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Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO
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We present a comprehensive investigation of few-nucleon systems as well as light and medium-mass nuclei up
to A = 48 using the current Low Energy Nuclear Physics International Collaboration two-nucleon interactions
in combination with the third-order (N2LO) three-nucleon forces. To address the systematic overbinding of
nuclei starting from A ≈ 10 found in our earlier study utilizing the N2LO two- and three-nucleon forces, we
take into account higher-order corrections to the two-nucleon potentials up through fifth order in chiral effective
field theory. The resulting Hamiltonian can be completely determined using the A = 3 binding energies and
selected nucleon-deuteron cross sections as input. It is then shown to predict other nucleon-deuteron scattering
observables and spectra of light p-shell nuclei, for which a detailed correlated truncation error analysis is
performed, in agreement with experimental data. Moreover, the predicted ground state energies of nuclei in
the oxygen isotopic chain from 14O to 26O as well as 40Ca and 48Ca show a remarkably good agreement with
experimental values, given that the Hamiltonian is fixed completely from the A � 3 data, once the fourth-order
(N3LO) corrections to the two-nucleon interactions are taken into account. On the other hand, the charge radii
are found to be underpredicted by ≈10% for the oxygen isotopes and by almost 20% for 40Ca and 48Ca.

DOI: 10.1103/PhysRevC.106.064002

I. INTRODUCTION

Chiral effective field theory (EFT) and ab initio few- and
many-body methods play a key role in the quest for preci-
sion nuclear theory [1–14]. For the simplest nuclear system
involving just two nucleons, chiral EFT has already reached
a high level of maturity in terms of accuracy and precision.
In particular, the latest-generation semilocal momentum-
space regularized (SMS) nucleon-nucleon (NN) potentials of
Ref. [15] at the highest available order N4LO+ provide, for
the regulator values � = 450 and 500 MeV, a nearly per-
fect description of mutually compatible neutron-proton and

*pmaris@iastate.edu

proton-proton scattering data below Elab = 300 MeV with
χ2

datum = 1.01 [16]. This qualifies the N4LO+ NN potentials
to be regarded as partial wave analysis from the point of view
of NN data description, and also puts them among the most
accurate and precise NN interactions to date. The determina-
tion of the pion-nucleon coupling constants f 2

0 , f 2
p , and f 2

c
from NN scattering data in Ref. [15] and the calculation of the
deuteron structure radius rstr = 1.9729+0.0015

−0.0012 fm in Ref. [17]
provide additional examples of recent chiral EFT calculations
at a subpercent accuracy level.

Maintaining a comparable level of accuracy and precision
beyond the NN sector is currently not feasible because of both
computational limitations and unavailability of consistently
regularized many-body forces and exchange current opera-
tors beyond third order (N2LO) of the chiral EFT expansion
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[3], which represents the main limiting factor by restricting
the calculations to N2LO. An overview of ongoing efforts
towards developing consistent many-body forces and nuclear
current operators can be found in Ref. [16]. In the meantime,
a series of detailed investigations of low-energy three-nucleon
scattering observables and selected properties of light and
medium-mass nuclei at low orders in chiral EFT has been
performed by the Low Energy Nuclear Physics International
Collaboration (LENPIC) using different variants of chiral
EFT NN interactions [18–20] with and without the three-
nucleon force (3NF) at N2LO [21,22]; see Refs. [23–27].
Some of the most interesting conclusions from these studies
include the explicit and implicit (i.e., based on the discrepan-
cies between calculated observables and experimental data)
verification of the 3NF effects being compatible with the
expected size of N2LO corrections, in line with the Wein-
berg power counting [28,29], as well as insights into the
convergence pattern of chiral EFT for nuclear systems and
implications for uncertainty quantification.

In our recent paper [27], we calculated selected nucleon-
deuteron (Nd) elastic scattering and breakup observables,
properties of the A = 3 and A = 4 nuclei as well as spectra of
p-shell nuclei up to A = 16 using the SMS potentials at lead-
ing (LO), next-to-leading (NLO), and N2LO from Ref. [20]
in combination with the 3NF at N2LO regularized in the same
way as the SMS NN potentials. While the obtained predictions
at N2LO were generally found to be consistent with experi-
mental data within errors, a systematic overbinding of nuclei
was found starting from A ≈ 10 and increasing with A. Fur-
thermore, a slight underprediction was observed for the 4He
structure radius, which, however, still came out consistently
with the experimental value at the 95% confidence level, while
the radii of heavier nuclei were not considered.

The main purpose of this paper is to shed light on the origin
of the significant (even at the 95% confidence level) overbind-
ing of heavier p-shell nuclei at N2LO found in our previous
study [27]. To clarify whether this discrepancy is related to de-
ficiencies of the NN force at N2LO or rather has to be resolved
by higher-order corrections to the 3NF, we perform a series
of calculations based on the higher-order SMS NN potentials
(N3LO, N4LO, and N4LO+) in combination with the 3NF at
N2LO. While the obtained predictions are still accurate only at
the N2LO level due to the missing contributions to the many-
body forces at N3LO and beyond, we demonstrate that the
overbinding is significantly reduced by including higher-order
contributions to the NN force. Moreover, we extend the results
of Ref. [27] to heavier nuclei by performing calculations for
the oxygen and calcium isotope chains and study the conver-
gence pattern of chiral EFT for the corresponding charge radii.
Last but not least, the large generated set of calculated energy
levels allows us to perform a more detailed error analysis of
the correlated excitation energies of the considered nuclei.

Our paper is organized as follows. In Sec. II we focus on
the 3N systems and discuss the determination of the low-
energy constants (LECs) entering the N2LO 3NF, a selected
range of Nd elastic and breakup scattering observables, along
with properties of A = 3 nuclei. The main focus of Sec. III
is on light p-shell nuclei. For 4He, we benchmark the cal-
culations using the no-core configuration interaction (NCCI)

method, applied to the Hamiltonians softened by means of a
similarity renormalization group (SRG) transformation, with
the results obtained by solving the Yakubovsky equations with
bare interactions. Heavier p-shell nuclei considered in this
section are calculated using the NCCI approach. We also
present the analysis of the correlated truncation errors for the
calculated spectra. Finally, our results for heavier nuclei up
to A = 48 obtained using the in-medium no-core shell model
(IM-NCSM) approach are presented in Sec. IV, while the
main conclusions are summarized in Sec. V.

II. THREE-NUCLEON SYSTEMS

A. Neutron-deuteron elastic scattering: Total cross section

In this section, we present our results for 3N observables.
We start with the 3N continuum and will discuss the bound
states below. The continuum results were obtained within
the Faddeev approach, which is a well established method
of studying 3N processes. In brief, starting from a given
two-nucleon potential, first the solution of the Lippmann-
Schwinger equation for the transition matrix (t-matrix) was
obtained. Next, this t-matrix together with a 3N interaction
entered the Faddeev equation for the auxiliary state T . After
solving this equation the transition amplitudes for both the
elastic and inelastic Nd scattering were computed. Finally,
these amplitudes were used to obtain observables: the dif-
ferential cross sections and various polarization observables.
All computations were performed using the partial wave de-
composition in momentum space. That approach has been
described in detail in Refs. [31,32].

In Fig. 1, we show the results for the total neutron-deuteron
cross section at the laboratory energies of E = 70 MeV and
E = 135 MeV for various chiral orders and all available cut-
off values. At LO and NLO, the results are based on the
two-nucleon (NN) force only. Starting from N2LO, we also
include the three-nucleon force (3NF) at N2LO. The regu-
larized form of the employed 3NF is specified in Eq. (1) of
Ref. [27]. Following this paper, the two low-energy constants
(LECs) cD and cE entering the 3NF are fixed from the triton
binding energy and the differential cross-section minimum at
E = 70 MeV.1 The results for the total cross section shown in
Fig. 1, therefore, come out as predictions. We do not show
the results for the total cross section at low energies since
it is governed by the S-wave contribution and known to be
correlated with the triton binding energy. Also, the effects of
the 3NF we are interested in here start becoming significant at
intermediate energies above E ≈ 50 MeV.

The obtained results show a number of interesting fea-
tures. First, as already pointed out in Ref. [23] based on a
different version of the chiral potentials, the NLO predic-
tions appear to underestimate the total cross section, and
the size of the discrepancy with the experimental data is
roughly consistent with the NLO truncation errors. Natu-
rally, softer NLO NN interactions with smaller values of

1Notice that the determination of cD and cE needs to be carried out
for each value of the cutoff � and for every order of the NN force
starting from N2LO.
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FIG. 1. Predictions for the neutron-deuteron total cross section at 70 MeV (left panel) and 135 MeV (right panel) based on the semilocal
momentum-space regularized chiral interactions at different orders (shown by solid symbols with error bars). Three-nucleon force is included
at N2LO only. Error bars show the EFT truncation uncertainty calculated using the Bayesian model C̄650

0.5−10 from Ref. [26] [68% degree of belief
(DoB) intervals]. For the incomplete calculations at N3LO and N4LO, the quoted errors correspond to the N2LO truncation uncertainties. Gray
open symbols without error bars show the results based on the two-nucleon forces only. Horizontal bands are experimental data from Ref. [30].

the cutoff � show larger deviations from the data at high
energies, which is most pronounced for � = 400 MeV. In-
cluding higher-order corrections to the NN force up through
N4LO+, the results for σtot tend to converge to values that
underestimate the cross-section data by ≈4% (≈7%) at E =
70 MeV (E = 135 MeV). These observations are in line
with the systematics found using high-precision phenomeno-
logical NN potentials [30], which should not come as a
surprise given the nearly perfect description of NN data
at N4LO+ [20].

The discrepancy between the predicted Nd scattering ob-
servables based on NN interactions only and experimental
data are expected to be resolved by the 3NF. In line with the
chiral power counting, the leading 3NF at N2LO indeed brings
the calculated total cross-section in agreement with the data
within N2LO truncation errors. Also the magnitude of the 3NF
effects appears to be consistent with the expectations based on
the power counting; see also Ref. [23] for a related discussion.
These findings are consistent with the results shown in Fig. 2
of Ref. [27].

