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Entanglement generation in few-nucleon scattering

Dong Bai 1,* and Zhongzhou Ren2,3,†

1College of Science, Hohai University, Nanjing 211100, China
2School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

3Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, Shanghai 200092, China

(Received 5 September 2022; accepted 9 December 2022; published 21 December 2022)

Inspired by a recent Letter [S. R. Beane et al., Phys. Rev. Lett. 122, 102001 (2019)], the entanglement
generated in the elastic S-wave scattering of p + 3He and n + 3H is studied, where the proton, neutron, 3He,
and 3H are all regarded as qubits. To deal with the Coulomb interaction between the proton and 3He, we derive
the entanglement power, a physical quantity that measures the average entanglement generated by a scattering
process, for charged qubits within the screening method. The entanglement power in the aforementioned
two few-nucleon scatterings is found to be generally much smaller than that in the S-wave n + p scattering
at low energies, with the corresponding cluster effective field theories possessing an enhanced approximate
SU(2)1 ⊗ SU(2)2 symmetry at leading order. Our study suggests that the entanglement generation capacities of
effective interactions between nucleons and light nuclei could be more suppressed than realistic nucleon-nucleon
interactions at low energies.

DOI: 10.1103/PhysRevC.106.064005

I. INTRODUCTION

Entanglement is a deep property of quantum mechanics,
referring to the fact that the quantum state of a composite
system cannot always be decomposed into the tensor product
of the quantum states of its constituents. Nowadays, it is
widely recognized as one of the sharpest probes to distinguish
quantum mechanics from classical mechanics (even with local
hidden variables) [1].

In the past, most efforts in nuclear physics were devoted to
solving nuclear Hamiltonians with different methods and cal-
culating structural and reaction observables across the nuclide
chart. In comparison, the entanglement aspects of nuclear
physics have been explored only recently. In Refs. [2–10],
the entanglement properties of valence nucleons are explored
in nuclear shell models. In Refs. [11,12], the entanglement
entropy is adopted to distinguish between the Brink wave
function and the Tohsaki-Horiuchi-Schuck-Röpke wave func-
tion, two variational bases in microscopic cluster models.
In Ref. [13], the entanglement properties of ab initio wave
functions are studied for the light nuclei 4He and 6He, sug-
gesting that they can be the useful guidance for developing
efficient ab initio algorithms. In Ref. [14], the entanglement
entropy is adopted to study quantum phase transition in nuclei.
In Ref. [15], the entanglement entropy is calculated for the
short-range correlated nucleon-nucleon pairs in nuclei and
is found to be linearly dependent on the mass number. In
Ref. [16], the orbital entanglement is investigated within a
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new hybrid framework called valence-space density matrix
renormalization group.

In order to fully explore the entanglement aspects of nu-
clear physics, it is crucial to understand the entanglement
generation capacities of nuclear interactions. The entangle-
ment power measures the average entanglement generated by
the S matrix from arbitrary unentangled in-states [17]. By cal-
culating the entanglement power for nuclear scatterings, one
can get useful information on the entanglement generation ca-
pacities of nuclear interactions. The realistic nucleon-nucleon
interactions (e.g., AV18 [18] and Idaho-N 3LO [19]) have a
number of spin operators to manipulate the spin wave func-
tions of nucleons. It is thus natural to expect that they are good
at generating entanglement in spin space. In Ref. [20], Beane
et al. study the spin-space entanglement generation in the S-
wave n + p scattering, with the neutron n = (n↑, n↓)T and the
proton p = (p↑, p↓)T regarded as two distinguishable qubits.
Indeed, it was found that the entanglement power approaches
its maximal value twice in the S-wave n + p scattering for
relative momenta p � 80 MeV (see also Fig. 3 in Sec. III)
[20]. It is argued that the approximate Wigner SU(4) sym-
metry that emerged in low-energy nuclear physics [21,22] is
closely related to minimizing the entanglement power [20].
Later on, this connection between entanglement minimization
and symmetry enhancement was polished in Ref. [23].

