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Isovector and isoscalar spin-multipole giant resonances in the parent and daughter nuclei of
double-β-decay triplets
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The strength distributions, including giant resonances, of isovector and isoscalar spin-multipole transitions in
the commonly studied double-β-decay triplets are computed in the framework of the quasiparticle random-phase
approximation (QRPA) using the Bonn-A two-body interaction in no-core single-particle valence spaces. The
studied nuclei include the double-β parent and daughter pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo,
100Ru), (116Cd, 116Sn), (128Te, 128Xe), (130Te, 130Xe), and (136Xe, 136Ba). The studied transitions proceed from the
ground states to the Jπ = 0−, 1−, 2− (spin-dipole transitions) and Jπ = 1+, 2+, 3+ (spin-quadrupole transitions)
excited states in these nuclei. Comparison of the present results with potential future data may, indirectly, shed
light on the reliability of QRPA-based nuclear-structure frameworks in description of the wave functions of
nuclear states relevant for the two-neutrino and neutrinoless double β decays in the studied triplets.
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I. INTRODUCTION

Two-neutrino double beta (2νββ) and neutrinoless double
beta (0νββ) decays keep attracting keen attention of both the
nuclear- and particle-physics communities. The 0νββ decay
is of particular interest since, if detected, it has strong implica-
tions to physics beyond the standard model [1–7]. The 2νββ

decay proceed through the 1+ virtual states [1] and the 0νββ

decay proceeds through virtual states of all multipolarities
Jπ [8,9] in the intermediate nuclei of the double-β-decay
triplets consisting of an even-even mother, an odd-odd in-
termediate, and an even-even daughter nucleus. The wave
functions of these virtual states can be probed by calculations
and experiments on β−-type (from the 0+ ground state of the
ββ mother nucleus) and β+-type (from the 0+ ground state
of the ββ daughter nucleus) isovector spin-multipole transi-
tions to the Jπ = 0−, 1−, 2− (L = 1 spin-dipole transitions)
and Jπ = 1+, 2+, 3+ (L = 2 spin-quadrupole transitions) ex-
cited states in the ββ intermediate nuclei. Here, L refers to
the orbital angular momentum of the operator mediating the
multipole transition. The corresponding theoretical studies
have been conducted in [10] as an extension of the studies
conducted in [11–13] for the 1+ isovector spin-monopole res-
onances. Experimentally, these transitions have typically been
probed by the partial-wave L = 0 charge-exchange reactions
(CXRs) by using the β− type of (p, n) or (3He,t) reactions
and β+ type of (n, p), (d,2He), or (t,3He) reactions [6,14–
16]. Recently, the partial-wave L = 1 CXRs to 2− states have
attracted interest by development of improved experimental
methods and facilities, e.g., at the RCNP in Osaka, Japan
[6,17].
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In [10] the β−-type and β+-type isovector spin-dipole
(IVSD) and isovector spin-quadrupole (IVSQ) strength
distributions and giant resonances in the ββ-decay
triplets 76Ge–76As–76Se, 82Se–82Br–82Kr, 96Zr–96Nb–96Mo,
100Mo–100Tc −100 Ru, 116Cd–116In–116Sn, 128Te–128I–100Xe,
130Te–130I–130Xe, and 136Xe–136Cs–136Ba were studied using
the proton-neutron quasiparticle random-phase approximation
(pnQRPA). In the present work we extend these studies to
non-CXR isoscalar and isovector spin-dipole (ISSD and
IVSD) and isoscalar and isovector spin-quadrupole (ISSQ
and IVSQ) strength distributions and giant resonances in
the mother and daughter even-even nuclei of the listed
ββ-decay triplets. The corresponding transitions start from
the 0+ ground states and lead to the Jπ = 0−, 1−, 2−
(L = 1 spin-dipole transitions), and Jπ = 1+, 2+, 3+ (L = 2
spin-quadrupole transitions) states in the same even-even
nuclei. The L = 1 and L = 2 isovector transitions have been
studied long ago by Auerbach and Klein for non-superfluid
nuclei in the random-phase approximation (RPA) framework
in [18]. For the description of spin-multipole transitions
in superfluid nuclei, like in the present case, we have to
use the charge-conserving quasiparticle RPA (QRPA) [19]
instead of the above-mentioned charge-changing pnQRPA
and charge-conserving RPA. Theoretical and experimental
studies of the CXR and non-CXR type of transitions can
probe indirectly the ββ decays by testing the ability
of QRPA-based nuclear-theory frameworks (QRPA and
pnQRPA) to yield reliable wave functions in both channels
of transitions. In particular, in the pnQRPA and QRPA
calculations the quantities to be probed are the single-particle
valence spaces, the single-particle energies, and the
resulting Bardeen-Cooper-Schrieffer (BCS) ground states
as foundations of the correlated pnQRPA and QRPA ground
states [19,20]. The relevant experiments include (p, p′),
(e, e′), (α, α′), (d, d ′), (3He, 3He′), etc., experiments [21].
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II. THEORY