The cutoff dependence of the obtained predictions also
reveals interesting insights into the convergence pattern of the
chiral expansion. In particular, one observes that the rather
significant � dependence of the N2LO results at the larger
energy of E = 135 MeV is mostly absorbed into the “run-
ning” of the N3LO NN contact interactions. The remaining
cutoff dependence of the predictions at N3LO and N4LO+,
both with and without the 3NF, is significantly smaller than
the N2LO truncation error. This might be explained by the
expectation for the residual cutoff dependence to be taken care
of by short-range 3NF operators that appear at N4LO.2

2Notice, however, that the strength of some of the short-range terms
is enhanced by a factor of m/�b [33], where m and �b refer to

B. Nucleon-deuteron elastic and breakup scattering

Let us now turn to other observables in the elastic Nd scat-
tering process. In this case predictions obtained at N2LO with
2N and 3N interactions for lower incoming nucleon kinetic
energies (E = 65 MeV and E = 135 MeV) were shown in
Ref. [27]. Having at our disposal the N4LO+ NN interaction,
we decided to investigate a higher energy case, which we
choose to be E = 200 MeV. In the top panel of Fig. 2, we
compare these new predictions, obtained with the N4LO+ NN
interaction supplemented by the N2LO 3NF, with the strict
N2LO results. In addition, we show predictions solely based
on the N2LO and N4LO+ NN interactions. For the differential
cross section, taking into account higher terms in the NN
interaction slightly modifies predictions at the center-of-mass
scattering angles θ > 80◦. The effects of the 3NF only indi-
rectly (through the values of the LECs cD and cE ) depend on
the order of the chiral NN force used, and the whole difference
between N2LO and N4LO+ NN predictions transfers to those
for NN+3N forces. The data remain underpredicted in both
cases, which is similar to the observations made for phe-
nomenological forces [36]. Among all possible polarization
observables, which are more sensitive to details of the nuclear
interactions, various situations can be found. In Figs. 2(b) and
2(c), we show two examples: for the vector analyzing power
AY (d), the 3NF acts in a similar way if combined with the

the nucleon mass and the breakdown scale of chiral EFT in the
few-nucleon sector, respectively. This is because for the SMS NN
interactions of Ref. [20] a specific choice was made to remove the re-
dundant (off-shell) N3LO contact interactions. However, the largely
universal results for the Nd total cross section based on a broad class
of different high-precision NN potentials seem to indicate that this
observable is almost insensitive to off-shell ambiguities of the NN
force.
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FIG. 2. The center-of-mass differential cross section dσ

d�
, the deuteron vector analyzing power AY (d) and the the tensor analyzing power

AX X − AYY for the neutron-deuteron elastic scattering at incoming neutron laboratory energy E = 200 MeV. In the top panels the dashed blue
(red) curve represents predictions based on the two-nucleon N2LO (N4LO+) forces. The solid blue curve represents complete results at N2LO
and the solid red curve stands for predictions of N4LO+ NN interaction supplemented by N2LO 3NF. In all cases, the cutoff � = 450 MeV is
used. In the bottom panels, the light (dark) green band shows the size of the truncation error at 95% (68%) DoB. The grey band shows a spread
of the N4LO+ NN + N2LO 3N force based predictions due to the value of � regulator, in the range of � ∈ [400, 550] MeV. The red curve is
the same as in the upper panels. In (e) and (f), the dashed dark-green curve shows the borders of the dark green band. Data in (a) and (d) are
from [34]: black circles for E = 181 MeV and orange triangles for E = 216.5 MeV. Data in (b), (c), (e), and (f) are from [35].

N2LO or N4LO+ NN potential, but the 3N force effects for
the tensor analyzing power AXX − AYY depend on the order
of the NN force. Combining the N4LO+ NN interaction with
the N2LO 3NF delivers a slightly better data description, but
definitely leaves room for improvement. The lower panels of
Fig. 2 shows theoretical uncertainties for the N4LO+ NN +
N2LO 3N force predictions. At this rather high energy both
95% and 68% degree of belief (DoB) intervals for truncation
errors remain wide but the data are at least in the first of
these two intervals. The cutoff dependence, represented by
the grey band comprising predictions with the regulator � ∈
[400, 550] MeV, is also significant at some scattering angles
and comparable to the 68% DoB truncation errors.

Next, in Figs. 3 and 4, we show a few results for the dif-
ferential cross section and the analyzing powers for selected
kinematical configurations defined by the directions of two
final proton momenta and the position on the S curve [31]. In
the case of the cross section at both energies (E = 135 MeV
in Fig. 3 and E = 200 MeV in Fig. 4), the situation is sim-
ilar to elastic scattering: there are small differences in the
predictions when replacing the NN forces. These differences
remain when the 3NF is included. At both energies, the cut-
off dependence remains visibly smaller than the truncation
errors. Depending on the kinematical configuration, the data
description is satisfactory, or small discrepancies persist. The
nucleon vector analyzing power AY(N) shown in Fig. 3(c) is
characterized by a strong effect of the 3NF when combined
with the N4LO+ NN interaction, while the strictly N2LO
predictions are insensitive to the 3NF for 70◦ < θ < 115◦.
Clearly, the 3NF combined with the N4LO+ NN force moves

predictions towards the data; however, large experimental er-
rors do not allow us to go beyond qualitative conclusions.
At E = 200 MeV, we show the tensor analyzing power AXX ,
for which, at both minimum points (around θ = 75◦ and θ =
220◦), the 3N force effects depend on the order of the NN
interaction. As for the differential cross section, the truncation
errors for the analyzing powers shown here are much bigger
than the uncertainty related to the value of the cutoff.

Summarizing, we find that the N4LO+ NN interaction,
supplemented by the N2LO 3N force, yields a satisfactory
description of the Nd continuum data, leaving, however, room
for corrections from higher orders of the three-nucleon inter-
action; see Ref. [38] for recent work in this direction.

C. Binding energies

We now turn to the predictions for binding energies for
3He and 3H. The energies have been obtained by solving
Faddeev equations in momentum space using a partial wave
decomposition as described in [27]. For these calculations,
the NN subsystem angular momenta are restricted to j12 � 5.
In order to take the full charge dependence into account, the
3N states include the dominant isospin T = 1/2 and a small
T = 3/2 component. This is sufficient to obtain energies with
a numerical uncertainty of 1 keV. For 3He also the point
proton-proton Coulomb interaction is taken into account. The
results are summarized in Table I. For the calculation of the
energies and also for the fitting of the LECs cD and cE an
averaged proton-neutron mass was employed. Afterwards the
change 〈TCSB〉 of the kinetic energy due to using physical
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FIG. 3. The differential cross section and the nucleon analyzing power AY (N) at incoming neutron laboratory energy E = 135 MeV. The
directions of momenta of outgoing neutrons are in (a) and (d) θ1 = 20◦, θ2 = 16◦, and φ12 = 180◦; in (b) and (e) θ1 = 28◦, θ2 = 28◦, and
φ12 = 180◦; and in (c) and (f) θ1 = 20◦, θ2 = 16◦, and φ12 = 20◦. In the top panels the dashed blue (red) curve represents predictions based on
the two-nucleon N2LO (N4LO+) forces. The solid blue curve represents complete results at N2LO and the solid red curve stands for predictions
of N4LO+ NN interaction supplemented by N2LO 3NF. In all cases, the cutoff � = 450 MeV is used. In the bottom panels, the light (dark)
green band shows size of truncation error at 95% (68%) DoB at � = 450 MeV. The grey band shows a spread of the N4LO+ NN + N2LO
3NF based predictions due to the variation of � in the range � ∈ [400, 550] MeV. The red curve is the same as in the upper panels. Data are
from Ref. [37].

proton and neutron masses is perturbatively estimated. In
most cases, it is approximately of the order for 5–7 keV.
This contribution is included in the results for the expectation
value 〈H〉 but not in the energy E obtained by solving the
Faddeev equations. When excluding the contribution from the
nucleon mass difference, the expectation value and the energy

agree within 1 keV, which is a nontrivial confirmation of the
numerical accuracy.

The results for LO, NLO, and N2LO have already been pre-
sented in [27]. LO and NLO overpredict the binding energy.
It was also found in [27] that, at N2LO, the prediction without
3NFs is slightly underbinding 3H and 3He. This also holds true
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FIG. 4. The differential cross section and the deuteron analyzing power AX X at incoming neutron laboratory energy E = 200 MeV. The
directions of momenta of outgoing neutrons are in (a) and (d) θ1 = 100◦, θ2 = 25◦, and φ12 = 180◦; in (b) and (e) θ1 = 15◦, θ2 = 10◦, and
φ12 = 0◦; and in (c) and (f) θ1 = 50◦, θ2 = 50◦, and φ12 = 160◦. The curves and bands are the same as in Fig. 4.
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TABLE I. Summary of energies and wave function properties for 3H/3He for NN interactions up to N4LO+ (including N2LO 3NFs starting
from N2LO). Energies and cutoffs are given in MeV except for 〈TCSB〉 which is given in keV. Radii are given in fm and the S-, P-, and D-state
probabilities are given in %. For the experimental values of the point-proton radii, we use the structure radii.

� E 〈H〉 〈T 〉 〈VNN 〉 〈V3NF 〉 〈TCSB〉 〈�|�〉 P(S) P(P) P(D) rp rn

LO 450 −12.22 −12.24 52.38 −64.61 −10.51 1.0000 96.25 0.019 3.73 1.250 1.319
NLO −8.515 −8.521 34.31 −42.82 −5.80 0.9999 94.79 0.028 5.19 1.556 1.702
N2LO −8.483 −8.489 36.13 −44.16 −0.459 −5.84 0.9995 92.54 0.077 7.38 1.576 1.725

3H
N3LO −8.483 −8.489 35.60 −43.56 −0.520 −5.72 0.9996 92.53 0.078 7.39 1.579 1.729
N4LO −8.483 −8.489 35.35 −43.40 −0.430 −5.75 0.9996 92.77 0.078 7.16 1.579 1.728

N4LO+ −8.483 −8.489 35.46 −43.49 −0.460 −5.75 0.9996 92.64 0.079 7.28 1.580 1.729

LO 500 −12.52 −12.53 57.84 −70.36 −11.53 0.9999 94.96 0.036 5.01 1.224 1.286
NLO −8.325 −8.332 35.87 −44.19 −6.15 0.9998 94.29 0.032 5.68 1.575 1.725
N2LO −8.482 −8.488 40.27 −48.09 −0.660 −6.24 0.9992 91.39 0.109 8.50 1.581 1.731

3H
N3LO −8.483 −8.489 37.83 −45.59 −0.724 −5.93 0.9994 91.80 0.103 8.10 1.580 1.731
N4LO −8.483 −8.489 37.86 −45.72 −0.628 −6.07 0.9994 92.02 0.106 7.87 1.580 1.730

N4LO+ −8.484 −8.490 38.08 −45.89 −0.672 −6.07 0.9994 91.84 0.108 8.05 1.582 1.731

Expt. 3H −8.482 −8.482 1.604(96)
LO 450 −11.34 −11.33 51.45 −62.79 9.85 1.0000 96.24 0.019 3.75 1.342 1.264

NLO −7.751 −7.745 33.55 −41.30 5.22 0.9998 94.79 0.027 5.18 1.744 1.579
N2LO −7.734 −7.729 35.37 −42.65 −0.452 5.26 0.9995 92.57 0.076 7.35 1.766 1.598

3He
N3LO −7.737 −7.732 34.85 −42.08 −0.509 5.15 0.9995 92.55 0.076 7.37 1.770 1.601
N4LO −7.739 −7.734 34.61 −41.93 −0.423 5.18 0.9995 92.78 0.076 7.14 1.769 1.601