Up to now, our knowledge on the entanglement generation
capacities of nuclear interactions has been limited to hadron-
hadron interactions [20,24,25]. This motivates the authors to
study the entanglement generation in the low-energy S-wave
p + 3He and n + 3H scatterings, which are examples of quan-
tum collisions between hadrons and light nuclei, and provide
information on the entanglement generation capacities of ef-
fective interactions between nucleons and light nuclei. Like
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nucleons, 3He and 3H are spin-1/2 particles and thus can
be regarded as qubits below their disintegration thresholds.
Compared with Ref. [20], we study the impact of the Coulomb
interaction on entanglement generation with the help of the
screening method, where the Coulomb interaction is cut off
at large distances. As far as we know, such a study has not
been carried out explicitly in the literature yet. The p + 3He
and n + 3H scatterings have attracted much attention recently
in the ab initio community [26–33]. They are also inves-
tigated in pionless effective field theories (EFTs) [34–36].
Besides the aforementioned two scattering processes, the
p + 3H and n + 3He scatterings could be regarded as qubit-
qubit scatterings as well. However, they turn out to be more
complicated than the p + 3He and n + 3H scatterings. For
example, the charge exchange channel n( 3He, 3H)p is open
in the n + 3He scattering from the beginning, making the
effective range parameters complex valued [37]. We postpone
the comprehensive studies on these two scatterings to future
publications.

This paper is organized as follows: In Sec. II, the mathe-
matical properties of the entanglement power are investigated
for elastic scatterings between two charged qubits, which are
relevant to the p + 3He scattering. The results for neutral
qubits could be obtained easily from the charged ones by
taking all the charges to be zero (or equivalently, taking the
fine structure constant to be zero). The natural units h̄ = c = 1
are adopted in theoretical derivations. In Sec. III, the spin-
space entanglement generation is studied in detail for the
low-energy S-wave p + 3He and n + 3H scatterings, along
with the symmetry enhancement in the corresponding cluster
EFTs. Section IV summarizes and concludes.

II. ENTANGLEMENT POWER FOR CHARGED QUBITS

The entanglement power is a physical quantity which mea-
sures the entanglement generated by the S matrix S in the
quantum scattering between Qubit 1 and Qubit 2. It is given
by

E (S ) =
∫

d�1

4π

∫
d�2

4π
E2(S |in〉), (1)

E2(S |in〉) = 1 − Tr1
(
ρ2

1

)
, (2)

where ρ1 = Tr2(ρ12) is the reduced density matrix of Qubit
1 with ρ12 = S |in〉 〈in|S† being the two-qubit density
matrix for the out-state |out〉 ≡ S |in〉, and E2(S |in〉) is the
so-called 2-entropy for the out-state. The integration variables
(�1,�2) ≡ (θ1, φ1, θ2, φ2) in Eq. (1) are four angles which
parametrize the spin orientations of the two incoming
unentangled qubits in the Bloch-sphere representation
|in〉 = [cos θ1

2 |0〉1 + exp(iφ1) sin θ1
2 |1〉1] ⊗ [cos θ2

2 |0〉2 +
exp(iφ2) sin θ2

2 |1〉2], with |0〉k and |1〉k being the spin-up
and spin-down states of the kth qubit (k = 1, 2). Following
Ref. [20], we calculate the entanglement power in spin space.
The spatial wave function is omitted here, as it plays no role
in discussing entanglement generation in spin space and only
introduces a global phase factor to the in- and out-states. An
illustration of the two-qubit scattering is shown in Fig. 1.

FIG. 1. An illustration of entanglement generation in the two-
qubit scattering. The left-hand side refers to the in-state of the
scattering process, where two unentangled qubits (denoted by the
Bloch spheres) fly in from the distant past. The light orange disk
in the middle refers to the interacting stage of the scattering process,
which generates entanglement between two qubits. The right-hand
side refers to the out-state of the scattering process, where the two
qubits eventually become entangled (stressed by the orange curve)
and fly out to the distant future.

In Refs. [20,24,25], the entanglement power has been
used to quantify the entanglement generation for the hadron-
hadron scatterings, where the Coulomb interactions between
charged hadrons are ignored for simplicity. In contrast, the
Coulomb interaction is known to be important in low-energy
nucleon-nucleus and nucleus-nucleus scatterings and cannot
be omitted in order to reproduce experimental data. However,
the presence of the Coulomb interaction may complicate the
mathematical definition of the S matrix, which has to be han-
dled carefully in order to get physically meaningful results.
In this work, the screening method is adopted to cut off the
Coulomb interaction at large distances [38], based on which a
careful treatment is derived for the S matrix and the entangle-
ment generation in elastic scatterings between charged qubits.

