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Scaling of the 19B two-neutron halo properties close to unitarity
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We explore the description of the bound 19B isotope in terms of a 17B +n + n three-body system where the
two-body subsystems 17B +n and neutron-neutron (nn) have virtual states close to the continuum. Dimensionless
scaling functions for the root-mean-square (rms) radii are defined and studied for different parameters of
the neutron-core potential and considering three different models for neutron-neutron interaction. The scaling
functions for the radii are rooted in the universal behavior of three-body systems close to the Efimov limit and
depend only on dimensionless quantities formed by the two-neutron separation energies and scattering lengths.
Our results show in practice the model independence of these scaling functions close to unitarity. We provide
an estimation of the different rms relative separation distances between the constituents, as well as of the proton
and matter radii.
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I. INTRODUCTION

Weakly bound light radioactive nuclei having the structure
of a core + n + n are found in the vicinity of the neutron drip
line and share the characteristic property of forming a large
two-neutron halo [1]. The neutron halo is markedly situated
outside the n-core interaction range, and it is governed by a
large n-core s-wave scattering length, exceeding by far the
effective range. Much has been discussed on the structure and
reactions of light two-neutron halo nuclei close to the drip
line since the pioneering work on 11Li [2], with an extensive
review literature [3–14]. To cite one example, it has been
pointed out theoretically that 22C has a n − 20C subsystem
with a large s-wave scattering length, and then as a result
the three-body system, namely 20C −n − n, forms a weakly
bound Borromean state of 22C [15–17], which is supported by
analysis of earlier experiments [18] and by the more recent ob-
servation and analysis of higher-precision cross sections [19].

In 2010, the weakly bound Borromean state of 19B [20]
was observed. The paper reported that a virtual state of 18B
is located below the 17B +n threshold and that the scattering
length of 17B +n, aS , was negative and large. However, due
to the poor resolution and acceptance of the experiment, the
precise value of the scattering length was not determined and
only an upper bound aS < −50 fm was established. The two-
neutron separation energy, S2n of 19B was measured in another
experiment [21], where it was reported to be 0.14 ± 0.39
MeV. A more recent compilation of nuclear masses provides
S2n = 0.09 ± 0.56 MeV [22].

Motivated by these experiments, some of the present au-
thors (E.H., R.L., and J.C.) studied the structure of 19B within
the framework of a 17B +n + n three-body model [23] and

predicted the binding energy of the ground state in 19B by
tuning the n − 17B scattering length (−100 < aS < −20 fm).
The two-neutron separation energy value of S2n = 0.13 MeV
was found by considering aS = −100 fm, which is compatible
with the experimental data [21]. In addition, due to the large
magnitude of the 17B +n scattering length, it was pointed out
that the ground state has features of an Efimov state [24,25];
however, due to the unfavorable heavy-light-light mass com-
position of this three-cluster state it is highly unlikely to form
an Efimov excited state. That, indeed, is excluded by the
possible regions of existence of such states systematized in
Ref. [26] and later on within Effective Field Theory (EFT)
in [27]. Despite that, the shallow ground state of the large
two-neutron halo of 19B should exhibit universal and model
independent properties through its structure, which would be
dominated by what is known as Efimov physics [28]: An
intrinsic consequence of the discrete scale invariance in the
unitarity limit, or equivalently in the zero-range interaction
limit (see, e.g., [6]).

Furthermore, a new experiment on 19B was recently per-
formed [29]. An enhanced soft electric-dipole mode just
above the two-neutron decay threshold was observed, and
properly interpreted within three-body calculations that re-
produce the energy spectrum. They found the best fit of the
relative energy spectrum for S2n = 0.5 MeV, aS = −50 fm,
resulting in a rms radius of the core with respect the two-
neutron center of mass given by

√〈
r2

c-2n

〉 = 5.75 ± 0.11 (stat) ± 0.21 (sys) fm, (1)
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similar in size to the corresponding quantity in 11Li. It was
concluded that the valence neutrons have a significant s-
wave configuration and exhibit a pronounced neutron-neutron
correlation. Apart from the experimental activity, theoretical
efforts were expended to study the structure of 19B in a three-
body model [30] and also within the many-body mean-field
approach of the deformed relativistic Hartree-Bogoliubov the-
ory in the continuum [31].

In present paper, we study the universal features of the
structure of the shallow Efimov-like 19B ground state from
another perspective. We establish the appropriate 19B scaling
functions for the different rms radii close to the unitarity limit,
which depend only on two-dimensionless quantities formed
by the two-neutron separation energies and scattering lengths.
That approach was proposed for general three-body systems
interacting via s-wave zero-range potentials in Ref. [32]. Such
scaling functions describe universal correlations between ob-
servables and they appear as limit cycles from the discrete
scale symmetry that the system presents when the potential
range is driven to zero or the scattering lengths to infinity
[6], which can also be built within the context of EFT [27].
The limit cycles for the scaling functions associated with
correlations between dimensionless quantities are built from
successive Efimov or Thomas collapsed states.