N4LO+ −7.740 −7.734 34.72 −42.01 −0.452 5.18 0.9995 92.66 0.078 7.26 1.770 1.602

LO 500 −11.63 −11.62 56.88 −68.51 10.87 0.9999 94.94 0.036 5.02 1.308 1.237
NLO −7.574 −7.568 35.07 −42.65 5.56 0.9997 94.30 0.031 5.67 1.768 1.598
N2LO −7.739 −7.733 39.44 −46.54 −0.641 5.65 0.9991 91.43 0.107 8.47 1.772 1.602

3He
N3LO −7.738 −7.733 37.04 −44.07 −0.705 5.34 0.9993 91.83 0.101 8.07 1.772 1.602
N4LO −7.743 −7.737 37.08 −44.21 −0.615 5.49 0.9993 92.05 0.104 7.85 1.771 1.602

N4LO+ −7.744 −7.738 37.29 −44.38 −0.658 5.49 0.9993 91.87 0.106 8.02 1.772 1.603

Expt. 3He −7.718 −7.718 1.792(17)

for the higher-order NN interactions. Therefore, the properly
adjusted 3NF contributes attractively to the 3N systems. The
contribution is comparable to the expectation values 〈V3NF 〉
of the 3NF. The deviations of the N2LO to N4LO+ results
for the 3H energy from experiment are mostly due to the
contribution of the proton-neutron mass difference that was
not taken into account when fitting the 3NF parameters. The
good agreement with experiment is of course no prediction
but by construction. When 3H is used to fit the 3NF, 3He is
slightly overbound compared to experiment. The difference is
of the order of 20 keV, which is comparable to the contribution
expected for charge-symmetry breaking NN forces and other
electromagnetic contributions [39], which are not included
here.

For symmetric operators, we exploit the faster convergence
with respect to partial waves of Faddeev components com-
pared to wave functions for the evaluation of expectation
values and also for the normalization. Therefore, wave func-
tions are not normalized to 1. The deviation of 〈�|�〉 from 1
is a measure of higher partial wave contributions to the wave
function and is below 0.1%. We also give the probabilities
P(S), P(P), and P(D) of the 3N system being in a total
orbital momentum L = 0, 1, and 2 state. As expected, the
S state dominates the A = 3 nuclei. Generally, the P state

contribution is tiny. The D state is more significant. A direct
comparison to calculations without 3NF (not shown) reveals
that 3NFs increase the D-state contribution. It also is enhanced
for larger cutoffs � as can be seen in the table. This is in line
with results for phenomenological interactions [39]. Finally,
we also give the proton and neutron radii assuming point-
like protons and neutrons (referred to as point-proton/neutron
radii in the following). These quantities are correlated with
the binding energies. It is reassuring that the results are quite
independent of the cutoff and order once the 3NFs have been
added. For a comparison to experiment, we include the struc-
ture radius defined by

r2
str = r2

c −
(

R2
p + 3

4m2
p

+ N

Z
R2

n

)
, (1)

where rc is the charge radius of the nucleus, Rp the proton
charge radius, and R2

n the neutron charge radius squared. N
and Z are the neutron and proton numbers. The values given
here were obtained in [27] using the values of CODATA-
2018 and the current Particle Data Group values for Rp and
Rn, respectively. The structure radius differs from the non-
observable point-proton radius due to relativistic corrections
and exchange charge density and similar contributions. For
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TABLE II. Summary of energies and wave function properties for 4He for NN interactions up to N4LO+ (including N2LO 3NFs starting
from N2LO). See text for explanations. Energies and cutoffs are given in MeV. The point-proton and neutron radii rp and rn are given in fm
and the S-, P-, and D-state probabilities are given in %. For the experimental value of the point-proton radius, we use the structure radius. The
tiny numerical difference from the previous work [27] is due to the calculation including not only the isospin T = 0 component but also T = 1
and T = 2 ones.

� E 〈H〉 〈T 〉 〈VNN 〉1 〈VNN 〉2 〈V3NF 〉 〈�|�〉1 〈�|�〉2 P(S) P(P) P(D) rp rn

LO 450 −49.98 −49.98 124.44 −174.42 −174.43 0.99994 0.99998 95.72 0.070 4.21 0.991 0.988
NLO −29.35 −29.35 71.48 −100.83 −100.83 0.99975 0.99962 92.03 0.129 7.84 1.378 1.372
N2LO −28.61 −28.61 75.74 −101.97 −101.96 −2.38 0.99954 0.99927 86.72 0.462 12.82 1.426 1.420
N3LO −28.35 −28.35 73.60 −99.43 −99.42 −2.52 0.99958 0.99935 87.10 0.429 12.47 1.433 1.427
N4LO −28.29 −28.28 73.04 −99.25 −99.25 −2.07 0.99958 0.99936 87.41 0.429 12.16 1.435 1.429
N4LO+ −28.31 −28.31 73.45 −99.48 −99.47 −2.27 0.99958 0.99935 87.07 0.446 12.48 1.435 1.430

LO 500 −51.46 −51.46 139.21 −190.67 −190.67 0.99991 0.99994 93.74 0.147 6.11 0.957 0.954
NLO −28.14 −28.13 74.56 −102.69 −102.68 0.99941 0.99895 90.96 0.153 8.89 1.411 1.405
N2LO −28.71 −28.68 86.73 −111.93 −111.88 −3.48 0.99895 0.99816 85.06 0.598 14.35 1.427 1.421
N3LO −28.56 −28.55 80.30 −105.00 −104.97 −3.85 0.99929 0.99883 85.51 0.568 13.92 1.430 1.424
N4LO −28.48 −28.47 80.56 −105.60 −105.56 −3.42 0.99924 0.99872 85.79 0.581 13.63 1.433 1.428
N4LO+ −28.52 −28.50 81.20 −105.97 −105.94 −3.73 0.99922 0.99868 85.30 0.606 14.10 1.434 1.429

Expt. −28.28 −28.28 1.462(6)

3H, the structure radius is in agreement with the point-proton
radius within the experimental error bar. For 3He, we observe
a slight underprediction of experiment.

III. LIGHT NUCLEI

A. Helium-4

We also performed Yakubovsky calculations in momentum
space for 4He, which serve as benchmarks for the NCCI
calculations of p-shell nuclei presented below. The approach
has been briefly described in [27]. We present our results in
Table II. For these calculations, we truncate the partial waves
in several ways. First, the two-body subsystem total angular
momentum is restricted to j12 � 5, then the orbital angular
momentum of the third and fourth nucleon or between two
two-nucleon clusters is restricted to li � 6. Finally, the sum
of all orbital angular momenta is smaller than or equal to
10. For the calculations shown here, we also take the small
admixtures of isospin T = 1 and 2 to the dominant T = 0
component into account. With these restrictions, our numer-
ical accuracy is better than 10 keV for the binding energy
and energy expectation values. Again, results up to N2LO
have already been shown in [27]. Note the small differences
compared to the previous work that are due to the isospin
T = 1 and 2 components of the 4He state which were omitted
in [27]. The calculations were performed using an averaged
nucleon mass. For 4He, the contribution of the proton-neutron
mass difference is tiny and is omitted. Due to the correlation
of the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO, the
3N system is correctly bound. Nevertheless, there are still
variations of the 4He binding energy of the order of 400 keV
when the cutoff and/or order of the NN interaction is changed.
The changes of energy at N4LO are only of the order of
60 keV. The remaining deviations of the energies at the two

cutoffs and the deviation from experiment can therefore be
expected to be explained by the missing three- and four-
nucleon forces at order N3LO. Based on the contribution from
NN interactions, we can expect to predict energies with an
accuracy of 60 keV once a complete calculation up to N3LO is
performed.

For the four-body system, using Yakubovsky equation has
the advantage that the 4N states are simultaneously expanded
in coordinates that single out a 3N subsystem (“3+1” coor-
dinates) and coordinates that single out two two-body cluster
(“2+2” coordinates). The wave function can be represented
in both kinds of coordinates. Similarly to the 3N system, we
normalize the wave function using overlaps of Yakubovsky
components and the wave function. Therefore, for our wave
functions, the norm in “3+1” and “2+2” coordinates, 〈�|�〉1

and 〈�|�〉2, respectively, differ from 1. As can be seen in
the table, the deviations are again less than 0.1%. Generally,
the norms indicate that the wave function is better represented
in “3+1” coordinates. This also holds true for the evaluation
of the expectation values of the NN interactions, 〈VNN 〉1 and
〈VNN 〉2. Therefore, we use the result in “3+1” coordinates
〈VNN 〉1 for the evaluation of 〈H〉. Note also that the expec-
tation values of the 3NF 〈V3NF 〉 of the order of a few MeV
are consistent with the power counting expectation. Compared
to the 3N system, S-state probabilities are smaller while the
P- and D-state probabilities are larger. Still, the S state is
dominating, as can be expected for 4He.

Finally, we briefly comment on the non-observables point-
proton and neutron radii. In the isospin T = 0 approximation,
both radii agree. The small difference is therefore entirely
due to the T = 1 and 2 components that are now included.
We again compare the point-proton to the structure radius as
defined in Eq. (1). For 4He, we observe a small but visible
underprediction of this value indicating that either the left out
subleading 3NFs or the relativistic corrections or contribu-
tions of the exchange charge density are non-negligible for

064002-7



P. MARIS et al. PHYSICAL REVIEW C 106, 064002 (2022)

a high order prediction of the radii. Work in this direction is
in progress.

B. Calculations for p-shell nuclei

For selected p-shell, we use the no-core configuration in-
teraction (NCCI) approach [40] to calculate the ground states
and low-lying narrow excited states. In the NCCI approach
we expand the wave function � of a nucleus consisting of
A nucleons in an A-body basis of Slater determinants 	k of
single-particle wave functions φnl jm(�r). Here, n is the radial
quantum number, l the orbital motion, j the total spin from
orbital motion coupled to the intrinsic nucleon spin, and m
the spin projection. The Hamiltonian Ĥ is also expressed in
this basis and thus the many-body Schrödinger equation be-
comes a matrix eigenvalue problem; for an NN potential plus
3NFs, this matrix is sparse for A > 4. The eigenvalues of this
sparse matrix are approximations to the energy levels, to be
compared to the experimental energy levels.

We use the conventional harmonic oscillator (HO) basis
with energy parameter h̄ω for the single-particle wave func-
tions, in combination with a truncation on the total number of
HO quanta in the system: the basis is limited to many-body
basis states with

∑
A Ni � N0 + Nmax, with N0 the minimal

number of quanta for that nucleus and Nmax the truncation
parameter. In order to improve the convergence of the basis
space expansion, we first apply a similarity renormalization
group (SRG) transformation [41–43] to soften these inter-
actions. All of the results for p-shell nuclei presented here
have been evolved to α = 0.08 fm4 and all of them include
(induced) 3NFs.