The S-wave Schrödinger equation for two charged particles
is given by{

d2

dr2
− 2μ[VN (r) + V C (r)] + p2

}
u(r) = 0, (3)

with μ being the two-body reduced mass, VN (r) being the
short-range nuclear potential, p being the relative momentum,
and u(r) being the radial wave function. In Eq. (3), V C (r) is
the screened Coulomb potential given by

V C (r) = Z1Z2e2

r
, r � rS, (4)

= 0, r > rS, (5)

which replaces the original Coulomb potential by the screened
one. Here, Z1 and Z2 are the charge numbers of the two
particles, and rS , much larger than the finite range rN of the
nuclear potential VN (r), is the screening radius beyond which
the Coulomb potential is turned off. The elementary charge
squared e2 in Eq. (4) is related to the fine structure constant α

by α = e2/(h̄c). For rN � r � rS , only the screened Coulomb
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interaction remains nonvanishing and the radial wave function
is given by

u(r) = i

2
[h−(η, pr) − exp(2iδN )h+(η, pr)] (6)

∝ sin[pr − η ln(2pr) + σ (η) + δN ] for large r. (7)

Here, h−(η, ρ) is the incoming Coulomb-Hankel function
in the S wave, h+(η, ρ) is the outgoing Coulomb-Hankel
function in the S wave, η = Z1Z2αμ/p is the dimensionless
Sommerfeld parameter, σ (η) = arg �(1 + iη) is the S-wave
Coulomb phase shift, and δN is the nuclear phase shift. In
Eq. (7), the asymptotic forms of the incoming and outgoing
Coulomb-Hankel functions have been used to do the simplifi-
cation. For r > rS , the screened Coulomb interaction vanishes
and the radial wave function is given by

u(r) = const × i

2
[h−(0, pr) − exp(2iδ)h+(0, pr)] (8)

∝ sin(pr + δ) for large r. (9)

Here, δ is the total phase shift. Matching Eq. (9) with Eq. (7)
continuously at r = rS , one obtains

δ = δN − η ln(2prS ) + σ (η). (10)

Noticeably, the total phase shift δ depends explicitly on the
screening radius rS . Rigorously speaking, it is not a well-
defined physical quantity as rS could be chosen arbitrarily.

For the charged-qubit scattering, two channels are relevant
for the S wave: the 1S0 and 3S1 channels. The two-body
scattering in each channel is described by Eq. (3), with VN (r)
replaced by the partial-wave components of realistic nuclear
potentials. The corresponding S matrix can be given by a
compact form in spin space:

S = 1
2 [exp(i2δ1) + exp(i2δ0)] 14 + 1

2 [exp(i2δ1)

− exp(i2δ0)] SWAP. (11)

Here, δ0 is the total phase shift in the 1S0 channel, δ1 is the total
phase shift in the 3S1 channel, 14 is the four-dimensional unit
matrix, and SWAP = (14 + ∑3

i=1 σi ⊗ σi )/2 is the so-called
SWAP operator in quantum computation, with σi (i = 1, 2, 3)
being the three Pauli matrices and ⊗ being the tensor product.
In terms of Eq. (10), the total phase shifts δ0 and δ1 are given
explicitly by

δ0 = δN
0 − η ln(2prS ) + σ (η), (12)

δ1 = δN
1 − η ln(2prS ) + σ (η), (13)

where δN
0 and δN

1 are the nuclear phase shifts in the 1S0 and 3S1

channels, respectively. The entanglement generation capacity
of the S matrix S in Eq. (11) could then be quantified by the
entanglement power E (S ), whose analytic expression, after
some symbolic simplification, is found to be

E (S ) = 1
6 sin2[2(δ0 − δ1)] (14)

= 1
6 sin2 [

2
(
δN

0 − δN
1

)]
. (15)

Here, Eqs. (12) and (13) are used in deriving Eq. (15). Re-
markably, the rS dependence in the total phase shift δ0 is
canceled exactly with the rS dependence in δ1, making E (S ) a

well-defined physical quantity, despite the fact that the cor-
responding S matrix has the unpleasant dependence on rS .
This rS independence could be anticipated by noting that the
entanglement power is determined by the difference of the sin-
glet and triplet phase shifts whereas the Coulomb interaction
is spin independent. Also, the Coulomb phase shifts σ (η) in
Eqs. (12)–(13) are canceled exactly in Eq. (15).