These correlations between observables represent, modulo
effective-range corrections, the results obtained from short-
range potentials for shallow states. They should be quite
model independent, which can be verified with the use of
different potentials that share the same two-body low-energy
s-wave observables. In light of the concepts of universal scal-
ing functions and using the newly extracted 2n separation
energy, aS , and 〈r2

c-2n〉
1
2 for this system [29], we compute

the 19B matter and proton rms radii, and also the different
rms relative separation distances. We check the consistence of
these extracted data comparing results of different potential
models for the n-core and nn systems, as well as calculations
from other authors, to assert the model independence of the
scaling laws. Therefore, we expect that this work can be also
viewed as a useful model independent systematic to predict
long wavelength observables on the basis of a minimal num-
ber of physical inputs.

The work is organized as follows. In Sec. II, we briefly
review the model from Ref. [23] for the neutron-core inter-
action based on a parametrization of the MT13 potential. In
Sec. III, we introduce the relevant scaling functions for the
two-neutron separation energy and the different rms radii.
Next, we present the calculation of the scaling function for
S2n, the radii vs aS and S2n, and perform the scaling analysis
for the rms radii, aiming to demonstrate the model indepen-
dence of this correlation. In Sec. IV our final remarks are
presented; we show in addition some results for the matter and
proton rms radius based on our analysis through the scaling
functions.

II. MODELING 19B

As proposed in Ref. [23], the 19B isotope is described as
a 17B +n + n three-body system. To this aim, we first con-
structed an effective low-energy n − 17B potential, simulating
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FIG. 1. Vn17B potential (MeV) reproducing several values of the
n − 17B scattering length aS (fm) and the corresponding strength
parameters Vr

the short-range Pauli repulsion at distances smaller than the
17B core radius, which is outweighed by the folded attractive
nucleon-nucleon interaction beyond this overlap region. A
simple form accounting for these facts is

Vn17B(r) = Vr
e−2μr

r
[1 − e−μ(R−r)], (2)

where R is the hard-core radius and μ is a range parameter for
the Yukawa n − 17B potential. We have chosen the value R =
3 fm, which corresponds to the rms matter radius of 17B [33],
and we take μ = 0.7fm−1 corresponding to the pion mass.

After fixing the range μ and the size R, potential (2)
depends on a single strength parameter Vr , which is tuned
to reproduce the n − 17B scattering length aS . We dis-
play in Fig. 1 the potentials reproducing the values aS =
−50,−100,−150 fm with the corresponding strength param-
eters Vr (MeV).

All the numerical values along this work correspond to
mn = 939.5654 MeV, m17B = 15879.1 MeV, i.e., a n − 17B
reduced mass mR = 887.0771 MeV and h̄2/2mR = 21.9473
MeV fm2.

The interaction (2) is purely central and independent of the
total spin �S of the n + 17B system (�S = �sn + �S17B). Since 17B is
a Jπ = 3/2− state, it can couple to a neutron in two different
total spin states, S = 1−, 2−. This “spin-symmetric” approx-
imation could be not very realistic given that, according to
[20], the S = 2− state has a resonant scattering length and
there is no reason that the S = 1− would be resonant as well.
Nevertheless, for the sake of simplicity we decided to stick
with a spin-independent form of n + 17B interaction, whose
strength is directly associated with a single unknown: n + 17B
scattering length aS .

The 19B Hamiltonian requires also the nn interaction and
we have used in our calculations three different Vnn models.
We have considered the charge independent (CI) Bonn-A
model [34] providing the nn low energy parameters ann =
−23.75 fm and rnn = 2.77 fm, and the charge dependent (CD)
AV18 [35] for which ann = −18.8 fm and rnn = 2.83 fm, both
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TABLE I. Dependence on the singlet n + 17B scattering length
of the two-neutron separation energy and rms relative separation
distances in the 17B +n + n system computed with the Bonn-A and
MT13 nn potentials for R = 3 fm. S2n are in MeV, aS and 〈r2

α〉
1
2 are

in fm (α = nn, c − 2n, nc).

aS S2n

〈
r2

nn

〉 1
2

〈
r2

c-2n

〉 1
2

〈
r2

nc

〉 1
2

Bonn-A

–50 0.087031 16.15 10.89 13.56
–80 0.117391 14.79 10.11 12.53
–100 0.128790 14.40 9.89 12.23
–300 0.162571 13.45 9.35 11.52
–500 0.169934 13.28 9.25 11.39
–1000 0.175789 13.15 9.18 11.29