Numerical convergence toward the exact results for a given
Hamiltonian is obtained with increasing Nmax, and is marked
by approximate Nmax and h̄ω independence. Furthermore, we
apply the same procedure as in Refs. [24,25,27] to extrapolate
the approximate energy levels in finite bases to the complete
(but infinite-dimensional) space [44–48]. Most of the actual
numerical calculations to obtain the lowest eigenvalues of the
increasingly large but sparse matrices were performed with
the NCCI code MFDN [49,50] on the Cray XC40 Theta at
the Argonne Leadership Computing Facility (ALCF), with
additional calculations performed on the Cray XC40 Cori at
the National Energy Scientific Computing Center (NERSC).

C. Correlated truncation errors for spectra

For scattering observables, we have used a pointwise
Bayesian statistical model that estimates uncertainties learned
from the order-by-order convergence pattern of the chiral
expansion, but with each observable treated independently.
For the ground states and low-lying spectra in light nuclei
presented in Tables III–VIII below, we take into account
correlations between the convergence patterns of different
observables. This is particularly important for excitation
energies, as they are a difference between excited- and
ground-state energies that if treated independently would lead
to individual errors added in quadrature. As known from
experience and the treatment in Ref. [27], these excitation
energies are generally much better determined than energies

of the individual levels. Therefore, to avoid overestimating
the truncation errors it is essential to apply a correlated error
model.

A Bayesian model for correlated truncation errors based
on Gaussian processes (GPs) was developed in Ref. [54] and
applied to infinite matter in Refs. [55,56]. The adaptation
of this model in Ref. [27] to p-shell excitation energies was
able to still use GPs for the discrete spectra, with every finite
number of inputs having a joint Gaussian distribution. The co-
variance structure between discrete energy levels and nuclei is
learned from the observed pattern of order-by-order expansion
coefficients ci, which are defined for an observable X by

X = X (0) + �X (2) + �X (3) + · · ·
=: Xref (c0 + c2Q2 + c3Q3 + · · · ). (2)

Here �X (2) := X (2) − X (0) and �X (3) := X (3) − X (2), Q is
the expansion parameter, the superscripts denote the chiral or-
der Qn, the ellipses refer to terms beyond N2LO, the quantity
Xref sets the overall scale, and the ci are dimensionless.

There is a subtle but important complication to the
Bayesian model for chiral EFT truncation errors in the present
case, where the orders beyond N2LO are incomplete because
they include only the NN contributions. It is clear that the
expected error at N3LO and higher orders should be counted
the same as the expected error at N2LO because in all cases
there are omitted terms of N2LO order. But how should we ex-
tract the c4 and higher-order coefficients? Naively one might
argue that the differences of higher-order NN-only terms in
(2) should come with increasing powers of Q. However, the
LEC fitting of the NN interaction at each individual order to
scattering data means only that they are two-body on-shell
equivalent; there is an off-shell ambiguity for A > 2. With
a complete N2LO calculation, the off-shell ambiguity is re-
solved at the three-body level by the 3N contributions. For
N3LO and higher, the residual N2LO ambiguity persists, and
in the absence of prior information it must be assumed that the
difference in calculations of observables inherit an uncertainty
of the same order as this ambiguity. Therefore we extract c4

and higher using the same Q counting as at N2LO.
The correlations among the ci coefficients are manifested

in Fig. 5 through plots of the ci’s for ground states in
Tables III and IV discussed in Sec. III D and the excited states
in Tables V, VI, and VII discussed in Sec. III E. For this
visualization, we extract the ci’s using a fixed Q = Meff

π /�b =
200/650 ≈ 0.31 for all the states, with Xref taken from experi-
ment. As already noted in Ref. [27], we see high correlation as
expected between observable coefficients for the spectra of a
given nucleus but also between nuclei, now continued beyond
N2LO.

To model these correlations, we introduce a covariance
matrix and determine it empirically [57]. We emphasize that
the correlations shown beyond c0 are for the corrections to the
observables. The truncation error model is contingent on the
expansion parameter Q and the characteristic variance c̄2 of
the observable expansion coefficients ci. Unlike in Ref. [27],
here we learn both Q2 and c̄2 from the order-by-order
calculations together with the prior expectations for each,
which is possible because we now have enough higher-order
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FIG. 5. Expansion coefficients defined as in Eq. (2) for the in-
dividual of the light nuclei listed with α = 0.08 fm4 and � = 450
MeV. These are extracted with a fixed value of Q ≈ 0.31 and Xref

taken from experiment [51–53] (or the N2LO result for the 0+ in
8Li).

coefficients for good statistics. This is the case even though
we omit low orders (namely c0 and c2) that obscure the
order-by-order convergence pattern for the spectra of light
nuclei because of the strong cancellation between kinetic and
potential energies [24]. (In Ref. [27] only the c3 coefficients
were used to learn c̄2.)

The posteriors for the expansion parameter Q that are
learned from two sets of light nuclei are shown in Fig. 6.
By “learning” we mean obtaining a statistical solution to the
inverse problem of determining the distribution the coeffi-
cients come from (which is characterized by c̄2 and Q). We
use the hierarchical model from Appendix A of Ref. [54],
which is computationally efficient and enables us to both
parametrize our prior expectations and easily marginalize (i.e.,

FIG. 6. Posteriors for the dimensionless expansion parameter
Q learned from the order-by-order coefficients for the ground and
excited-state energies of the nuclei in Tables III and IV. These
coefficients encode the convergence pattern of the chiral expansion
for these nuclei. The posteriors were extracted separately for nuclei
with A < 8 and A � 8 because of the differing degree of correlation
between the coefficients in these two groups (see Fig. 5). The top
panel is for � = 450 MeV and the bottom panel for � = 500 MeV,
both using α = 0.08 fm4.

integrate over) the hyperparameters to reduce sensitivity. In
Ref. [27], with only up to N2LO available, we were sensitive
to the choice of priors, but with higher orders included, this
sensitivity is greatly reduced. For the analysis here we use the
scaled inverse-χ2 conjugate prior proposed in Ref. [54] with
hyperparameters ν0 = 1.5 and τ0 = 1.5.

As seen in Fig. 6, the posteriors for Q peak close to the
value expected a priori (Q ≈ 0.3), although the width of the
posteriors is significant (and the � = 500 MeV results are
slightly higher). These fits were done separately for A < 8
and A � 8 nuclei because of different correlation patterns
among the coefficients, as is evident in Fig. 5. We expect in
general that Q should increase with the increasing average
kinetic energy (the use of the non-observable kinetic energy in
estimating Q is discussed in Ref. [24]). This is consistent with
the systematic trends of increasing Q with increasing A and �

in Fig. 6, but the broad widths preclude definitive conclusions.
The resulting Bayesian 95% confidence intervals for the

ground-state and excitation energies are given in Tables III–
VIII and Figs. 7–12 below. The reduced error bars for
excitation energies can be understood quantitatively through
the formula for the variance of the difference of two Gaussian-
distributed variables A and B with correlation coefficient ρ:

σ 2
A−B = σ 2

A + σ 2
B − 2ρσAσB. (3)

The learned values of ρ were mostly between 0.85 and 0.9,
which by (3) implies the correlated excitation-energy error
bars are about 0.3–0.4 times the values from adding in quadra-
ture.

D. Ground state energies of p-shell nuclei

Our results for the stable helium isotopes, as well as 6Li,
are given in Table III for different chiral orders and two values
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FIG. 7. Ground-state energies for 4He, 6He, 8He, and 6Li with
SMS interactions from NLO to N4LO+ with � = 450 MeV (left-
hand panel) and � = 500 MeV (right-hand panel), both using α =
0.08 fm4. Error bars indicate the NCSM model-space uncertainties
and shaded bands indicate the chiral truncation uncertainties at the
95% confidence level for the N2LO (blue) and N4LO+ (purple)
NN potentials. Horizontal bars show the experimental ground-state
energies.

of the regulators, both with SRG evolved to α = 0.08 fm4.
Induced 3NFs from the SRG evolution are included in all cal-
culations, and, starting from N2LO, the explicit N2LO 3NFs
are also included; however, induced four-nucleon (and higher,
for A � 6) are neglected in these calculations.

For 4He we can compare the NCCI results using SRG
evolved interactions with the Yakubovsky calculations of
Table II, which are obtained without SRG evolution. The nu-
merical uncertainties in both the Yakubovsky results and the
NCCI results are of the order of 10 keV or less. Therefore, any
differences in the ground state energies of 4He in Tables II and
III beyond 10 keV are due to missing induced four-nucleon

interactions. For � = 450 MeV, this difference is small, in
most cases only of the order of 20 keV, but, for � = 500 MeV,
the SRG evolution leads to changes of the energy of about 200
keV, which brings the NCCI results closer to experiment than
the Yakubovsky results. This is still smaller than the expected
contribution of N3LO 3NFs, but will possibly become relevant
once these subleading 3NFs are included in complete N3LO
calculations in the future.

Based on the comparison with the Yakubovsky calculations
for 4He, we anticipate an uncertainty of about 0.5% to 1% for
A � 6 nuclei, due the SRG evolution to α = 0.08 fm4. This
SRG dependence is similar in magnitude to the estimated ex-
trapolation uncertainties listed in Table III. Note that the effect
of the omitted induced four-nucleon forces depends not only
on the actual SRG parameter α, but also on the interaction
(that is, for these calculations, on the chiral order and on the
regulator �), as well as on the nucleus.

The second set of uncertainties in Table III corresponds
to our Bayesian 95% confidence intervals as discussed in the
previous subsection (correlations with A = 2 and 3 binding
energies were not taken into account). These results are shown
in Fig. 7, with error bars for the numerical uncertainties,
and the 95% confidence intervals for the N2LO NN potential
(blue shaded band) and for the N4LO+ NN potential (purple
shaded band). This clearly shows that the chiral truncation
uncertainties are noticeably larger than both the numerical un-
certainties, and the estimated SRG uncertainties of about 1%.

With the exception of 8He, our predictions for the ground
state energies of these nuclei agree with the experimental data
within the estimated chiral uncertainty, for each of the N2LO,
N3LO, N4LO, and N4LO+ NN potentials in combination with
the N2LO 3NF. However, the central values with the N2LO
NN potential are noticeably closer to the experimental ground
state energies of these light nuclei than those obtained with the
N3LO, N4LO, or N4LO+ NN potential; while the difference

TABLE III. Ground-state energies of helium isotopes and 6Li obtained with the NCCI approach for different chiral orders and cutoffs,
SRG evolved to α = 0.08 fm4. Numbers in parentheses indicate first the estimated extrapolation uncertainties and then the chiral truncation
uncertainties at the 95% confidence level, (∗) indicating no chiral truncation uncertainties at LO.