The formalism used in this work is the quasiparticle
random phase approximation (QRPA). The formalism is ex-
plicitly introduced, for example, in [19]. Excitation energies
of the observed nuclei are calculated as quasiparticle excita-
tions of the QRPA ground state. The excitation operator in the
QRPA case is

Q†
ω =

∑
a�b

[
X ω

abA†
ab(JM ) − Y ω

abÃab(JM )
]
, (1)

where ω includes quantum numbers n, Jπ , and M, and X ω
ab and

Y ω
ab are the amplitudes that describe the probability of creating

or annihilating a quasiparticle pair in the QRPA ground state.
A†

ab(JM ) is the quasiparticle-pair creation operator

A†
ab(JM ) = Nab(J )

[
a†

aa†
b

]
JM, (2)

and Ãab(JM ), the corresponding annihilation operator, is of
the form

Ãab(JM ) = (−1)J+MAab(J − M )

= Nab(J )[ãaãb]JM . (3)

Above the Nab(J ) is the normalization factor.
The QRPA equations can be written in a matrix form as(

A B
−B∗ −A∗

)(
X ω

Y ω

)
= Eω

(
X ω

Y ω

)
. (4)

Matrices A and B are written explicitly in [19].
The transition operator for an isovector excitation can be

written as

O0,v
L,JM = iLrL[YLσ ]JMt0, (5)

and the isoscalar transition operator as

O0,s
L,JM = iLrL[YLσ ]JM, (6)

where t0 is the third component of the isospin operator.
With the use of the transition operators (5) and (6) the

reduced single-particle nuclear matrix elements (NMEs) can
be calculated. For these operators the reduced single-particle
NMEs can be written as(

a
∣∣∣∣O0,ρ

L,J

∣∣∣∣b) =(a||iLrL[YLσ ]JM ||b)

=
√

6 ĵaĴ ĵb
(−1)la

√
4π

l̂aL̂l̂b

(
la L lb
0 0 0

)

×
⎧⎨
⎩

la
1
2 ja

lb
1
2 jb

L 1 J

⎫⎬
⎭R(L)

ab (−1)
1
2 (lb−la+L)η

ρ

ab, (7)

where R(L)
ab is a radial integral and ρ equals ‘s’ or ‘v’ such that

ηs
ab = 1 and ηv

ab = 1 if a and b denote neutron orbitals and
ηv

ab = −1 if a and b denote proton orbitals. Now the reduced
transition NMEs can be written as(

nJπ
∣∣∣∣O0

L,J

∣∣∣∣QRPA
) = −

∑
a�b

Nab(J )
(
a
∣∣∣∣O0

L,J

∣∣∣∣b)

× (vaub − uavb)
(
X nJπ

ab − Y nJπ

ab

)
. (8)

TABLE I. Pairing gap scaling parameters g(n)
pair and g(p)

pair for each
nucleus are listed in columns 2 and 3. Also the particle-hole param-
eters for each Jπ excitation are tabulated in columns 4–9.