With the nuclear phase shifts δN
0 and δN

1 compiled from
experimental data, the entanglement power E (S ) could be
determined reliably from Eq. (15). Making use of the
Coulomb-modified effective range expansions (EREs), the
nuclear phase shifts δN

0 and δN
1 are parameterized up to O(p4)

by

C2
η p cot δN

0 + γ h(η) = − 1

aC
0

+ 1

2
rC

0 p2 − 1

4
PC

0 p4, (16)

C2
η p cot δN

1 + γ h(η) = − 1

aC
1

+ 1

2
rC

1 p2 − 1

4
PC

1 p4, (17)

with C2
η = exp(−πη)�(1 + iη)�(1 − iη), γ = 2μZ1Z2α =

2pη, h(η) = Re ψ (iη) − ln |η|, and ψ (z) being the digamma
function. On the right-hand sides of Eqs. (16) and (17), aC

0 ,
rC

0 , and PC
0 are the scattering length, the effective range,

and the shape parameter for the 1S0 channel, while aC
1 , rC

1 ,
and PC

1 are the scattering length, the effective range, and the
shape parameter for the 3S1 channel. Here, the superscript “C”
stresses the presence of the Coulomb interaction.

III. THE FEW-NUCLEON SCATTERINGS

In this section, we study the entanglement generation in
the S-wave p + 3He and n + 3H scatterings. The p + 3He
scattering is treated in detail in Sec. III A, which can be easily
adapted to the n + 3H scattering.

A. The p + 3He scattering

1. Experimental inputs

As shown in Eq. (15), the nuclear phase shifts δN
0 and δN

1
in the 1S0 and 3S1 channels are the crucial inputs to calculate
the entanglement power E (S ) in the p + 3He scattering. In
this work, the phase shifts at p � 80 MeV are adopted to
do the calculations, which correspond to the relative ener-
gies � 6 MeV. At higher relative momenta, 3He is likely to
disintegrate and thus can no longer be treated as a qubit to
a good approximation. To estimate the values of δN

0 and δN
1 ,

we adopt the experimental extractions of effective range pa-
rameters as aC

0 = 11.1 ± 0.4 fm, rC
0 = 1.58 ± 0.12 fm, PC

0 =
−4 ± 0.8 fm3, aC

1 = 9.04 ± 0.14 fm, rC
1 = 1.50 ± 0.06 fm,

and PC
1 = 0.36 ± 0.32 fm3 [39]. The same reference also

tabulates a few experimental values of δN
0 and δN

1 at the rela-
tive momenta p = 48.71, 57.63, 64.95, 76.20 MeV, which are
used in our calculations as well.

In Fig. 2, the phase shifts from the Coulomb-modified ERE
calculations are shown by the red solid line and the orange
dash-dotted line for the 1S0 and 3S1 channels. It is straightfor-
ward to see that they agree well with the four experimental
data points (the red and orange solid points). In the same fig-
ure, we also plot the phase shifts from the Coulomb-modified
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FIG. 2. The S-wave phase shifts of the p + 3He scattering are
shown with respect to the relative momentum p. The red and orange
points are the experimental phase shifts in the 1S0 and 3S1 channels
from Ref. [39]. The red solid line and the orange dash dotted line are
the phase shifts given by the Coulomb-modified EREs in Eqs. (16)
and (17), with the effective range parameters given in Sec. III A 1.
The pink solid line and the yellow dash-dotted line are the S-wave
phase shifts given by the Coulomb-modified EREs at LO, which take
into consideration only the contributions from the scattering lengths.

EREs at LO (the pink solid line and the yellow dash dotted
line), which consider only the scattering-length contributions
on the right-hand sides of Eqs. (16) and (17). It is found that
the LO approximations can describe the 1S0 and 3S1 phase
shifts quantitatively at p � 30 MeV.

2. Entanglement power

We study how the entanglement power E (S ) varies with
respect to the relative momentum p in the S-wave p + 3He
scattering. The numerical results are given by the solid red
line in Fig. 3, where E (S ) is obtained via Eq. (15) with
the phase shifts δN

0 and δN
1 given by the Coulomb-modified

EREs in Eqs. (16) and (17). The red solid points in Fig. 3
are obtained directly from the experimental phase shifts at
the four relative momenta mentioned, and are consistent with
those given by the EREs. For comparison, we plot in the same
figure the entanglement power of the S-wave n + p scattering
(the orange dashed line) with the 1S0 and 3S1 phase shifts
given by the Nijmegen partial wave analysis [40,41].