MT13

–50 0.063234 18.24 11.78 14.90
–80 0.090628 16.43 10.77 13.55
–100 0.101013 15.92 10.49 13.17
–300 0.132020 14.72 9.82 12.27
–500 0.138816 14.51 9.70 12.11
–1000 0.144228 14.35 9.61 11.99

models acting in all partial waves. We have also considered
the S-wave CD version of MT13 [36] built in [23] with low-
energy parameters ann = −18.59 fm and rnn = 2.93 fm, in
agreement with the experimental values. It takes the form

Vnn = VR
e−μRr

r
− VA

e−μAr

r
, (3)

where the parameters are VR = 1438.720 MeV fm, VA =
509.40 MeV fm, μ−1

R = 3.11 fm, μ−1
A = 1.55 fm.

III. 19B RESULTS

We have computed the 19B ground-state energy, measured
by the two-neutron separation energy S2n as a function of
aS . The rms relative separation distances were also calculated
for 〈r2

nn〉
1
2 , 〈r2

nc〉
1
2 , 〈r2

c-2n〉
1
2 , 〈r2

n〉
1
2 , and 〈r2

c 〉
1
2 . The three-body

problem was solved by the Gaussian expansion method [37]
and by the Faddeev equation formalism in configuration space
[38,39].

In Table I, we present an example of our results obtained
with both Bonn-A and MT13 potentials, where the depen-
dence on the spin independent n + 17B scattering length is
explored for the two-neutron separation energy and different
rms relative separation distances in the Borromean 17B +n +
n system. As it should, S2n increases towards unitarity as
Vn17B becomes slightly more attractive, despite the two neutron
separation energy remains below 0.2 MeV, implying in a giant
halo around 10 fm, to be compared with the smaller size
of the core nucleus. Such values of S2n are consistent with
S2n = 0.14 ± 0.39 MeV [21].

Furthermore, by using the results presented in Table I the
neutron and core rms distances to the center of mass can
be easily evaluated from 〈r2

nn〉
1
2 , 〈r2

c-2n〉
1
2 , and 〈r2

nc〉
1
2 , given

respectively by

〈
r2

n

〉 1
2 =

√
2A

〈
r2

nc

〉 + 〈
r2

nn

〉
2(A + 2)

− 2A
〈
r2

c-2n

〉
(A + 2)2

, (4)

and 〈r2
c 〉

1
2 = 2〈r2

c-2n〉
1
2 /(A + 2), with A the 17B mass number.

Also, the average relative angles, which are given by

θnc = cos−1

〈
�rc · �rn

〉
√〈

r2
c

〉〈
r2

n

〉 = cos−1

〈
r2

c

〉 + 〈
r2

n

〉 − 〈
r2

nc

〉
2
√〈

r2
c

〉〈
r2

n

〉 ,

θnn′ = cos−1 〈�rn · �rn′ 〉〈
r2

n

〉 = cos−1

(
1 − 1

2

〈
r2

nn

〉
〈
r2

n

〉 )
, (5)

quantify the geometry of the halo and verify

θnn′ + 2 θnc = 360◦,

that is accurately fulfilled in our calculations.

A. Scaling functions

Within the considered model, the 17B +n + n system is
loosely bound, such that its giant halo has rms relative dis-
tances one order of magnitude larger than the interaction range
≈1 fm. One should notice, however, that the nn effective
ranges are only about four times smaller than these sizes, thus
indicating a possible relevance of the range corrections. Under
this condition we will study the results of Table I system-
atically employing the halo universal scaling laws (see, e.g.,
[6]), emerging as a consequence of the correlations between
observables of Efimov-like states.

Close to the unitarity limit, these scaling laws depend only
on the scattering lengths, the two neutron separation energy,
and core mass number. The energy scaling function as intro-
duced in [40] is the correlation between the three-body energy
at a given scattering length with the value at the unitarity. The
range dependence was also taken into account, which we will
not display here:

S2n

Sun
2n

= F ([aSκnc]−1, [annκnn]−1, A), (6)

where

κnc = (2μncS2n)
1
2 , κnn = (mnS2n)

1
2 , (7)

and μnc is the reduced mass of the n-core system and Sun
2n is

the two-neutron separation energy at unitarity. The last scaling
relation is written by considering h̄ = mn = 1 and it attains the
trivial value 1 at unitarity.