gph for Jπ

Nucleus g(n)
pair g(p)

pair 0− 1− 2− 1+ 2+ 3+

76Ge 0.940 0.890 1.00 0.5732 0.975 1.000 0.5073 1.00
76Se 0.975 0.910 1.00 0.5571 1.000 1.000 0.5042 1.00
82Se 0.915 0.838 1.00 0.6511 1.000 1.000 0.5158 1.00
82Kr 0.984 0.861 1.00 0.6516 1.000 1.000 0.5132 1.00
96Zr 0.769 0.848 1.00 0.6464 1.000 1.000 0.5000 1.00
96Mo 0.904 0.930 1.00 0.5829 1.000 1.000 0.5375 1.00
100Mo 0.850 0.947 1.00 0.5438 1.000 1.000 0.4919 1.00
100Ru 0.855 0.935 1.00 0.5440 1.000 1.000 0.4793 1.00
116Cd 0.888 0.930 1.00 0.5757 1.000 1.000 0.5406 1.00
116Sn 0.818 0.805 1.00 0.6159 1.000 1.000 0.4800 1.00
128Te 0.860 0.810 1.00 0.6185 1.000 1.313 0.4682 1.00
128Xe 0.863 0.877 1.00 0.5784 1.000 1.000 0.4664 1.00
130Te 0.864 0.775 1.00 0.6122 0.860 1.000 0.4548 1.00
130Xe 0.850 0.858 1.00 0.5888 1.000 1.257 0.4638 1.00
136Xe 0.681 0.760 1.00 0.6510 1.000 1.000 0.4010 1.00
136Ba 0.870 0.830 1.00 0.6001 1.000 1.394 0.4732 1.00

Transition strengths are calculated as the square of the transi-
tion NME

SL
nJπ = ∣∣(nJπ

∣∣∣∣O0
L,J

∣∣∣∣QRPA
)∣∣2

. (9)

III. RESULTS AND DISCUSSION

The lowest quasiparticle energies for protons and neutrons
are fitted to the proton and neutron pairing gaps. Pairing gaps
for protons and neutrons are calculated by using the three-
point formulas [19]


p(A, Z ) = 1
4 (−1)Z+1[Sp(A + 1, Z + 1) − 2Sp(A, Z )

+ Sp(A − 1, Z − 1)],


n(A, Z ) = 1
4 (−1)A−Z+1[Sn(A + 1, Z ) − 2Sn(A, Z )

+ Sn(A − 1, Z )], (10)

where Sp and Sn are the separation energies for protons and
neutrons, respectively.

Also the lowest energies for each multipole are adjusted
to the corresponding experimental ones by using the particle-
hole parameter gph. The only exception are the 1− states where
the lowest one is spurious and has been removed from the
calculations. Here, instead, the second 1− state has been fitted
to the lowest experimental 1− energy. If the energy is not
known experimentally (this is exclusively the case for the 0−
states) or the computed energy is not sensitive to the value
gph (this is the case for most 1+ and 3+ states), the default
value gA = 1.00 is adopted. The resulting values of gph for
each multipole state and each nucleus are also tabulated in
Table I. The pnQRPA calculations are sensitive to the value of
the particle-particle parameter gpp [1,6,20], and its value can
be fixed, e.g., by comparison with the measured half-life of
a two-neutrino ββ transition, as was done in [10]. For QRPA
the gpp parameter plays a negligible role since the results are
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FIG. 1. Isovector and isoscalar multipole strength functions for 76Ge. (a) isovector L = 1, (b) isovector L = 2, (c) isoscalar L = 1, and
(d) isoscalar L = 2.

essentially independent of its value. This is why we adopted
the default value gpp = 1.00.

We calculate the strength (9) for each excitation energy
E and multipolarity Jπ . The corresponding discrete strength
functions are then folded with a Lorentzian in order to make
the strengths easier to compare with the potential future ex-
perimental data. For the Lorentzian we choose

FL(E − E0) = W

π

1

W 2 + (E − E0)2
, (11)

as used also in [10]. In the Lorentzian fit (11) E is the exci-
tation energy, E0 is the energy of the peak, and W is the peak
width which is set to 0.5 MeV following the convention of
[10].