As shown in Fig. 3, the entanglement power of the
n + p scattering goes up and down and gets its max-
imal value of 1/6 twice, both at p = 6.11 and 63.76
MeV. At these two momenta, the S matrix turns the
unentangled in-state |n↑〉 ⊗ |p↓〉 into the maximally entan-
gled out-states (0.6362 + 0.3088i) |n↑〉 ⊗ |p↓〉 + (0.3088 −
0.6362i) |n↓〉 ⊗ |p↑〉 and (−0.6887 + 0.1604i) |n↑〉 ⊗ |p↓〉 +
(−0.1604 − 0.6887i) |n↓〉 ⊗ |p↑〉, respectively. The maximal
entanglement of these two out-states can be verified easily by
using the standard bipartite entanglement measures, among
which a convenient choice could be the concurrence [42,43].
In contrast, in the p + 3He scattering, the entanglement power
E (S ) increases from 0 to around 0.02 for p � 80 MeV, which
is much smaller than the n + p scattering at most values of
relative momenta. In other words, the entanglement genera-
tion capacity of the effective interaction between the proton

FIG. 3. The variations of entanglement power with respect to the
relative momentum p. The red solid line corresponds to the entangle-
ment power of the p + 3He scattering in the S wave with the nuclear
phase shifts given by the Coulomb-modified EREs in Eqs. (16) and
(17). The red solid points are the results directly obtained from the
experimental phase shifts at selected relative momenta [39]. The
orange dashed line corresponds to the entanglement power of the
S-wave n + p scattering given by the Nijmegen 1S0 and 3S1 phase
shifts. The blue dash-dotted line gives the upper limit of the entan-
glement power at E (S ) = 1/6.

and 3He is much weaker than the realistic nucleon-nucleon
interaction at p � 80 MeV. The rise of maximums of the
n + p entanglement power could be understood from the fact
that the n + p scattering lengths have opposite signs for the
singlet and triplet channels, which means that one channel is
attractive whereas the other is repulsive. In the LO effective
range theory, the explicit form of the n + p entanglement
power is found to be

E (S ) = 2

3

p2
(
anp

0 − anp
1

)2(
1 + anp

0 anp
1 p2

)2(
1 + anp

0
2 p2

)2(
1 + anp

1
2 p2

)2 ,

with anp
0 and anp

1 being the singlet and triplet scattering lengths
[44]. As anp

0 anp
1 < 0, it is straightforward to show that E (S )

gets the minimum value of 0 at p = 0, 1√
−anp

0 anp
1

, and the

maximal value of 1/6 at

p =
∓anp

0 ± anp
1 −

√
anp

0
2 − 6anp

0 anp
1 + anp

1
2

2anp
0 anp

1

.

In contrast, both scattering lengths have the same sign in the
p + 3He scattering, thus giving rise to different low-energy
behavior of E (S ). From the microscopic viewpoint, the p +
3He scattering is essentially a quantum four-body process
involving three protons and one neutron. One may naively
expect that the few-body correlations may help to promote
the production of the entangled states in scattering processes,
and the entanglement generation capacity of the effective
interaction between the proton and 3He would be stronger.
The explicit calculations show that this does not happen at
least for p � 80 MeV, where the collision is dominated by
the S-wave elastic scattering. For higher relative momenta,
the disintegration of 3He is expected to be important and
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the Coulomb-modified EREs in Eqs. (16) and (17) are less
reliable in predicting phase shifts and entanglement power.

3. Cluster EFT and symmetry enhancement

We study the entanglement properties of the p + 3He scat-
tering from the viewpoint of cluster EFT [45,46]. The EFT
Lagrangian is given at LO by

LLO = Lkin + Lint, (18)

Lkin = ψ†

(
iDt + D2

2m

)
ψ + �†

(
iDt + D2

2M

)
�, (19)

Lint = −CS (ψ†ψ )(�†�) − CT (ψ†σψ ) · (�†σ�). (20)

