-type superfluid GSC-qPVC can
be derived by processing explicitly the corresponding terms
dropped in this work and will be discussed elsewhere.

The graphs of the type in Fig. 1(b) can be recast in a similar
compact form,

K̃r[11]cc
μμ′νν ′ (ω) =

∑
γ δnm

[
�(11)n

μγ Xm
μ′γX n∗

ν ′δ�
(11)m∗
νδ

ω − ωnm + iδ

−�(11)n∗
γμ Ym∗

μ′γYn
ν ′δ�

(11)m
δν

ω + ωnm − iδ

]
− AS, (65)

and, thereby, lead to a further extension of the dynamical ker-
nel. The diagrammatic representation of Fig. 1 indicates that

the formation of the superfluid phonons is mainly associated
with the type of contributions in Fig. 1(a), while the type of
contributions in Fig. 1(b) may be less important in the strong-
coupling regime. This can be clarified by concrete calculations
for realistic strongly correlated systems and for exactly solv-
able Hamiltonians. In the following we will concentrate on the
type of contributions in Fig. 1(a), while the ones of the type in
Fig. 1(b) can be included in a similar manner.

Now we show how the superfluid generalization of the
conventional NFT kernel can be obtained from the doubly
correlated kernel Kr[11]cc. As it was discussed in Ref. [18]
for the normal phase, all the terms of such a kernel contain
only one two-fermion correlation function. Thus, to obtain
its superfluid analog, we can relax correlations in one of
our two two-quasiparticle propagators. Technically, it means
the following substitution of the correlated two-quasiparticle
propagator by the uncorrelated one to be made in Eq. (60):
R[11]

μ′γ ν ′δ (ω) → R0[11]
μ′γ ν ′δ (ω), where

R[11]
μ′γ ν ′δ (ω) =

∑
m

(Xm
μ′γXm∗

ν ′δ

ω − ωm
− Ym∗

μ′γYm
ν ′δ

ω + ωm

)
, (66)

R0[11]
μ′γ ν ′δ (ω) = δμ′ν ′δγ δ − δμ′δδγ ν ′

ω − Eμ′ − Eγ

, (67)

and where we dropped the infinitesimal imaginary parts of the
energy variable because of their irrelevance. This procedure
can be performed directly with the kernel of Eq. (60) as
(i) Xm

μ′γXm∗
ν ′δ → δμ′ν ′δγ δ − δμ′δδγ ν ′ , (ii) ωm → Eμ′ + Eγ , and

(iii) Ym∗
μ′γYm

ν ′δ → 0. Here we note that the formally infinite
sum over m reduces to one term as the phonon frequency
ωn is replaced by the summed energies of two quasiparticles
Eμ′ + Eγ , and the second negative-frequency term vanishes,
i.e., we drop also the ground state correlations of the two-
phonon coupling.

For the kernel (60) we, thus, obtain its qPVC-NFT approx-
imation:

Kr[11]c
μμ′νν ′ (ω) =

{[
δμ′ν ′

∑
γ n

�(11)n
μγ �(11)n∗

νγ

ω − ωn − Eμ′ − Eγ

−
∑

n

�
(11)n
μν ′ �

(11)n∗
νμ′

ω − ωn − Eμ′ − Eν ′

]
− [μ ↔ μ′]

}

−{ν ↔ ν ′}, (68)

where we indicated by the index “c” that only one two-
quasiparticle correlation function is retained in the dynamical
kernel. To bring this kernel to the conventional NFT form, one
can recast Eq. (68) by performing the explicit antisymmetriza-
tions and rearranging the resulting terms as follows:

Kr[11]c
μμ′νν ′ (ω) =

[
δμ′ν ′

∑
γ n

�(11)n
μγ �(11)n∗

νγ

ω − ωn − Eμ′γ

+δμν

∑
γ n

�
(11)n
μ′γ �

(11)n∗
ν ′γ

ω − ωn − Eμγ

+
∑

n

�(11)n
μν �

(11)n∗
ν ′μ′

ω − ωn − Eμ′ν

+
∑

n

�
(11)n
μ′ν ′ �(11)n∗

νμ

ω − ωn − Eμν ′

]
− [ν ↔ ν ′]. (69)
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FIG. 2. Top: The leading approximation to the superfluid (qPVC) dynamical kernel. Bottom: The superfluid qPVC self-energy, where W
stands for the Bogolyubov transformation. Open and solid (grey) circles in the self-energy matrix denote the normal and phonon vertices,
while their propagators are represented by the wavy and double lines, respectively. Single lines with arrows stand for fermionic particles (right
arrows) and holes (left arrows), and single lines without arrows correspond to the quasiparticle propagators. Double wavy lines are reserved
for the propagators of the superfluid phonons of the “unified” character in the quasiparticle basis, while the associated solid (red) circles stand
for the respective combined phonon vertices. The rectangular block is used to represent the two-quasiparticle correlation function.

As the interaction kernel is contracted with the antisymmetric
quantities, such as X n

νν ′ ,Yn
νν ′ , the antisymmetrization [ν ↔ ν ′]

is equivalent to the doubling of the corresponding terms. In
practice, this double counting is taken care of by the numerical
factor in Eq. (43), and further the restricted summation is
implied over ν < ν ′ as, for instance, in the QRPA equations.

The diagrammatic representation of the qPVC kernels of
Eqs. (60) and (69) is given in the top part of Fig. 2, where
the latter version differs from the former one by the absence
of the two-quasiparticle correlations (rectangular blocks) be-
tween the emission and absorption of a phonon. The terms
shown explicitly correspond to those of Eq. (69) in the same
order. The first two contributions contain the two possible
arrangements of the self-energy, while the third and the fourth
ones are associated with the phonon exchange. The bottom
part of Fig. 2 illustrates the component structure of the super-
fluid phonons, which form the quasiparticle self-energy in the
qPVC approximation [54].

The other components Kr[12], Kr[21], and Kr[22] of the
dynamical kernel can be evaluated in a similar manner.
From Eqs. (77) and (78) below one can see that the off-
diagonal matrix elements of the dynamical kernel couple to
the backward-going components of the density variations. It
means that they represent the qPVC-associated ground state
correlations and can be dropped in the leading approximation.
In this case, the only remaining component is Kr[22]. From the
definition of the dynamical T matrix (34), it is related to Kr[11]

as follows:

Kr[22]
μμ′νν ′ (τ ) = Kr[11]

νν ′μμ′ (−τ ). (70)

In the discussion above, we mentioned a number of correla-
tions which were neglected in the completed versions Kr[11]cc

and Kr[11]c of the dynamical kernel. The major missing cor-
relations are associated with the 〈0|α†

μαμ′ |n〉 amplitudes, the
terms of the residual interaction other than H31, and the
off-diagonal Kr[12] and Kr[21] contributions. They can be,
however, included consistently in the presented framework
using a similar technique.

IV. VARIATIONAL FORMULATION

There are various ways of solving the EOM (43) for the
response function. In most of the cases, the desired quantities
are the strength functions S(ω) of Eq. (11), associated with
the given external fields F and F † defined by Eq. (13). Thus,
instead of solving the EOM (43) for the large matrix of the
response function R̂(ω), it can be more convenient to first
perform a single contraction of this function with the external
field operator, i.e., to introduce the one-body quantity

⎛
⎝δR20

μμ′ (ω)

δR02
μμ′ (ω)

⎞
⎠ =

∑
ν�ν ′

⎛
⎝R[11]

μμ′νν ′ (ω) R[12]
μμ′νν ′ (ω)

R[21]
μμ′νν ′ (ω) R[22]

μμ′νν ′ (ω)

⎞
⎠

⎛
⎝F 20

νν ′

F 02
νν ′

⎞
⎠.