The computed strength functions are plotted as functions
of E for a representative set of cases in Figs. 1–3, and the
average energies and total strengths are given in Tables II
and III. In Fig. 1, the strength functions are plotted for the
76Ge nucleus for different transition types. Panel (a) in that
figure presents the isovector strength for spin-dipole (L = 1)
transitions, panel (b) presents the isovector strength for spin-
quadrupole (L = 2) transitions, and panels (c) and (d) present
the isoscalar strengths for the L = 1 and L = 2 transitions.
In Fig. 2 the isoscalar strength functions for spin-quadrupole
transitions for (a) 82Se, (b) 82Kr, (c) 96Zr, and (d) 96Mo
nuclei are plotted. Finally, in Fig. 3 isovector and isoscalar
strength functions for 136Xe are shown the same way as in
Fig. 1.

In spin-dipole transitions, the isovector strength is located
almost only in one peak, as shown in Figs. 1 and 3. The
dominant peak consists primarily of a 0− state, and all other
Jπ states are almost negligible. This excitation is located at
approximately 20 MeV for all the nuclei.

The isoscalar spin-dipole strengths are more spread than
the isovector ones. In this case, the 0− state is also the most

significant contributor to the strength function but also the
1− state has a notable contribution. The largest strengths are
observed in approximately around 10 MeV. From Figs. 1 and
3 and Tables II and III, it can be seen that the 2− state has the
lowest overall strength compared to the other multipoles, so it
does not contribute to the total dipole strength functions very
much.

Isovector spin-quadrupole strength functions are more
spread in energy E than the spin-dipole ones. The strength
function has its largest peak for a 1+ state at about 30 MeV,
as can be seen in Figs. 1 and 3. There is also a correlation
between the mass number A and the ratio of the highest peak
and other peaks: When A increases the largest peak gets more
dominant. This correlation can also be seen in Figs. 1 and 2.

Lastly, the isoscalar spin-quadrupole strength is divided
between all Jπ states, which is different from the previously
analyzed strength functions. The 2+ and 1+ states have the
largest strength peaks, but the 3+ state has a considerably
large peak for some nuclei at approximately 15 MeV. These
peaks are seen in Fig. 2. The strength is spread up to 30
MeV and is considerable at all energies. The total L = 2
strength is by far larger than the L = 1 strength, as seen in
Tables II and III. For all nuclei the 1+ strength is the largest
and the 2− spin-dipole strength the smallest. On average,
the spin-quadrupole strength clearly increases with increasing
mass number.

The presently obtained results for the isovector strength
functions can also be compared with the corresponding
strength functions for the charge-changing modes, calcu-
lated in Ref. [10]. In [10] the (p, n) β−-type and (n, p)
β+-type isovector strength functions were treated. For both
the spin-dipole and spin-quadrupole transitions the strength
distributions of the charge-changing modes are more widely
spread. As discussed earlier, the isovector excitations in
this work, as also in [10], tend to be concentrated in few
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TABLE II. Average energies (columns 4 and 6) and total strengths (columns 5 and 7) for isovector (superscript v) and isoscalar (superscript
s) spin-dipole and spin-quadrupole excitations for the nuclei with mass numbers A = 76, 82, 96, and 100. The average isovector energies E v

ave

are compared with those of [10] (column 3), corrected for nuclear mass differences between the ββ intermediate nucleus and the ββ mother
nucleus [E (GR)−] or the ββ daughter nucleus [E (GR)+]. The energy E (GR)− is listed for the ββ mother (β− branch) and E (GR)+ for the
ββ daughter (β+ branch) in order to have the same initial nucleus for the charge-changing transitions of [10] and the charge-conserving ones
of the present work. The strengths are given in units of fm2 for Jπ = 0−, 1−, 2− and in fm4 for Jπ = 1+, 2+, 3+.