4He (0+) 6He (0+) 8He (0+) 6Li (1+)

� = 450 MeV

LO −49.73(0.01)(*) −46.7(0.3)(*) −41.6(0.9)(*) −50.4(0.3)(*)
NLO −29.37(0.01)(3.6) −27.86(0.14)(3.7) −28.2(0.7)(6.0) −31.93(0.09)(4.1)
N2LO −28.53(0.01)(1.0) −29.04(0.07)(1.0) −30.42(0.20)(1.8) −32.04(0.06)(1.2)
N3LO −28.38(0.01)(1.0) −28.39(0.08)(1.0) −28.69(0.23)(1.8) −31.41(0.06)(1.2)
N4LO −28.29(0.01)(1.0) −28.28(0.08)(1.0) −28.62(0.24)(1.8) −31.28(0.06)(1.2)
N4LO+ −28.29(0.01)(1.0) −28.33(0.07)(1.0) −28.75(0.24)(1.8) −31.32(0.06)(1.2)

� = 500 MeV

LO −51.17(0.01)(*) −47.6(0.4)(*) −41.6(1.0)(*) −51.1(0.3)(*)
NLO −28.12(0.01)(3.6) −27.39(0.10)(3.8) −26.3(0.6)(6.9) −31.45(0.06)(4.1)
N2LO −28.63(0.01)(1.2) −29.21(0.06)(1.2) −30.92(0.15)(2.3) −32.29(0.04)(1.3)
N3LO −28.45(0.01)(1.2) −28.54(0.08)(1.2) −29.06(0.20)(2.3) −31.61(0.05)(1.3)
N4LO −28.31(0.01)(1.2) −28.37(0.07)(1.2) −28.91(0.18)(2.3) −31.41(0.05)(1.3)
N4LO+ −28.30(0.01)(1.2) −28.41(0.07)(1.2) −29.04(0.17)(2.3) −31.43(0.05)(1.3)

Expt. −28.296 −29.27 −31.41 −31.99
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FIG. 8. Ground-state energies for 10Be, 10B, 12B, and 12C with
SMS interactions from NLO to N4LO+ with � = 450 MeV (left-
hand panel) and � = 500 MeV (right-hand panel), both using α =
0.08 fm4. Error bars and bands are the same as in Fig. 7. Horizontal
bars show the experimental ground-state energies.

between N3LO, N4LO, and N4LO+ results is of the same
order as the estimated numerical and SRG uncertainties. For
8He however, only the N2LO NN potential agrees with the
experimental ground state energy within the 95% confidence
interval, whereas the higher-order NN potentials lead to an
underprediction of the 8He binding energy. Furthermore, the
central values for the He isotopes with the N3LO, N4LO,
and N4LO+ NN potentials suggest increasing underbinding
as one moves away from N = Z . It remains to be seen how
this changes when consistent N3LO 3NFs are incorporated in
future work.

Our results for the ground state energies of A = 10 and
12 nuclei are shown in Fig. 8, and tabulated in Table IV; in the
latter we also include our results for 14O. Again, the estimated
numerical extrapolation uncertainties are of the order of 0.5%

to 1%, that is, of the same order as the estimated depen-
dence on the SRG parameter, whereas the chiral uncertainty
estimate, at the 95% level, is significantly larger. Here in the
middle of the p shell, we see that for A = 10 the N2LO NN
potential overbinds, whereas using the NN potentials at N3LO
and higher lead to underbinding. As we go up in the p shell
and increase A further, we see that for A = 12 the overbinding
with the N2LO NN potential increases, whereas the higher-
order NN potentials give excellent agreement with the data.
This appears to be a systematic trend, which continues for
14O and beyond, as will be discussed in more detail in the
next section.

For all of these ground state energies, we see that the
cutoff of � = 500 MeV leads to larger chiral truncation
uncertainties than the smaller cutoff of � = 450 MeV, which
is to be expected, and also is in agreement with the posteriors
for the expansion parameter Q shown in Fig. 6.

E. Excitation spectra of p-shell nuclei

In addition to the ground-state energies, we have also cal-
culated the low-lying spectra of these p-shell nuclei, limiting
ourselves to the normal parity states, that is, states with the
same parity as the valence space. Since we are only con-
sidering even p-shell nuclei here, that implies we are only
considering positive parity states. Again, we perform a series
of calculations at increasing values of Nmax for a range of
the HO parameters h̄ω around the variational minimum, and
apply the same extrapolation method as for the ground state
energies. For narrow excited states, this extrapolation method
seems to give results that are numerically reasonably stable,
even for states that are above threshold.

Our results for the obtained excitation energies (the dif-
ference of the extrapolated total energies) of the low-lying
excited states of A = 6 and A = 10 are given in Table V, to-
gether with the corresponding experimental values. Similarly

TABLE IV. Ground-state energies of A = 10, 12, and 14O nuclei obtained in the NCSM for different chiral orders and cutoffs, SRG evolved
to α = 0.08 fm4. Numbers in parentheses indicate first the estimated extrapolation uncertainties and then the chiral truncation uncertainties at
the 95% level, (∗) indicating no chiral truncation uncertainties at LO.

10Be (0+) 10B (3+) 12B (1+) 12C (0+) 14O (0+)

� = 450 MeV

LO −97.7(1.5)(*) −92.8(1.6)(*) −113.7(1.3)(*) −145.0(0.9)(*) −152.2(0.7)(*)
NLO −61.9(0.6)(12.) −61.1(0.6)(12.) −76.0(0.7)(15.) −89.7(0.5)(17.) −98.1(0.7)(32.)
N2LO −66.5(0.5)(3.6) −66.4(0.4)(3.6) −84.8(0.4)(4.5) −98.7(0.4)(5.2) −113.1(0.4)(11.)
N3LO −62.4(0.6)(3.6) −62.5(0.5)(3.6) −77.3(0.6)(4.5) −90.6(0.6)(5.2) −99.8(0.8)(11.)
N4LO −62.0(0.6)(3.6) −62.1(0.5)(3.6) −76.8(0.6)(4.5) −89.9(0.6)(5.2) −99.0(0.8)(11.)
N4LO+ −62.1(0.6)(3.6) −62.2(0.6)(3.6) −77.0(0.7)(4.5) −90.0(0.7)(5.2) −99.2(0.8)(11.)

� = 500 MeV

LO −98.1(1.7)(*) −92.5(2.0)(*) −111.7(1.6)(*) −144.6(1.3)(*) −148.2(0.9)(*)
NLO −57.9(0.6)(14.) −57.0(0.5)(14.) −70.4(0.6)(17.) −83.3(0.5)(20.) −89.6(0.6)(39.)
N2LO −67.5(0.4)(4.7) −68.4(0.4)(4.6) −87.5(0.4)(5.7) −101.8(0.4)(6.6) −116.9(0.4)(13.)
N3LO −63.6(0.6)(4.7) −64.1(0.5)(4.6) −79.5(0.6)(5.7) −92.7(0.6)(6.6) −103.3(0.8)(13.)
N4LO −62.9(0.6)(4.7) −63.4(0.6)(4.6) −78.8(0.6)(5.7) −91.6(0.6)(6.6) −102.0(0.9)(13.)
N4LO+ −63.0(0.6)(4.7) −63.4(0.6)(4.6) −78.8(0.7)(5.7) −91.5(0.6)(6.6) −101.9(0.9)(13.)

Expt. −64.98 −64.75 −79.58 −92.16 −98.7
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TABLE V. Excitation energies of low-lying normal parity states in 6He, 6Li, 10Be, and 10B obtained in the NCSM for different chiral orders
and cutoffs, SRG evolved to α = 0.08 fm4. Numbers in parentheses are first the maximum of the estimated extrapolation uncertainties in the
excited-state and ground-state energies and then the correlated chiral truncation uncertainties at the 95% confidence level, (∗) indicating no
chiral truncation uncertainties at LO.

6He(2+) 6Li(3+) 10Be(2+)1
10Be(2+)2

10B(1+)1
10B(1+)2

10B(2+)

� = 450 MeV

LO 3.5(0.9)(*) 5.3(0.8)(*) 7.7(2.1)(*) 6.1(1.7)(*) −6.7(1.6)(*) 0.2(1.7)(*) −0.6(1.8)(*)
NLO 1.10(0.31)(1.6) 2.90(0.17)(2.0) 3.5(0.8)(5.8) 4.6(0.9)(5.8) −1.4(0.8)(6.9) 1.8(0.8)(5.8) 2.1(0.6)(5.8)
N2LO 2.10(0.15)(0.5) 2.40(0.07)(0.6) 3.3(0.5)(1.7) 6.3(0.6)(1.7) 1.7(1.0)(2.1) 1.4(0.5)(1.7) 3.4(0.5)(1.8)
N3LO 2.09(0.18)(0.5) 2.41(0.09)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.4(0.6)(1.7) 3.3(0.6)((1.8)
N4LO 2.07(0.17)(0.5) 2.40(0.08)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.5(0.6)(1.7) 3.3(0.6)((1.8)
N4LO+ 2.07(0.18)(0.5) 2.42(0.09)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.4(0.6)(1.7) 3.3(0.6)((1.8)

� = 500 MeV

LO 3.6(1.0)(*) 5.1(9)(*) 8.1(2.5)(*) 6.6(2.0)(*) −7.0(2.0)(*) 0.2(2.0)(*) −0.8(2.1)(*)
NLO 2.08(0.23)(1.7) 3.93(0.14)(2.0) 3.4(0.7)(6.8) 4.2(0.7)(6.8) −1.6(0.6)(7.7) 1.6(0.7)(6.6) 1.6(0.5)(6.9)
N2LO 2.08(0.09)(0.5) 2.41(0.07)(0.6) 3.2(0.5)(2.2) 6.2(0.6)(2.2) 2.2(1.0)(2.5) 1.9(0.5)(2.2) 4.1(0.5)(2.3)
N3LO 2.10(0.14)(0.5) 2.35(0.08)(0.6) 3.4(0.6)(2.2) 6.0(0.7)(2.2) 1.3(1.0)(2.5) 1.8(0.6)(2.2) 3.8(0.6)(2.3)
N4LO 2.08(0.14)(0.5) 2.34(0.07)(0.6) 3.3(0.6)(2.2) 5.9(0.7)(2.2) 1.3(1.0)(2.5) 1.7(0.6)(2.2) 3.8(0.6)(2.3)
N4LO+ 2.09(0.13)(0.5) 2.37(0.08)(0.6) 3.3(0.6)(2.2) 6.0(0.7)(2.2) 1.3(1.0)(2.5) 1.7(0.6)(2.2) 3.7(0.6)(2.3)

Expt. 1.80 2.19 3.37 5.96 0.72 2.15 3.59

to the ground state energies in Tables III and IV, the first un-
certainties are the numerical uncertainties associated with the
extrapolation to the complete bases; for these uncertainties we
use again the same procedure as in Refs. [24,25,27], namely
the maximum of the estimated extrapolation uncertainties of
the total energies of the two states. The second set of un-
certainties correspond to the 95% confidence interval of the
chiral EFT truncation error, taking into account correlations
between the ground state and the excited state, as discussed in
Sec. III C; see Eq. (3).