(71)

Applying this operation to Eq. (43) yields

(
δR20

μμ′ (ω)

δR02
μμ′ (ω)

)
=

(
δR20(0)

μμ′ (ω)

δR02(0)
μμ′ (ω)

)
+

∑
νν ′γ γ ′

⎛
⎝N [11]

μμ′νν′
ω−Eμμ′ 0

0
N [22]

μμ′νν′
ω+Eμμ′

⎞
⎠(

K[11]
νν ′γ γ ′ (ω) K[12]

νν ′γ γ ′ (ω)

K[21]
νν ′γ γ ′ (ω) K[22]

νν ′γ γ ′ (ω)

)(
δR20

γ γ ′ (ω)

δR02
γ γ ′ (ω)

)
, ν � ν ′, γ � γ ′, (72)

where

(
δR20(0)

μμ′ (ω)
δR02(0)

μμ′ (ω)

)
=

∑
ν�ν ′

⎛
⎜⎝

N [11]
μμ′νν′

ω−Eμμ′ 0

0
N [22]

μμ′νν′
ω+Eμμ′

⎞
⎟⎠

(
F 20

νν ′

F 02
νν ′

)
. (73)
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The quantities δR20 and δR02 are the components of the density matrix variation in the quasiparticle space. If the ground state
is modeled by the HFB approximation, Eq. (72) can be recast as follows:

δR20
μμ′ (ω) = F 20

μμ′ + ∑
ν�ν ′

(
K[11]

μμ′νν ′ (ω)δR20
νν ′ (ω) + K[12]

μμ′νν ′ (ω)δR02
νν ′ (ω)

)
ω − Eμμ′

,

δR02
μμ′ (ω) = F 02

μμ′ + ∑
ν�ν ′

(
K[21]

μμ′νν ′ (ω)δR20
νν ′ (ω) + K[22]

μμ′νν ′ (ω)δR02
νν ′ (ω)

)
−ω − Eμμ′

. (74)

The latter set of equations, as well as the more general Eq. (72), can be interpreted as a generalization of the finite-amplitude
QRPA (FAM-QRPA) [58–60,63]. Indeed, the static part K̂0 of the full interaction kernel K̂(ω) = K̂0 + K̂r (ω) can be transformed
using its relation to the A and B QRPA matrices (45) [59,60]:

δH20
μμ′ (ω) =

∑
ν�ν ′

(
Aμμ′,νν ′δR20

νν ′ (ω) + Bμμ′,νν ′δR02
νν ′ (ω)

) − (Eμ + Eμ′ )δR20
μμ′ (ω)

=
∑
ν�ν ′

(
K0[11]

μμ′νν ′ (ω)δR20
νν ′ (ω) + K0[12]

μμ′νν ′ (ω)δR02
νν ′ (ω)

)

δH02
μμ′ (ω) =

∑
ν�ν ′

(
A∗

μμ′,νν ′δR02
νν ′ (ω) + B∗

μμ′,νν ′δR20
νν ′ (ω)

) − (Eμ + Eμ′ )δR02
μμ′ (ω)

=
∑
ν�ν ′

(
K0[21]

μμ′νν ′ (ω)δR20
νν ′ (ω) + K0[22]

μμ′νν ′ (ω)δR02
νν ′ (ω)

)
. (75)

Thus, Eq. (74) can be further transformed as

δR20
μμ′ (ω) = F 20

μμ′ + δH20
μμ′ (ω) + δK20

μμ′ (ω)

ω − Eμμ′
,

δR02
μμ′ (ω) = F 02

μμ′ + δH02
μμ′ (ω) + δK02

μμ′ (ω)

−ω − Eμμ′
, (76)

where

δK20
μμ′ (ω) =

∑
ν�ν ′

(
Kr[11]