E (GR)± E v
ave E s

ave

Nucleus Jπ (MeV) (MeV) Sv
tot (MeV) Ss

tot

76Ge 0− 19.163 21.533 193.84 12.403 144.43
1− 15.162 16.412 50.624 17.405 58.977
2− 17.050 14.728 20.446 12.602 21.384
1+ 26.913 26.659 1038.9 22.727 979.92
2+ 22.817 20.584 794.80 21.595 854.76
3+ 19.696 18.596 503.73 16.758 523.29

76Se 0− 15.095 21.053 181.97 12.591 135.76
1− 10.343 16.343 48.181 17.303 55.843
2− 13.697 14.398 20.595 12.417 21.759
1+ 23.671 27.157 1010.6 23.558 960.41
2+ 19.927 21.183 751.68 22.232 804.63
3+ 16.573 18.909 506.44 17.179 526.95

82Se 0− 16.923 21.238 216.42 12.411 162.07
1− 13.884 16.337 56.655 17.337 67.510
2− 15.382 14.807 23.031 12.542 24.357
1+ 25.077 25.968 1083.8 22.183 1022.0
2+ 22.785 19.939 902.78 20.779 975.70
3+ 18.971 18.290 570.96 16.416 597.41

82Kr 0− 13.992 20.954 205.53 12.640 154.20
1− 10.801 17.353 54.409 18.279 64.385
2− 13.992 15.706 23.238 13.662 24.540
1+ 23.146 26.432 1055.0 22.935 1001.5
2+ 22.999 21.508 857.43 22.333 921.87
3+ 21.622 20.864 575.54 19.059 600.43

96Zr 0− 31.028 20.106 266.58 11.179 199.60
1− 24.279 15.181 69.792 16.156 83.516
2− 22.045 13.851 27.743 11.623 29.502
1+ 33.225 24.576 1800.2 20.217 1710.5
2+ 26.539 18.888 1266.1 19.960 1366.0
3+ 23.327 17.751 710.73 15.975 744.24

96Mo 0− 15.617 20.156 263.17 11.395 197.33
1− 11.513 15.116 69.461 15.989 81.699
2− 12.028 13.853 27.798 11.707 29.481
1+ 23.662 25.142 1760.9 20.620 1662.3
2+ 18.670 19.255 1256.6 20.397 1369.5
3+ 14.506 17.773 731.13 15.995 765.79

100Mo 0− 25.300 19.826 268.76 11.193 199.57
1− 19.508 14.936 71.248 15.781 82.872
2− 18.148 13.570 29.344 11.512 31.185
1+ 30.857 26.340 2856.1 21.315 2742.4
2+ 23.888 20.037 1598.3 21.571 1715.5
3+ 20.909 18.236 843.30 16.320 881.60

100Ru 0− 15.249 20.747 286.73 11.379 211.86
1− 11.073 15.478 73.597 16.370 85.756
2− 12.390 14.488 28.272 12.152 29.482
1+ 24.655 27.238 2954.6 21.774 2808.5
2+ 18.839 20.143 1649.1 21.629 1.75.9
3+ 14.780 18.167 837.53 16.104 874.78
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FIG. 2. Isoscalar L = 2 strength functions for four different nuclei. (a) 82Se, (b) 82Kr, (c) 96Zr, and (d) 96Mo.

peak-like structures rather than spreading over the whole ex-
citation range, as in isoscalar excitations.

In Tables II and III the third column displays energies
“E (GR)−” and “E (GR)+” from Table III of [10], corrected
for mass differences between the ββ intermediate nucleus
and the ββ mother and daughter nuclei, respectively. This is
done because in [10] the average energies were referred to
the ground state of the double-β intermediate nucleus, and
in order to compare the general trends of average isovector
energies with those of Ref. [18]. Since in [10] the feeding of
the intermediate nuclei was discussed we have to adopt the
“E (GR)−” for the mother nuclei (76Ge, 82Se, 96Zr, 100Mo,
116Cd, 128Te, 130Te, and 136Xe) and “E (GR)+” for daughter

nuclei (76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe, and
136Ba) of ββ decays. The average energies in Tables II and
III reveal a common pattern, coincident with that found in
[18]: The energies E (GR)−, Ev

ave, and E (GR)+ form on av-
erage a hierarchy, with E (GR)− being the largest, E (GR)+
the smallest, and Ev

ave falling in the middle. This hierarchy is
particularly distinct for the zirconium region of A = 96, as
also was the case for 90Zr in [18].