Again, as in the case of the ground state energies, the un-
certainties of the obtained excitation energies are dominated
by their chiral truncation uncertainties. However, due to the
strong correlations between the ground state and the excited
state, the chiral truncation uncertainties of the excitation en-
ergies are significantly smaller than those of the ground state
energies. For almost all of the excited states shown in Table V,
this uncertainty estimate is reduced by at least a factor of two
compared to that of the corresponding ground state energies;
the exception is the first 1+ state in 10B. Furthermore, the exci-
tation energies of most of these states are almost independent
of the chiral order of the NN potential starting at N2LO, again
with the exception of the first 1+ state in 10B, and, at � = 450
MeV, the second 2+ state in 10Be. Finally, note that for all of
these excited states our results agree with experiment within
the 95% confidence interval, starting at NLO.

Both from Table V and in Fig. 9, we see that the energy
level of the first 1+ state of 10B is not actually strongly cor-
related to the ground state energy, but jumps around relative
to the ground state: this state is the ground state at LO and
NLO; at N2LO including 3NFs it becomes the second excited
1+ state (without the 3NFs it remains the ground state at
N2LO [27]), and it drops down again to become the first
excited 1+ state if we use higher chiral orders for the NN
potential.

Also in 12B we see that the chiral truncation uncertainty
estimate in the excitation energies is reduced by more than a
factor of 2 compared to that of the corresponding ground state
energy, due to strong correlations between the ground state
and the excited states; see Table VI. And, as in 10B, the lowest
states jump around a bit at the lower chiral orders: at LO, the
0+ is the lowest state; at NLO lowest 1+ state is the lowest
state, in agreement with experiment, but at N2LO, the 2+ state
becomes the lowest state. Incorporating higher chiral orders
for the NN potential, in combination with the N2LO 3NFs,
makes this 2+ state almost degenerate with the 1+ ground
state. On the other hand, the level ordering of the second
2+, the second 1+, and the lowest 3+ states is in agreement
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FIG. 9. Excitation energies of low-lying states in 10B with SMS
interactions from NLO (gray) to N4LO+ (purple) with � = 450 MeV
(left-hand panel) and � = 500 MeV (right-hand panel), both using
α = 0.08 fm4. Error bars indicate the NCSM model-space uncertain-
ties and shaded bands indicate the chiral truncation uncertainties at
the 95% confidence level. Horizontal lines show the experimental
excitation energies.
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TABLE VI. Excitation energies of low-lying normal parity states in 12B obtained in the NCSM for different chiral orders and cutoffs, SRG
evolved to α = 0.08 fm4. Numbers in parentheses are first the maximum of the estimated extrapolation uncertainties in the excited-state and
ground-state energies and then the correlated chiral truncation uncertainties at the 95% confidence level, (∗) indicating no chiral truncation
uncertainties at LO.

12B(2+)1
12B(0+) 12B(2+)2

12B(1+)2
12B(3+)

� = 450 MeV

LO 4.4(1.3)(*) −1.3(1.3)(*) 0.0(1.4)(*) 2.1(1.6)(*) 4.9(1.4)
NLO 1.2(0.8)(6.7) 0.3(0.9)(6.8) 1.8(0.9)(6.7) 3.0(0.8)(6.7) 3.8(0.9)(6.6)
N2LO −0.9(0.4)(2.0) 1.9(0.6)(2.0) 3.4(0.6)(2.0) 4.9(0.6)(2.0) 5.3(0.7)(2.0)
N3LO 0.1(0.6)(2.0) 1.5(0.7)(2.0) 3.1(0.7)(2.0) 4.4(0.7)(2.0) 4.9(0.7)(2.0)
N4LO −0.1(0.6)(2.0) 1.6(0.7)(2.0) 3.1(0.7)(2.0) 4.5(0.7)(2.0) 5.0(0.7)(2.0)
N4LO+ 0.0(0.7)(2.0) 1.6(0.7)(2.0) 3.1(0.7)(2.0) 4.5(0.7)(2.0) 5.0(0.7)(2.0)

� = 500 MeV

LO 4.6(1.7)(*) −1.4(1.6)(*) 0.0(1.7)(*) 2.3(2.0)(*) 5.2(1.8)(*)
NLO 1.4(0.7)(7.5) 0.1(0.8)(7.8) 1.5(0.8)(7.7) 2.6(0.6)(7.7) 3.5(0.8)(7.6)
N2LO −1.1(0.4)(2.5) 2.7(0.6)(2.6) 4.1(0.6)(2.5) 5.7(0.6)(2.5) 6.1(0.7)(2.5)
N3LO −0.2(0.6)(2.5) 2.1(0.7)(2.6) 3.6(0.7)(2.5) 5.0(0.7)(2.5) 5.4(0.7)(2.5)
N4LO −0.3(0.6)(2.5) 2.3(0.7)(2.6) 3.8(0.7)(2.5) 5.2(0.7)(2.5) 5.6(0.7)(2.5)
N4LO+ −0.2(0.7)(2.5) 2.2(0.7)(2.6) 3.7(0.7)(2.5) 5.1(0.7)(2.5) 5.6(0.7)(2.5)

Expt. 0.95 2.72 3.76 4.99 5.61

with experiment starting at NLO. And again, for all these five
excited states our theoretical excitation energies agree with
experiment well within the 95% confidence interval as can be
seen in Fig. 10.

Finally, in Table VII and Fig. 11, we show our results for
the 2+ and 4+ rotational excitations of the ground state of
12C, as well as the first excited 1+ state. Not surprisingly, the
rotational excitations of the ground state are strongly corre-
lated, not only to the 0+ ground state, but also to each other.
More interesting is the 1+ excited state: of all the excited
states considered here, it shows a noticeable dependence on
the NN potential beyond N2LO. Furthermore, this is the only
state for which our theoretical calculations with the N2LO
and higher orders for the NN potential barely agree with the
experimental value. This will therefore be an important test
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FIG. 10. Excitation energies of low-lying states in 12B with SMS
interactions from NLO (gray) to N4LO+ (purple) with � = 450 MeV
(left-hand panel) and � = 500 MeV (right-hand panel), both using
α = 0.08 fm4. Error bars and bands are the same as in Fig. 9.
Horizontal lines show the experimental excitation energies.

once we incorporate consistent N3LO 3NFs, which should
significantly reduce the chiral uncertainties.

IV. BEYOND LIGHT NUCLEI

Extending our analysis beyond the p-shell, we first con-
sider the oxygen isotopic chain from 14O to 26O. We focus

TABLE VII. Excitation energies of low-lying normal parity
states in 12C obtained in the NCSM for different chiral orders and
cutoffs, SRG evolved to α = 0.08 fm4. Numbers in parentheses are
first the maximum of the estimated extrapolation uncertainties in the
excited-state and ground-state energies and then the correlated chiral
truncation uncertainties at the 95% confidence level, (∗) indicating
no chiral truncation uncertainties at LO.

12C(2+) 12C(1+) 12C(4+)

� = 450 MeV

LO 6.9(0.9)(*) 31.3(1.2)(*) 23.3(1.1)(*)
NLO 3.4(0.5)(7.1) 14.2(0.6)(8.6) 12.2(0.7)(7.2)
N2LO 4.2(0.4)(2.1) 9.6(0.4)(2.6) 13.7(0.4)(2.2)
N3LO 3.7(0.6)(2.1) 10.9(0.6)(2.6) 12.6(0.7)(2.2)
N4LO 3.7(0.6)(2.1) 10.6(0.6)(2.6) 12.6(0.7)(2.2)
N4LO+ 3.7(0.7)(2.1) 10.5(0.7)(2.6) 12.6(0.7)(2.2)

� = 500 MeV

LO 7.5(1.3)(*) 32.2(1.4)(*) 24.6(2.0)(*)
NLO 3.1(0.5)(8.2) 13.6(0.6)(9.0) 11.4(0.6)(8.4)
N2LO 4.5(0.4)(2.7) 9.9(0.4)(3.0) 14.6(0.4)(2.8)
N3LO 3.6(0.6)(2.7) 10.6(0.6)(3.0) 12.9(0.7)(2.8)
N4LO 3.6(0.6)(2.7) 10.1(0.6)(3.0) 12.9(0.7)(2.8)
N4LO+ 3.6(0.6)(2.7) 9.9(0.6)(3.0) 12.9(0.7)(2.8)

Expt. 4.44 12.71 14.08
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FIG. 11. Excitation energies of low-lying states in 12C with SMS
interactions from NLO (gray) to N4LO+ (purple) with � = 450 MeV
(left-hand panel) and � = 500 MeV (right-hand panel), both using
α = 0.08 fm4. Error bars and bands are the same as in Fig. 9.
Horizontal lines show the experimental excitation energies.

on the ground-state energies and point-proton rms radii for
the even oxygen isotopes and explore the systematics and
uncertainties of these observables for different chiral orders
and cutoffs along the lines of the previous section.

For the ab initio solution of the many-body problem in
this mass range, we employ the in-medium no-core shell
model (IM-NCSM), which is a hybrid approach based on
a multireference in-medium similarity renormalization group
(IM-SRG) evolution of the Hamiltonian and the NCSM for
the extraction of the many-body states and observables [58].
In a first step, a NCSM calculations in a small model space,
the so-called reference space characterized by the truncation

parameter N ref
max, is used to extract a multideterminantal ref-

erence state for the nucleus of choice. This reference state
is used to set up a multireference normal ordering for all
relevant operators and to formulate the multireference IM-
SRG flow equations [59–61]. The flow evolution is designed
such that off-diagonal matrix elements of the Hamiltonian
that couple the reference space to higher-lying basis states
are suppressed, i.e., the flow evolution decouples the small
N ref

max reference space from the rest of the model space. This
evolved Hamiltonian is then used in a final NCSM calculation
with a truncation Nmax � N ref

max to extract the energy eigen-
values and the eigenstates. The latter are used to compute
additional observables, e.g., rms radii, with matrix elements
that are consistently evolved in the multireference IM-SRG.
For reasons of efficiency, we use the Magnus formulation of
the multireference IM-SRG truncated at the multireference
normal-ordered two-body level. All calculations start from a
natural-orbital single-particle basis obtained from a perturba-
tively corrected density matrix [62] constructed in a large HO
space including 13 oscillator shells.

We use the same sequence of SMS interactions from LO to
N4LO+ in the NN sector supplemented with a 3N interaction
at N2LO as in the previous sections for few-body systems
and light nuclei for two different cutoffs � = 450 MeV and
500 MeV. As in the NCCI calculations, the Hamiltonian is
subject to a free-space SRG evolution including three-body
terms and we evolve the translationally invariant radius oper-
ator consistently at the two-body level.