Here, ψ and � are the two-component spinor fields for the
proton and 3He, m and M are the masses of the proton and
3He, (Dt , D) ≡ Dμ = ∂μ + ieQ̂Aμ is the covariant derivative,
with Aμ being the photon field and Q̂ being the charge opera-
tor satisfying Q̂ψ = ψ for the proton and Q̂� = 2� for 3He,
and CS , CT are the low-energy constants (LECs) at LO. This
LO EFT is equivalent to the LO EREs. Therefore, according
to Fig. 2, it can be used to describe the S-wave phase shifts
at p � 30 MeV. The EFT Lagrangian in Eqs. (18)–(20) is
invariant under the global transformations ψ → SU(2)ψ and
� → SU(2)�. Noticeably, the same SU(2) transformations
are taken for ψ and �. The breakdown scale of this cluster
EFT is estimated to be �b ∼ √

2μpd Sp ≈ 80 MeV, with μpd

being the reduced mass of the proton-deuteron system and Sp

being the one-proton separation energy of 3He. The LECs CS

and CT are related to the scattering lengths aC
0 and aC

1 by [47]

2π

μC0
= 1

aC
0

+ 4αμ

[
ln

(
π�

4αμ

)
− γE

]
− �, (21)

2π

μC1
= 1

aC
1

+ 4αμ

[
ln

(
π�

4αμ

)
− γE

]
− �, (22)

with C0 = CS − 3CT and C1 = CS + CT being the partial-
wave LECs for the 1S0 and 3S1 channels, μ = mM/(m + M )
being the reduced mass of the proton and 3He, � being
the regularization scale introduced to regularize the divergent
Feynman integrals with a sharp cutoff π�/2, and γE being the
Euler constant. At � = �b = 80 MeV, the ratio between CS

and CT is found to be CT /CS = 0.0468, satisfying CT � CS .
We also study how CT /CS changes as � is varied by, for
example, 10%. It is found that CT /CS = 0.0641 at � = 0.9�b

and CT /CS = 0.0366 at � = 1.1�b, within the same order of
magnitude as the aforementioned value of CT /CS at � = �b.
In Eqs. (21) and (22), the linear divergences are included
explicitly in the definitions of LECs. If they are suppressed
following minimal subtraction, the ratio of LECs becomes
CT /CS = −0.0174.

In the limit of CT → 0, the spin-dependent vertex
−CT (ψ†σψ ) · (�†σ�) in Eq. (20) vanishes. It is straight-
forward to check that the global symmetry of the EFT
Lagrangian is enhanced from SU(2) to SU(2)1 ⊗ SU(2)2 and
is invariant under the transformations ψ → SU(2)1ψ and
� → SU(2)2�. Here, the SU(2)1 and SU(2)2 transforma-
tions are generally different for the proton and 3He. Due to
the vanishing of the spin-spin vertex, the 1S0 channel becomes

FIG. 4. The same as Fig. 3 except that the red solid line gives the
entanglement power for the n + 3H scattering.

indistinguishable from the 3S1 channel, as a result of which
the singlet phase shift δN

0 is equal to the triplet phase shift δN
1 .

According to Eq. (15), the corresponding entanglement power
E (S ) equals zero exactly for all relative momenta. This is con-
sistent with the relation between entanglement minimization
and symmetry enhancement observed in Ref. [20].

The emergence of the approximate SU(2)1 ⊗ SU(2)2 sym-
metry might be understood from the perspective of the
approximate Wigner SU(4) symmetry observed at the level
of nucleons. It is emphasized by Ref. [48] that the pionless
EFT expanded around the unitarity limit, which is shown to
give a new systematic description of bound-state properties of
A � 4 nucleons, respects the Wigner SU(4) symmetry at LO
and thus does not have the spin-dependent nucleon-nucleon
interaction. If applicable to the S-wave p + 3He scattering as
well, such a theory will not distinguish between the 1S0 and
3S1 channels at LO and thus gives rise to the CT → 0 limit of
cluster EFT automatically. The applicability of this pionless
EFT expanded around unitarity to few-nucleon scatterings has
not been explored explicitly in the literature. To some extent,
the small size of the entanglement power observed in the S-
wave p + 3He scattering provides support for its applicability
from the quantum-information perspective.