IV. CONCLUSIONS

The strength distributions of isovector and isoscalar
spin-multipole transitions were studied in this work. The

FIG. 3. Same as in Fig. 1 but for 136Xe.
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TABLE III. Same as in Table II but for the nuclei with mass numbers A = 116, 128, 130, and 136.

E (GR)± E v
ave E s

ave

Nucleus Jπ (MeV) (MeV) Sv
tot (MeV) Ss

tot

116Cd 0− 29.021 18.982 316.80 10.852 236.02
1− 22.732 14.306 83.147 15.011 97.805
2− 20.954 12.727 36.600 10.843 39.434
1+ 34.166 26.423 3437.0 21.521 3308.2
2+ 27.319 19.713 1989.0 21.175 2161.3
3+ 24.279 17.391 1114.4 15.682 1170.2

116Sn 0− 15.324 18.970 326.10 10.632 241.92
1− 11.002 14.073 86.233 14.748 103.73
2− 13.065 12.590 37.224 10.613 40.582
1+ 25.890 26.484 3605.1 21.393 3475.1
2+ 20.040 19.164 2112.5 20.377 2291.8
3+ 16.627 17.235 1146.6 15.457 1212.5

128Te 0− 23.632 19.626 397.56 10.926 299.35
1− 17.687 14.655 101.09 15.394 119.66
2− 17.813 13.639 40.022 11.432 42.042
1+ 28.782 26.933 3774.8 20.510 3455.3
2+ 23.372 18.280 2316.7 19.408 2502.7
3+ 19.831 16.395 1273.2 14.777 1323.4

128Xe 0− 12.822 19.594 386.94 11.089 291.30
1− 9.474 14.739 98.806 15.485 115.50
2− 12.407 13.622 39.525 11.502 41.622
1+ 23.963 25.558 3838.6 20.633 3655.0
2+ 18.651 18.581 2288.5 19.748 2465.0
3+ 15.572 16.651 1276.0 15.044 1328.9

130Te 0− 25.014 19.551 408.18 10.841 307.19
1− 19.248 14.489 104.16 15.184 123.20
2− 16.964 13.166 41.737 11.231 43.724
1+ 27.702 25.494 3888.4 20.419 3685.5
2+ 22.554 18.051 2372.5 19.110 2560.6
3+ 19.158 16.173 1303.6 14.566 1354.4

130Xe 0− 15.069 19.601 399.73 11.056 301.10
1− 11.972 14.695 102.08 15.423 119.71
2− 12.824 13.637 40.557 11.470 42.702
1+ 24.405 26.469 3826.6 20.389 3536.4
2+ 19.513 18.305 2341.5 19.430 2524.5
3+ 16.253 16.444 1308.2 14.851 1361.2

136Xe 0− 29.190 19.152 427.06 10.741 322.07
1− 23.466 14.316 108.75 14.971 129.96
2− 21.211 13.107 44.575 10.896 47.455
1+ 28.289 24.708 3944.5 19.709 3740.9
2+ 22.645 17.377 2461.8 18.157 2638.0
3+ 19.814 15.579 1335.7 14.064 1394.5

136Ba 0− 12.917 19.253 419.82 10.927 316.70
1− 9.871 14.431 107.54 15.106 126.56
2− 12.205 13.293 43.740 11.127 46.544
1+ 23.327 26.135 3843.7 19.551 3482.9
2+ 18.766 17.717 2404.9 18.713 2600.4
3+ 15.290 15.761 1338.6 14.258 1398.9

excitation energies and transition strengths were calculated
using the QRPA formalism. The strength distributions were
calculated for a set of double-β decaying nuclei and the
corresponding daughter nuclei. The same double-β decaying
nuclei were studied in [10] using the pnQRPA formal-

ism for charge-changing isovector spin-multipole strength
distributions.

In our QRPA calculations the quasiparticles were handled
by using the BCS formalism, fitting the phenomenologi-
cal proton and neutron pairing gaps with the help of the
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corresponding pairing-strength parameters. Particle-hole pa-
rameters were adjusted so that the lowest proton and neutron
quasiparticle energies were fitted to the proton and neutron
pairing gaps. We also adjusted the energy of the lowest state
for each multipole Jπ to fit the data, if available. For this
we used the particle-hole parameter, available in the QRPA
formalism.