μμ′νν ′ (ω)δR20
νν ′ (ω)

+Kr[12]
μμ′νν ′ (ω)δR02

νν ′ (ω)
)
, (77)

δK02
μμ′ (ω) =

∑
ν�ν ′

(
Kr[21]

μμ′νν ′ (ω)δR20
νν ′ (ω)

+Kr[22]
μμ′νν ′ (ω)δR02

νν ′ (ω)
)
. (78)

As it follows from Eqs. (61), (63), and (64), the determi-
nation of the qPVC vertices �n defining the dynamical kernel
Kr in the leading approximation requires information about
the X n and Yn amplitudes, which can be connected to the
superfluid density variations δR20 and δR02 [54,60]. Thereby,
the EOM, for instance, in the form of Eq. (76) becomes mani-
festly nonlinear with respect to these amplitudes, as compared
to the QRPA, while the nonlinearities are generated solely by
the dynamical kernel Kr . Thus, the finite-amplitude form of
the superfluid response EOM creates an attractive opportu-
nity for computing the superfluid density variations and the
associated excitation spectra in a single iterative procedure.
Such a procedure is, in principle, a powerful extension of the
FAM-QRPA beyond the QRPA confined by only the static
kernel. The major technical difficulty is the mixing of all the
channels (spin, isospin, and parities) by the qPVC, while in
the QRPA case the channels can be fully decoupled.

In the implementations with effective interactions, quite a
good description of the qPVC vertices of the most important
phonons can be achieved on the QRPA level, i.e., without the
dynamical kernel. In this case, a three-step procedure can be
performed:

(1) The QRPA calculations are run to obtain the X n and
Yn amplitudes in various channels.

(2) The qPVC vertices �n are extracted via Eqs. (61)–(64).
(3) The latter vertices enter the dynamical kernel Kr in a

desired approximation and Eq. (76) is solved to de-
termine the new δR20 and δR02 amplitudes with the
subsequent calculation of the strength distribution in a
fixed channel.

This type of calculation scheme was realized in multi-
ple implementations for spherical nuclei, for example, in
Refs. [18,31,32,56], although not yet via the FAM procedure.
Since the effective interactions employed in these implemen-
tations contain implicitly the qPVC in a static approximation,
the interaction kernel should be corrected to remove the dou-
ble counting of the qPVC effects. A procedure of subtracting
its own value at ω = 0 from the dynamical kernel was for-
mulated in Ref. [33] and since then is systematically used
in beyond-QRPA calculations with effective interactions. Fur-
thermore, in such frameworks, qPVC vertices can be extracted
from the FAM-QRPA by taking the variations of the quasipar-
ticle Hamiltonian at the poles of δR(ω), as it was shown in
Ref. [54] and employed in Ref. [67]:

�
(i j)n
μμ′ = 1

〈n|F †|0〉
∮

γn

δHi j
μμ′ (ω)

dω

2π i
, (79)

where γn is a contour enclosing the pole ω = ωn − i	.
In the implementations with a bare NN interaction, more

steps may be required. Since in this case the QRPA phonons
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can be quite unrealistic, they are not likely to produce an
adequate approximation to the dynamical kernel. One of the
options could be employing an effective interaction on the first
two steps, to enter the iteration cycle, and then run step 3 in a
hybrid form with the bare interaction and effective phonons.
After that the obtained amplitudes can be recycled until con-
vergence. This and other possibilities will be explored in the
future work.

V. SUMMARY AND OUTLOOK

In this article we presented a response theory for super-
fluid fermionic systems, which extends beyond the previously
existing formulations. Starting from the general many-body
Hamiltonian, a consistent derivation of the equation of mo-
tion for the superfluid response function was conducted in
the HFB basis. The resulting EOM is of the Bethe-Salpeter-
Dyson type, while its dimension is doubled as compared to
the analogous EOM for the response of nonsuperfluid sys-
tems. The interaction kernel splits naturally into the static
and dynamical parts, if the underlying bare interaction is of
an instantaneous character. Retaining the static kernel alone
leads to the quasiparticle random phase approximation (under
the HFB constraint on the ground state), while the dynamical
kernel heads beyond the QRPA.