B. The n + 3H scattering

The above discussions on the p + 3He scattering could be
extended in parallel to the n + 3H scattering. As the neutron
is neutral, the long-range Coulomb interaction does not show
up in the n + 3H scattering. The corresponding formalism of
the entanglement power and cluster EFT could be obtained
from Eqs. (12)–(17) and (18)–(22) by taking the fine structure
constant α → 0 (i.e., the charge unit e → 0) effectively. We
take for the S-wave n + 3H scattering the following effec-
tive range parameters estimated by the latest pionless EFT
calculations: a0 = 4.035(65) fm, r0 = 2.17(15) fm and a1 =
3.566(47) fm, r1 = 1.76(41) fm for the 1S0 and 3S1 channels
[36].1 With these inputs, the entanglement power E (S ) as a

1In Ref. [36], the standard power-counting scheme for pionless
EFT is adopted, which is different from the power-counting scheme
adopted by the pionless EFT expanded around unitarity [48].
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function of the relative momentum p is given in Fig. 4 for
the n + 3H scattering. Similarly to the p + 3He scattering,
it is found that the entanglement power E (S ) is generally
much smaller than the n + p scattering at p � 80 MeV. In
the LO cluster EFT, whose breakdown scale is estimated to
be �b ∼ √

2μnd Sn ≈ 85 MeV for the n + 3H scattering, the
ratio of the LECs CS and CT is found to be CT /CS = 0.0466
at � = �b, once again satisfying CT � CS . Moreover, in the
limit CT → 0, the entanglement power vanishes for all rel-
ative momenta and the LO cluster-EFT Lagrangian has the
symmetry enhancement from SU(2) to SU(2)1 ⊗ SU(2)2 in a
way similar to the p + 3He scattering.

The enhanced symmetries in the p + 3He and n + 3H
scatterings could also be understood by noticing that the sin-
glet and triplet scattering lengths satisfy aC

0 ∼ aC
1 ∼ 10 fm

and a0 ∼ a1 ∼ 4 fm for these two processes. From Eqs. (21)
and (22), one can show that |CT /CS| ∝ |1/a(C)

0 − 1/a(C)
1 | �

1 under the condition of a(C)
0 ∼ a(C)

1 , which then gives the
approximate SU(2)1 ⊗ SU(2)2 symmetry in the EFT La-
grangians. Similarly, the small entanglement power at low
energies could also be understood from a(C)

0 ∼ a(C)
1 . Accord-

ing to the LO EREs and the explicit expression of E (S )
in Eq. (15), the property of a(C)

0 ∼ a(C)
1 leads naturally to

δN
0 ∼ δN

1 and E (S ) ∝ sin2[2(δN
0 − δN

1 )] ∼ 0 at low energies.
Moreover, it is interesting to explore why the approximate
Wigner SU(4) symmetry does not lead to a similar suppres-
sion of the entanglement in the low-energy nucleon-nucleon
scattering. The effective range parameters are estimated to be
anp

0 = −23.740 fm, anp
1 = 5.419 fm, rnp

0 = 2.77 fm, and rnp
1 =

1.753 fm for the n + p scattering [49]. In the LO pionless
EFT, one has CT ∝ 1/anp

0 − 1/anp
1 , and the corrections to the

Wigner SU(4) symmetry are small as long as both anp
0 and anp

1
are large. The approximate Wigner SU(4) symmetry results
directly from anp

0,1 � rnp
0,1, even if anp

0 is very different from
anp

1 (with opposite signs and |anp
0 /anp

1 | ∼ 4) [22]. On the other
hand, at low energies, one has tan δ0 − tan δ1 ∼ (anp

1 − anp
0 )p.

The large anp
1 − anp

0 thus gives rise to sizable δ0 − δ1 in the

energy range under consideration, which eventually leads to
different behavior of E (S ) in the n + p scattering.

IV. CONCLUSIONS

In this work, we study the entanglement generation ca-
pacity of effective interactions between nucleons and light
nuclei in the low-energy p + 3He and n + 3H scatterings
and compare the results to those of the realistic nucleon-
nucleon interactions. To deal with the Coulomb interaction
between the proton and 3He properly, the screening method
is adopted to derive the entanglement power for charged
qubits, which, as far as we know, has not been reported
explicitly in the literature. With the derived formulas, it is
found that the entanglement power in the p + 3He scattering
is typically much smaller than that in the n + p scattering for
relative momenta � 80 MeV. This entanglement suppression
effect is found in the n + 3H scattering as well. Moreover,
it is accompanied by the approximate symmetry enhance-
ment from SU(2) to SU(2)1 ⊗ SU(2)2 in the corresponding
cluster EFTs at LO, consistent with the connection between
entanglement minimization and symmetry enhancement pro-
posed by previous studies. Our study suggests that the
entanglement generation capacities of effective interactions
between nucleons and light nuclei could be more suppressed
than those of realistic nucleon-nucleon interactions at low
energies.
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