The results of the IM-NCSM calculations for the oxygen
isotopic chain are presented in Fig. 12 and in Table VIII.
All calculations are done with a simple N ref

max = 0 reference
space and with Nmax = 2 model space for the final NCSM
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FIG. 12. Ground-state energies and point-proton radii for even oxygen isotopes obtained in the IM-NCSM with SMS interactions from
N2LO to N4LO+ with � = 450 MeV (left-hand panels) and � = 500 MeV (right-hand panels) for flow-parameter α = 0.08 fm4. The error
bands show the chiral truncation uncertainties at the 95% confidence level obtained with the Bayesian model for N2LO and N4LO+.
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TABLE VIII. Ground-state energies and point-proton rms-radii
for the oxygen isotopes obtained in the IM-NCSM. Numbers in
parentheses indicate the chiral truncation uncertainties at the 95%
confidence level.

� = 450 MeV � = 500 MeV

E (MeV) Rp,rms (fm) E (MeV) Rp,rms (fm)

14O

LO −152.3 1.68 −149.4 1.74
NLO −97.4(32.) 2.14(0.34) −89.1(39.) 2.25(0.27)
N2LO −114.0(11.) 2.12(0.11) −117.6(13.) 2.14(0.09)
N3LO −100.3(11.) 2.28(0.11) −103.7(13.) 2.25(0.09)
N4LO −99.4(11.) 2.27(0.11) −102.2(13.) 2.25(0.09)
N4LO+ −99.6(11.) 2.27(0.11) −102.2(13.) 2.25(0.09)
Expt. −98.7 – −98.7 –

16O

LO −217.0 1.51 −207.3 1.59
NLO −134.1(42.) 2.08(0.38) −122.6(50.) 2.21(0.31)
N2LO −148.3(14.) 2.12(0.13) −152.5(17.) 2.15(0.10)
N3LO −130.8(14.) 2.28(0.13) −134.3(17.) 2.27(0.10)
N4LO −129.1(14.) 2.28(0.13) −131.7(17.) 2.27(0.10)
N4LO+ −129.2(14.) 2.28(0.13) −131.6(17.) 2.28(0.10)
Expt. −127.6 2.58 −127.6 2.58

18O

LO −228.9 1.51 −217.1 1.61
NLO −142.3(45.) 2.12(0.40) −129.1(55.) 2.26(0.32)
N2LO −163.0(15.) 2.10(0.13) −168.0(18.) 2.14(0.11)
N3LO −141.8(15.) 2.28(0.13) −146.4(18.) 2.25(0.11)
N4LO −139.5(15.) 2.28(0.13) −142.8(18.) 2.26(0.11)
N4LO+ −139.7(15.) 2.28(0.13) −142.6(18.) 2.27(0.11)
Expt. −139.8 2.66 −139.8 2.66

20O

LO −240.0 1.53 −220.0 1.64
NLO −150.6(49.) 2.11(0.34) −135.7(60.) 2.27(0.27)
N2LO −180.4(16.) 2.07(0.11) −187.2(20.) 2.10(0.09)
N3LO −153.8(16.) 2.26(0.11) −159.9(20.) 2.23(0.09)
N4LO −151.0(16.) 2.27(0.11) −155.3(20.) 2.24(0.09)
N4LO+ −151.2(16.) 2.27(0.11) −154.9(20.) 2.25(0.09)
Expt. −151.4 – −151.4 –

22O

LO −235.1 1.55 −219.6 1.69
NLO −159.1(52.) 2.11(0.34) −142.0(64.) 2.28(0.27)
N2LO −200.1(17.) 2.03(0.11) −208.6(21.) 2.07(0.09)
N3LO −166.5(17.) 2.23(0.11) −174.9(21.) 2.19(0.09)
N4LO −163.2(17.) 2.24(0.11) −169.0(21.) 2.21(0.09)
N4LO+ −163.3(17.) 2.24(0.11) −168.3(21.) 2.22(0.09)
Expt. −162.0 – −162.0 –

24O

LO −235.1 1.57 −217.0 1.71
NLO −166.9(55.) 2.11(0.35) −147.8(66.) 2.29(0.27)
N2LO −214.5(18.) 2.04(0.12) −222.4(22.) 2.08(0.09)
N3LO −174.7(18.) 2.25(0.12) −183.9(22.) 2.21(0.09)
N4LO −171.2(18.) 2.26(0.12) −177.2(22.) 2.23(0.09)
N4LO+ −171.5(18.) 2.27(0.12) −176.6(22.) 2.24(0.09)
Expt. −168.5 – −168.5 –

TABLE VIII. (Continued.)

� = 450 MeV � = 500 MeV

E (MeV) Rp,rms (fm) E (MeV) Rp,rms (fm)

26O

LO −233.2 1.58 −212.4 1.75
NLO −167.0(55.) 2.16(0.39) −147.2(67.) 2.35(0.28)
N2LO −210.3(18.) 2.09(0.10) −216.6(22.) 2.14(0.09)
N3LO −170.8(18.) 2.32(0.12) −178.6(22.) 2.28(0.09)
N4LO −166.9(18.) 2.33(0.12) −171.1(22.) 2.30(0.09)
N4LO+ −167.3(18.) 2.34(0.12) −170.8(22.) 2.32(0.09)
Expt. −168.4 – −168.4 –

calculation. We have confirmed in all cases that the calcula-
tions are converged with respect to Nmax. In order to address
the uncertainties of the many-body scheme, we probe the de-
pendence of the observables on Nmax, N ref

max, and the IM-SRG
flow parameter. As for most ground-state calculations a vari-
ation of the N ref

max truncation parameter has the largest impact
on the observables. Therefore, we use the difference between
N ref

max = 0 and 2 to assess the many-body uncertainties, which
are approximately 2 MeV for ground-state energies and 0.05
fm for radii. These uncertainty estimates are confirmed by the
explicit comparison of the 14O ground-state energies reported
in Table VIII for the IM-NCSM with the conventional NCSM
results presented in Table IV. For all orders and cutoffs we
observe excellent agreement of the two many-body ap-
proaches, well within their respective uncertainties.

To assess the uncertainties due to the truncation of the chi-
ral expansion, we employ the correlated Bayesian statistical
model described in Sec. III C. The interaction uncertainties are
significantly larger than the estimated many-body uncertain-
ties; therefore, we only show the interaction uncertainties in
Fig. 12 as colored bands for N2LO and N4LO+. In Table VIII
the interaction uncertainties for all orders starting with NLO
are given in parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cutoffs shown in the upper panels of
Fig. 12. As expected, the LO interaction does not provide a
realistic description with ground states overbound by 50 to
80 MeV (cf. Table VIII). But already the NN interaction at
NLO provides energies in a reasonable range compared to ex-
periment. The energies obtained at N2LO again show a sizable
overbinding and deviate from the general systematics. A sim-
ilar effect was already observed for the mid-p-shell isotopes
in Fig. 8. Starting from N3LO the energies are very stable up
to the highest order—within the estimated uncertainties they
agree across the different chiral orders and the two cutoffs.
And they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral inter-
actions was determined strictly in the A = 2 and A = 3 sector,
without any information on heavier nuclei. The lower panels
in Fig. 12 show the corresponding result for point-proton rms
radii. Again, the radii at LO are unrealistically small, but NLO
already provides a significant improvement. In line with the
overbinding observed when going to N2LO, the radii decrease
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FIG. 13. Ground-state energies and point-proton radii for doubly
magic oxygen and calcium isotopes obtained in the IM-SRG with
SMS interactions from NLO to N4LO+ for � = 450 MeV (left-hand
panels) and � = 500 MeV (right-hand panels) with SRG flow pa-
rameter α = 0.08 fm4. The error bands show the chiral truncation
uncertainties at the 95% confidence level obtained with the pointwise
Bayesian model for N2LO and N4LO+.

further. From N2LO to N3LO we observe a systematic in-
crease of the radii, which exhausts or even exceeds the N2LO
uncertainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the different orders and
the two cutoff values. While the pattern correlates with the
pattern observed for the ground-state energies, the converged
values of the radii are significantly smaller than the structure
radii extracted from the experimental charge radii for 16O and
18O, despite the excellent agreement for the energies.

These trends continue if we proceed to heavier nuclei.
In Fig. 13 we show the ground state energies and the rms
radii of 16O and 24O as well as 40Ca and 48Ca obtained in
single-reference IM-SRG calculations, which correspond to
the N ref

max = Nmax = 0 limit of the IM-NCSM for 16O and 40Ca.
Also for the doubly magic calcium isotopes, we observe a very
nice convergence of the chiral expansion for both energies and
radii. As before, N2LO leads to significant overbinding, but
the higher orders stabilize quickly and agree within uncertain-
ties. Though the ground-state energies are still in reasonable
agreement with experiment, the underestimation of the radii
is even more pronounced. For the calcium isotopes the radii
at the highest chiral orders are by about 0.5 fm too small
compared to experiment, this corresponds to a reduction of
the nuclear volume by almost 50%.

There are obvious limitations in the present calculations
that might explain the systematic deviation for radii. Starting
from N3LO the 3N interaction is incomplete, and, while the
additional 3N terms at N3LO do not introduce additional
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]
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FIG. 14. Ground-state energies and point-proton radii for even
oxygen isotopes obtained in the IM-NCSM with the SMS interaction
at N4LO+ for � = 450 MeV, supplemented by the E1 three-nucleon
contact term at N4LO with LEC values cE1 = 0, ±1.

LECs, the 3N terms at N4LO come with a set of new 3N
LECs. Work is in progress to derive all 3N contributions at
N3LO and N4LO [63–67] and to compute the corresponding
matrix elements in a partial-wave representation [68]. In order
to probe the sensitivity of ground-state energies and radii
to the sub-leading three-body contributions, particularly the
terms with new LECs at N4LO, we have selectively included
the simplest, spin-isospin-independent contact term at N4LO
[65] with different values of the corresponding LEC cE1 =
−1, 0,+1 on top of the N4LO+ interaction for � = 450 MeV.
Based on Yakubovsky calculations, we found that the 4He
binding energy varies between 28.00 and 28.68 MeV. The
corresponding 4He radii change to 1.440 or 1.421 fm, respec-
tively. The resulting ground-state energies and radii for the
oxygen isotopes obtained in the IM-NCSM are depicted in
Fig. 14. Clearly, these higher-order terms have the potential
to significantly affect energies and radii. It remains to be seen
whether the consistent inclusion of all terms will allow for a
net change in the radii while keeping the good reproduction of
the ground-state energies.

Another limitation is the missing corrections to the charge
density from exchange terms predicted in chiral EFT. We are
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working on the consistent inclusion of these corrections to the
charge densities and to the charge radius.