The major emphasis of this work was put on the dynamical
kernel, which generates, in principle, a hierarchy of coupled
EOMs for increasing-rank fermionic correlation functions.
A truncation scheme, which includes completely the su-
perfluid two-fermion correlations, was worked out within a
particle number nonconserving framework. Under this trun-
cation, the superfluid response theory is brought to a closed
form. Furthermore, by identifying the correlations, which
are most important in the strongly coupled regime, a lead-
ing approximation to the dynamical kernel is obtained in an
implementation-ready form. After introducing the notion of
superfluid phonons unifying the normal and pairing mutual
counterparts, a mapping to the concept of the quasiparticle-
phonon coupling (also referred to as quasiparticle-vibration
coupling, although not all the phonons are necessarily of a
vibrational character) is achieved. The emergent character of
the qPVC is made evident via its explicit link to the bare
interaction between the fermions. Thus, such features as (i) the

link to the bare interaction, (ii) keeping the full HFB character
of the pairing correlations in the final expressions, and (iii)
its systematically improvable character advance the presented
approach beyond the existing qPVC models for the nuclear
response [37,55].

The EOM for the response function was further trans-
formed to the equation for the superfluid density matrix
variation in a given external field. This allowed us to formulate
an extension of the finite-amplitude method (FAM), which
was up until now confined by the QRPA. As the QRPA is
known to provide a very poor picture of the response and
associated quantities, in particular, in the nuclear systems, our
FAM-qPVC approach, therefore, opens the way to a higher-
quality description which is, at the same time, especially
efficient because of employing the finite-amplitude technique.

In particular, the response of open-shell deformed nuclei to
various external fields can be straightforwardly implemented,
thus broadening the class of nuclear systems described by the
qPVC models, which up until now is limited by spherical
nuclei. Since the qPVC improves considerably the descrip-
tion of both high-energy and low-energy spectra, it plays an
important role in generating accurate rates of various nuclear
processes, such as the γ decay, radiative neutron capture,
electron capture, β decay, and β-delayed neutron emission.
These rates are known to be a key ingredient for modeling
astrophysical cataclysmic events of supernova explosions and
kilonovas, and they are in high demand for both spherical
and deformed nuclei. Moreover, accurate nuclear correlation
functions in various geometries are necessary for the ongoing
searches for the new physics beyond the standard model in the
nuclear domain, such as the neutrinoless double-β decay and
the electric dipole moment. The numerical implementations
of the developed approach and their accommodation for these
applications will be addressed by future effort.
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APPENDIX A: HAMILTONIAN MATRIX ELEMENTS IN THE QUASIPARTICLE SPACE

The matrix elements of the fermionic Hamiltonian (8) read, in agreement with Ref. [5],

H0 =
∑

12

h12ρ21 + 1

2

∑
1234

ρ31v̄1234ρ42 + 1

4

∑
1234

κ
∗
12v̄1234κ34, (A1)

H11
μν =

∑
12

(
U †

μ1h12U2ν − V †
μ1hT

12V2ν + U †
μ1	12V2ν − V †

μ1	
∗
12U2ν

)
, (A2)

H20
μν =

∑
12

(
U †

μ1h12V
∗

2ν − V †
μ1hT

12U
∗
2ν + U †

μ1	12U
∗
2ν − V †

μ1	
∗
12V

∗
2ν

)
, (A3)

H40
μμ′νν ′ = 1

4

∑
1234

v̄1234U
∗
1μU ∗

2μ′V ∗
4νV ∗

3ν ′ , (A4)
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H31
μμ′νν ′ = 1

2

∑
1234

v̄1234(U ∗
1μV ∗

4μ′V ∗
3νV2ν ′ + V ∗

3μU ∗
2μ′U ∗

1νU4ν ′ ), (A5)