The isovector and isoscalar strength distributions for multi-
poles L = 1 and L = 2 were calculated. The average energies
and total strengths were calculated and the distributions were
plotted for representative cases and for each multipolarity
containing the corresponding states Jπ = 0−, 1−, 2− (L = 1)
and Jπ = 1+, 2+, 3+ (L = 2).

The results show that the isoscalar strengths are more
spread in energy than the isovector ones. The isovector spin-
dipole strength is located almost only in one dominant peak,
and for the spin-quadrupole strength, the most significant peak
becomes more dominant when the mass number increases.
The isoscalar transition-strength distributions show notable
strength for all excitation states, contrary to isovector transi-
tions.

Similarly to the previously made study [10], where the
isovector multipole-strength distributions of β− and β+ types

of excitations were investigated, the presently studied isovec-
tor transition strengths tend to locate in one peak. Most of the
nuclei had larger centroid energies in β−-type excitations than
those calculated in this study. The situation was the opposite
for the β+-type strength; the isovector excitation energies
were lower on average than those calculated in this work.

When the experimental data are available, the results
calculated in this work could be compared to the experi-
mentally observed ones. Such comparison could shed light
on the potency of a BCS-based random-phase-approximation
framework to access high-lying excited states and their
wave functions. Since the presently used QRPA and the
charge-changing pnQRPA frameworks are based on the same
quasiparticle mean field, the present study also serves as an
indirect method to check the reliability of the pnQRPA frame-
work in producing nuclear wave functions of high-lying states
relevant for the studies of the nuclear matrix elements of the
neutrinoless double β decay.
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M. N. Harakeh, K. Hatanaka, M. Holl, H. C. Kozer, J. Lee, A.
Lennarz, H. Matsubara, K. Miki, S. E. A. Orrigo et al., Phys.
Rev. C 84, 051305(R) (2011).

[15] J. H. Thies, D. Frekers, T. Adachi, M. Dozono, H. Ejiri, H.
Fujita, Y. Fujita, M. Fujiwara, E.-W. Grewe, K. Hatanaka, P.
Heinrichs, D. Ishikawa, N. T. Khai, A. Lennarz, H. Matsubara,
H. Okamura, Y. Y. Oo, P. Puppe, T. Ruhe, K. Suda et al., Phys.
Rev. C 86, 014304 (2012).

[16] D. Frekers, P. Puppe, J. H. Thies, and H. Ejiri, Nucl. Phys. A
916, 219 (2013).

[17] D. Frekers, M. Alanssari, H. Ejiri, M. Holl, A. Poves, and J.
Suhonen, Phys. Rev. C 95, 034619 (2017).

[18] N. Auerbach and A. Klein, Phys. Rev. C 30, 1032 (1984).
[19] J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic

Nuclear Theory (Springer, Berlin, 2007).
[20] J. Suhonen, T. Taigel, and A. Faessler, Nucl. Phys. A 486, 91

(1988).
[21] J. Speth and A. van der Woude, Rep. Prog. Phys. 44, 719

(1981).

064315-7

https://doi.org/10.1016/S0370-1573(97)00087-2
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1155/2013/505874
https://doi.org/10.3389/fphy.2017.00055
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1016/j.physrep.2018.12.001
https://doi.org/10.1103/RevModPhys.92.045007
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1155/2016/4714829
https://doi.org/10.1103/PhysRevC.96.034308
https://doi.org/10.1103/PhysRevC.62.024319
https://doi.org/10.1103/PhysRevC.86.024314
https://doi.org/10.1103/PhysRevC.89.044319
https://doi.org/10.1103/PhysRevC.84.051305
https://doi.org/10.1103/PhysRevC.86.014304
https://doi.org/10.1016/j.nuclphysa.2013.08.006
https://doi.org/10.1103/PhysRevC.95.034619
https://doi.org/10.1103/PhysRevC.30.1032
https://doi.org/10.1016/0375-9474(88)90041-3
https://doi.org/10.1088/0034-4885/44/7/002