V. SUMMARY AND CONCLUSIONS

In this paper we have extended our earlier study [27] of
few-nucleon systems based on the SMS NN potentials along
with the consistently regularized N2LO 3NF by considering
a broader range of Nd scattering observables and heavier
nuclei up to 48Ca. We have also studied the role of higher-
order corrections to the NN interaction in connection with
the systematic overbinding trend for A � 10 nuclei found
in our earlier paper using the SMS N2LO NN potentials
[27]. To quantify the contributions of the NN interactions
beyond N2LO to various observables, we performed a series
of additional calculations using the SMS NN potentials at
N3LO, N4LO and N4LO+ orders of the EFT expansion in
combination with the N2LO 3NF and employing the same
procedure to fix the LECs cD and cE from the 3H binding
energy and the differential cross section in Nd scattering at
E = 70 MeV. Clearly, from the point of view of chiral EFT,
the performed calculations can only be regarded complete to
N2LO due to the missing contributions of many-body forces
beyond N2LO. Yet, these results allowed us to get insights into
the convergence pattern of chiral EFT for light and medium-
mass nuclei and to extend and refine the Bayesian analysis of
correlated truncation errors. Moreover, they provide an impor-
tant consistency check of our previous calculations based on
the semilocal coordinate-space regularized [24,25] and SMS
chiral EFT potentials. The main results of our paper can be
summarized as follows:

(i) We have calculated selected Nd elastic scattering and
breakup observables. The obtained corrections to the
neutron-deuteron total cross section at E = 70 and
135 MeV stemming from the contributions to the
NN force beyond N2LO agree well with expectations
based on the power counting, as revealed by the es-
timated N2LO truncation errors. We also found that
these corrections significantly reduce the residual cut-
off dependence of the calculated total cross sections.
The predictions based on the NN potentials at N3LO
and N4LO+ are consistent with the experimental val-
ues within errors. This conclusion also holds for the
differential cross section and the vector and tensor
analyzing powers AY (d) and AXX − AYY in elastic Nd
scattering at the considered energy of E = 200 MeV.
We have also calculated the differential cross sec-
tion and the analyzing powers AY (N) and AXX for
selected breakup configurations at E = 135 and 200
MeV, finding again a satisfactory agreement with the
available experimental data.

(ii) We have calculated the binding energies of the A = 3
and 4 nuclei using Faddeev-Yakubovsky equations as
well as of selected p-shell nuclei with 4 � A � 14
in the framework of the NCCI approach using SRG
transformed two- and three-nucleon interactions. As
already pointed out in Ref. [27], the purely N2LO

calculations lead to a systematic overbinding of nu-
clei with A � 10 for both considered cutoff values
of � = 450 and 500 MeV, that increases with A and
reaches about 15% for 14O. On the other hand, includ-
ing the corrections to the NN forces beyond N2LO,
the predicted ground-state energies of all considered
nuclei are found to be in very good agreement with
the experimental data. We have also calculated the
low-lying (narrow) excited state energies of the con-
sidered p-shell nuclei, which are known to be strongly
correlated [27]. To avoid an overestimation of the
truncation uncertainty, we performed a Bayesian anal-
ysis that explicitly takes into account correlations
between energy levels by using Gaussian processes
and learning the covariance structure from the calcu-
lations. The larger set of results at different orders as
compared to our earlier paper [27] allowed us to infer
not only the characteristic variance of the expansion
coefficients c̄2 but also the value of the dimensionless
expansion parameter Q. For both considered cutoffs,
the posteriors are found to be consistent with the prior
value Q ≈ 0.3 used in Ref. [27]. All predicted excited
state energies agree with the data within errors, and
we also observed little sensitivity in the spectra to the
higher-order corrections to the NN force.

(iii) We used IM-NCSM to study the ground state energies
and point-proton rms radii of the even oxygen iso-
topes from 14O to 26O, while the corresponding results
for the calcium isotopes 40Ca and 48Ca were ob-
tained using the single-reference IM-SRG approach.
For the ground state energies, the resulting conver-
gence pattern of the chiral EFT expansion is similar
to the one for lighter nuclei. In particular, the strong
overbinding observed when using both the NN inter-
actions and the 3NF at N2LO is drastically reduced
by taking into account the contributions to the NN
force beyond N2LO. On the other hand, these correc-
tions still appear to be insufficient to reproduce the
point-proton radii for oxygen and calcium isotopes,
which are significantly underpredicted. The observed
pattern is qualitatively similar to the one reported
in Ref. [69] using a different version of the chiral
EFT NN and 3N interactions in the framework of
self-consistent Green’s function theory. To explore
the impact of higher-order corrections on the 3NF,
we have included one particular short-range term that
contributes to the 3NF at N4LO with the correspond-
ing dimensionless LEC set to cE1 = ±1; see Ref. [26]
for a similar study in Nd scattering. We found sizable
contributions to both the ground state energies and
radii, which also show a tendency to increase with
A. These results suggest that the employed Bayesian
model for estimating truncation uncertainties might
become too optimistic for medium-mass and heavier
nuclei; see also Ref. [24] for similar conclusions and
a related discussion. Finally, it is also worth pointing
out that the short-range isoscalar NN charge density
operators were found to contribute significantly to the

064002-17



P. MARIS et al. PHYSICAL REVIEW C 106, 064002 (2022)

deuteron charge and quadrupole form factors [17,70],
but their impact on the charge radii of heavier nuclei
and its scaling with A have not been investigated yet.

Clearly, to shed light on the remaining disagreement for the
radii of medium-mass nuclei it will be necessary to perform
complete calculations beyond N2LO by taking into account
consistently regularized three- and four-nucleon forces and
the corresponding contributions to the charge density operator.
These studies would not only provide more accurate predic-
tions for the considered observables, but also increase the
information about the convergence pattern of the EFT expan-
sion that can be used to refine the Bayesian truncation model
[71]. Work along these lines is in progress by the LENPIC
Collaboration.

ACKNOWLEDGMENTS

This work was supported by BMBF (Contracts No.
05P21PCFP1 and No. 05P18RDFN1), by the DFG SFB
1245 (Projektnummer 279384907), by the DFG and NSFC

(DFG Project-ID 196253076–TRR 110, NSFC Grant No.
11621131001), by ERC NuclearTheory (Grant No. 885150)
and ERC EXOTIC (Grant No. 101018170), by the
VolkswagenStiftung (Grant No. 93562), by the EU Hori-
zon 2020 research and innovation program (STRONG-2020,
Grant Agreement No. No. 824093), by the U.S. National
Science Foundation under Grant No. NSF PHY-1913069,
and by the U,S, Department of Energy under Grants No.
DE-FG02-87ER40371, No. DE-SC0018223, and No. DE-
SC0018083. This research used resources of the National
Energy Research Scientific Computing Center (NERSC) and
the Argonne Leadership Computing Facility (ALCF), which
are U.S. Department of Energy Office of Science user facil-
ities, supported under Contracts No. DE-AC02-05CH11231
and No. DE-AC02-06CH11357, and computing resources
provided under the INCITE award “Nuclear Structure and
Nuclear Reactions” from the U.S. Department of Energy,
Office of Advanced Scientific Computing Research. Further
computing resources were provided on LICHTENBERG at
the TU Darmstadt and on JURECA and the JURECA Booster
of the Jülich Supercomputing Center, Jülich, Germany.

[1] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[2] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
[3] E. Epelbaum, H. Krebs, and P. Reinert, Front. Phys. 8, 98

(2020).
[4] H.-W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys.

92, 025004 (2020).
[5] A. Tichai, R. Roth, and T. Duguet, Front. Phys. 8, 164 (2020).
[6] L. Marcucci, J. Dohet-Eraly, L. Girlanda, A. Gnech, A.

Kievsky, and M. Viviani, Front. Phys. 8, 69 (2020).
[7] I. Tews, Z. Davoudi, A. Ekström, J. D. Holt, and J. E. Lynn, J.

Phys. G: Nucl. Part. Phys. 47, 103001 (2020).
[8] M. Piarulli and I. Tews, Front. Phys. 7, 245 (2020).
[9] R. Lazauskas and J. Carbonell, Front. Phys. 7, 251 (2020).

[10] D. Lee, Front. Phys. 8, 174 (2020).
[11] S. Gandolfi, D. Lonardoni, A. Lovato, and M. Piarulli, Front.

Phys. 8, 117 (2020).
[12] V. Somà, Front. Phys. 8, 340 (2020).
[13] H. Hergert, Front. Phys. 8, 379 (2020).
[14] T. A. Lähde and U.-G. Meißner, Nuclear Lattice Effective Field

Theory: An introduction, Lecture Notes in Physcs, Vol. 957
(Springer, Cham, 2019)

[15] P. Reinert, H. Krebs, and E. Epelbaum, Phys. Rev. Lett. 126,
092501 (2021).

[16] E. Epelbaum, H. Krebs, and P. Reinert, arXiv:2206.07072.
[17] A. A. Filin, D. Möller, V. Baru, E. Epelbaum, H. Krebs, and P.

Reinert, Phys. Rev. C 103, 024313 (2021).
[18] E. Epelbaum, H. Krebs, and U. Meißner, Eur. Phys. J. A 51, 53

(2015).
[19] E. Epelbaum, H. Krebs, and U. G. Meißner, Phys. Rev. Lett.

115, 122301 (2015).
[20] P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86

(2018).
[21] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[22] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G.

Meißner, and H. Witała, Phys. Rev. C 66, 064001 (2002).

[23] S. Binder et al. (LENPIC Collaboration), Phys. Rev. C 93,
044002 (2016).

[24] S. Binder et al. (LENPIC Collaboration), Phys. Rev. C 98,
014002 (2018).

[25] E. Epelbaum et al. (LENPIC Collaboration), Phys. Rev. C 99,
024313 (2019).

[26] E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020).
[27] P. Maris et al., Phys. Rev. C 103, 054001 (2021).
[28] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[29] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[30] W. P. Abfalterer et al., Phys. Rev. Lett. 81, 57 (1998).
[31] W. Glöckle, H. Witała, D. Hüber, H. Kamada, and J. Golak,

Phys. Rep. 274, 107 (1996).
[32] W. Glöckle, The Quantum Mechanical Few-body Problem

(Springer, Berlin, 1983).
[33] L. Girlanda, A. Kievsky, L. E. Marcucci, and M. Viviani, Phys.

Rev. C 102, 064003 (2020).
[34] G. Igo, J. Fong, S. Verbeck, M. Goitein, D. Hendrie, J. Carroll,

B. McDonald, A. Stetz, and M. Makino, Nucl. Phys. A 195, 33
(1972).

[35] B. v. Przewoski, H. O. Meyer, J. T. Balewski, W. W. Daehnick,
J. Doskow, W. Haeberli, R. Ibald, B. Lorentz, R. E. Pollock,
P. V. Pancella, F. Rathmann, T. Rinckel, S. K. Saha, B.
Schwartz, P. Thörngren-Engblom, A. Wellinghausen, T. J.
Whitaker, and T. Wise, Phys. Rev. C 74, 064003 (2006).

[36] H. Witała, W. Glöckle, J. Golak, A. Nogga, H. Kamada, R.
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