H22
μμ′νν ′ = 1

2

∑
1234

v̄1234[(U ∗
1μV ∗

4μ′V2νU3ν ′ − (μ → μ′)) − (ν → ν ′) + U ∗
1μU ∗

2μ′U3νU4ν ′ + V ∗
3μV ∗

4μ′V1νV2ν ′]. (A6)

APPENDIX B: GENERIC COMMUTATORS

Complementary to the quasiparticle pair operator Aμμ′ [Eq. (24)], it is convenient to introduce the operator

Cμν = α†
μαν = C†

νμ. (B1)

The first basic commutator is the one between the different quasiparticle pair operators:

[Aμμ′, A†
νν ′ ] = −{[(δμνCν ′μ′ ) − (μ ↔ μ′)] − [(ν ↔ ν ′)]}

+ δμμ′νν ′ = Bμμ′νν ′ = B†
νν ′μμ′ = −Bμ′μνν ′ = −Bμμ′ν ′ν . (B2)

Furthermore, the commutators entering the interaction kernel read

[α†
να

†
ν ′α

†
γ α

†
γ ′ , αμ′αμ] ≡ [A†

νν ′A
†
γ γ ′ , Aμμ′] = −Bμμ′νν ′A†

γ γ ′ − A†
νν ′Bμμ′γ γ ′ , (B3)

that is associated with the nonvanishing contribution of H40. The term containing H31 can be evaluated with

[α†
γ αγ ′ , Aμμ′ ] = [Cγ γ ′ , Aμμ′ ]

= δγμαγ ′αμ′ − δγμ′αγ ′αμ ≡ δγμAμ′γ ′ − δγμ′Aμγ ′ = Dγ γ ′μμ′ (B4)

and, further,

[A†
νν ′α

†
γ αγ ′ , Aμμ′ ] ≡ [A†

νν ′Cγ γ ′ , Aμμ′] = A†
νν ′Dγ γ ′μμ′ − Bμμ′νν ′Cγ γ ′ , (B5)

[α†
γ ′αγ Aνν ′ , Aμμ′ ] ≡ [Cγ ′γ Aνν ′ , Aμμ′] = Dγ ′γμμ′Aνν ′ , (B6)

[A†
νν ′α

†
γ αγ ′ , A†

μμ′ ] ≡ [A†
νν ′Cγ γ ′ , A†

μμ′] = −A†
νν ′D

†
γ ′γμμ′, (B7)

[α†
γ ′αγ Aνν ′ , A†

μμ′ ] ≡ [Cγ ′γ Aνν ′ , A†
μμ′] = Cγ ′γ B†

μμ′νν ′ − D†
γ γ ′μμ′Aνν ′ . (B8)

Finally, the commutators associated with H22 read

[A†
γ γ ′Aνν ′ , Aμμ′ ] = −Bμμ′γ γ ′Aνν ′ ,

[A†
γ γ ′Aνν ′ , A†

μμ′ ] = A†
γ γ ′Bνν ′μμ′ . (B9)

Thus, the first commutator of Eqs. (33) is given by

[V, Aμμ′] = −
∑

νν ′γ γ ′
H40

νν ′γ γ ′ (Bμμ′νν ′A†
γ γ ′ + A†

νν ′Bμμ′γ γ ′ ) +
∑

νν ′γ γ ′

[
H31

νν ′γ γ ′ (A†
νν ′Dγ γ ′μμ′ − Bμμ′νν ′Cγ γ ′ ) + H31∗

νν ′γ γ ′Dγ ′γμμ′Aνν ′
]

− 1

4

∑
νν ′γ γ ′

(
H22

νν ′γ γ ′Bμμ′νν ′Aγ γ ′ + H22∗
νν ′γ γ ′Bμμ′γ γ ′Aνν ′

)
, (B10)

while the second one can be deduced from it by Hermitian conjugation:

[V, A†
μμ′] = −[V, Aμμ′ ]†, (B11)

since V = V †, i.e., is Hermitian.

APPENDIX C: CONTRIBUTIONS TO THE DYNAMICAL KERNEL

Applying the Fourier transformation to the terms of the type in Fig. 1(a) of Eq. (57) leads to

Kr[11]AAa
μμ′νν ′ (ω) = 1

4

∑
γ δnm

[
θn
μγXm

μ′γXm∗
ν ′δ θn∗

νδ

ω − ωnm + iδ
− θn∗

γμYm∗
μ′γYm

ν ′δθ
n
δν

ω + ωnm − iδ

]
− AS, (C1)

where the antisymmetrization AS is implied with respect to μ ↔ μ′ and ν ↔ ν ′ and the vertex functions are introduced
according to

θn
μγ = 2

∑
ρρ ′

(
H31∗

ρρ ′γμX n
ρρ ′ + H31

ρρ ′μγYn
ρρ ′

)
. (C2)
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Another type of contributions is associated with the permutations of the quasiparticle operators αμ and α†
μ belonging to

different two-quasiparticle pairs. Proceeding similarly with the antisymmetrizations η ↔ δ, η ↔ ν ′, ρ ↔ γ , and ρ ↔ μ′ in
Eqs. (54)–(56) between the same kinds of the two-quasiparticle operators at the same times leads to the following contribution:

Kr[11]AAa;x
μμ′νν ′ (ω) = 1

4

∑
γ δnm

[ Xm
μ′γXm∗

ν ′δ

ω − ωnm + iδ

(
θn
μγ ξ̄ n∗

νδ + ξ̄ n
μγ θn∗

νδ + ξ̄ n
μγ ξ̄ n∗

νδ

) − Ym∗
μ′γYm

ν ′δ

ω + ωnm − iδ

(
θn∗
γμξ n

δν + ξ n∗
γμθn

δν + ξ n∗
γμξ n

δν

)] − AS,

(C3)

where ξ n and ξ̄ n stand for the combinations

ξ n
μγ = 2

∑
ρρ ′

(
H31

μρρ ′γ − H31
ρμρ ′γ

)
Yn

ρρ ′ ,

ξ̄ n
δν = 2

∑
ρρ ′

(
H31∗

νρρ ′δ − H31∗
ρνρ ′δ

)
X n

ρρ ′ . (C4)

Furthermore, the contributions of the type in Fig. 1(a) from the C operators without breaking two-quasiparticle pairs read

Kr[11]CCa
μμ′νν ′ (ω) = 1

4

∑
γ δnm

[
ξ n
μγXm

μ′γXm∗
ν ′δ ξ n∗

νδ

ω − ωnm + iδ
− ξ̄ n∗

γμYm∗
μ′γYm

ν ′δ ξ̄
n
δν

ω + ωnm − iδ

]
− AS, (C5)

while the analogous contributions from the products of the C-operator and A-operator terms are the following:

Kr[11]ACa
μμ′νν ′ (ω) = 1

4

∑
γ δnm

[ Xm
μ′γXm∗

ν ′δ

ω − ωnm + iδ

(
θn
μγ ξ n∗

νδ + ξ n
μγ θn∗

νδ

) − Ym∗
μ′γYm

ν ′δ

ω + ωnm − iδ

(
θn∗
γμξ̄ n

δν + ξ̄ n∗
γμθn

δν

)] − AS. (C6)

Finally, the cross-pair counterparts of Kr[11]ACa
μμ′νν ′ (ω) read

Kr[11]ACa;x
μμ′νν ′ (ω) = 1

4

∑
γ δnm

[ Xm
μ′γXm∗

ν ′δ

ω − ωnm + iδ

(
ξ n
μγ ξ̄ n∗

νδ + ξ̄ n
μγ ξ n∗

νδ

) − Ym∗
μ′γYm

ν ′δ

ω + ωnm − iδ

(
ξ̄ n∗
γμξ n

δν + ξ n∗
γμξ̄ n

δν

)] − AS, (C7)

while the pure C-operator terms do not admit further cross-pair antisymmetrizations.
Here we notice that all the terms listed in Eqs. (C1), (C3), (C5), (C6), and (C7) have the same poles and partly the residues,

differing only by the multipliers associated with the “partial” vertex functions θn, ξ n, and ξ̄ n. Summing them up altogether leads
to Eq. (60).
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[67] Y. Zhang, A. Bjelčić, T. Nikšić, E. Litvinova, P. Ring, and P.

Schuck, Phys. Rev. C 105, 044326 (2022).
[68] In this and the following section we indicate the summations

over the quasiparticle states explicitly.
[69] P. Schuck and M. Tohyama, Phys. Rev. B 93, 165117 (2016).
[70] C. Yannouleas, S. Jang, and P. Chomaz, Phys. Lett. B 163, 55

(1985).
[71] S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1

(2004).
[72] S. Drozdz, S. Nishizaki, J. Speth, and J. Wambach, Phys. Rep.

197, 1 (1990).
[73] E. Litvinova and C. Robin, Phys. Rev. C 103, 024326 (2021).

Correction: The omission of a factor in Eq. (A6) has been
fixed.

064316-15

https://doi.org/10.1103/PhysRevLett.83.4029
https://doi.org/10.1088/0954-3899/39/4/043101
https://doi.org/10.1103/PhysRevC.73.044328
https://doi.org/10.1103/PhysRevC.78.014312
https://doi.org/10.1103/PhysRevLett.105.022502
https://doi.org/10.1103/PhysRevC.88.054301
https://doi.org/10.1103/PhysRevC.92.044317
https://doi.org/10.1103/PhysRevC.94.034306
https://doi.org/10.1103/PhysRevLett.114.142501
https://doi.org/10.1103/PhysRevC.94.064328
https://doi.org/10.1016/j.physletb.2018.02.061
https://doi.org/10.1103/PhysRevLett.105.212503
https://doi.org/10.1103/PhysRevC.89.054322
https://doi.org/10.1103/PhysRevC.86.014319
https://doi.org/10.1103/PhysRevC.89.041601
https://doi.org/10.1103/PhysRevC.90.024304
https://doi.org/10.1016/j.physletb.2016.01.052
https://doi.org/10.1103/PhysRevC.98.051301
https://doi.org/10.1016/0370-2693(91)90515-R
https://doi.org/10.1103/PhysRevLett.123.202501
https://doi.org/10.1103/PhysRevC.97.044308
https://doi.org/10.1103/PhysRevC.91.034332
https://doi.org/10.1103/PhysRevLett.97.172502
https://doi.org/10.1103/PhysRevC.78.054308
https://doi.org/10.1103/PhysRevC.102.034310
https://doi.org/10.1016/j.physrep.2021.06.001
https://doi.org/10.1103/PhysRevC.104.044303
https://doi.org/10.1103/PhysRevC.75.024306
https://doi.org/10.1103/PhysRevC.75.054318
https://doi.org/10.1140/epja/i2016-16205-0
https://doi.org/10.1103/PhysRevC.84.014314
https://doi.org/10.1103/PhysRevC.87.014331
https://doi.org/10.1103/PhysRevC.87.064309
https://doi.org/10.1103/PhysRevC.88.044327
https://doi.org/10.1103/PhysRevC.92.051302
https://doi.org/10.1016/j.cpc.2020.107184
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.105.044326
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1016/0370-2693(85)90191-1
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1016/0370-1573(90)90084-F
https://doi.org/10.1103/PhysRevC.103.024326