Other scaling functions can be found for the rms relative
separation distances, and they read [32] (see also [6] for fur-
ther discussions)〈

r2
α

〉√
S2n = Rα ([aSκnc]−1, [annκnn]−1, A), (8)

where α denotes the possible relative distances: nn (neutron-
neutron), nc (neutron-core), c-2n (core–nn c.m.), n (neutron-
c.m.) and c (17B-c.m.). The angles defined by Eq. (5) are
a consequence of Eq. (8) scaling functions determined, in
principle, by the limit cycles of the different radii.
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results are obtained with R = 3 fm for the Bonn-A (dashed line),
MT13 (solid line), and AV18 (dot-dashed line) nn potentials. The
reference two-neutron separation energy is explained in the text.

The unitarity limit of the scaling relations are found for
1/(aSκnc) = 1/(annκnn) = 0 as〈

r2
α

〉
un

√
Sun

2n = Rα (0, 0, A), (9)

which was discussed in [6], and are only a function of the
core mass number. Another universal property of the scaling
function (8) is [6]

∂

∂zi
Rα (z1, z2, A) > 0, (10)

which means, in particular, that the halo system shrinks when
it moves from unitarity to a Borromean configuration. This
is natural as the system has to compress in order to preserve
the same binding energy when it is driven from unitarity to a
Borromean state [32]. Indeed, such behavior is also confirmed
in present calculations, as we will illustrate in what follows.

B. Scaling analysis for S2n

The scaling function of the two-neutron separation energy
for the Borromean system 19B is shown in Fig. 2 in terms of a
reference value:

S2n

Sref
2n

= F([
aSκ

ref
nc

]−1
,
[
annκ

ref
nn

]−1
, A

)
, (11)

with the definitions

κ ref
nc = (

2μncSref
2n

) 1
2 and κ ref

nn = (
mnSref

2n

) 1
2 . (12)

We make use of the general form provided by Eq. (6), with the
arguments corresponding to aS = −1000 fm for Sref

2n = 0.1758
MeV and Sref

2n = 0.1442 MeV, as given in Table I for AV18,
Bonn-A, and MT13 nn potentials, respectively. For the AV18
interaction we have Sref

2n = 0.1481 MeV for R = 3 fm and
aS = −1000 fm.

We observe that the slope is weakly dependent on the
nn interaction model, confirming the validity of an universal
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S
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>
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FIG. 3. 19B rms radii 〈r2
α〉

1
2 (α ≡ nn, nc, c − 2n) as a function of

the scattering length aS . Full squares are the results for Bonn-A and
empty squares for MT13 nn potentials, all of them with R = 3 fm.
Empty triangles and circles correspond to Bonn-A with other choices
of R: Down-triangles with R = 3.5 fm, up-triangles with R = 2 fm,
empty circles with R = 2.5 fm. Dotted lines connecting the results
are for guidance.

scaling law. The curves in the figure can be parameterized by

S2n

Sref
2n

∣∣∣∣∣
Bonn-A

= 1.03 − 2.94

aSκ ref
nc

+ 2.43(
aSκ ref

nc

)2 + · · · ,

S2n

Sref
2n

∣∣∣∣∣
MT13

= 1.04 − 3.00

aSκ ref
nc

+ 2.38(
aSκ ref

nc

)2 + · · · ,

S2n

Sref
2n

∣∣∣∣∣
AV18

= 1.04 − 3.02

aSκ ref
nc

+ 2.42(
aSκ ref

nc

)2 + · · · , (13)

which also shows that the difference between the nn scat-
tering lengths and effective ranges of Bonn-A and MT13 is
not significant for this particular scaling function. The 3–4%
deviation from unity at 1/aS = 0 in Eq. (13) shows that the
reference Sref

2n values are indeed quite close to this situation.
As a reference the linear coefficients, associated with Tan’s
contact [41], are close to 3 in the three cases, which could
be compared to 2.11 [40,42,43] for the three-boson system.
The quadratic coefficients are about 2.4 compared to 0.80 in
the three-boson case [40]. We observe that this correlation
is quite insensitive to the different values of ann in the three
potential models for a fixed R. Furthermore, as the system
shifts from the unitarity to Borromean, the separation energy
tends to decrease with respect to the unitarity value, since the
interaction becomes weaker.

C. Radii versus aS and S2n

The 19B rms radii 〈r2
α〉 1

2 (α ≡ nn, nc, c-2n) as a function
of aS are displayed in Fig. 3, for the calculations with R = 3
fm, given in Table I, and also for R assuming the values of
2, 2.5 and 3.5 fm in the case of the Bonn-A potential. The
rms radii for the Bonn-A potential are systematically smaller
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FIG. 4. 19B root mean square radii 〈r2
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2 (α ≡ nn, nc, c − 2n) as

a function of the two-neutron separation energy. Symbols and lines
are the same as in Fig. 3.

than the ones for MT13. The size of 19B increases when the
scattering lengths decrease, for the dependence in both aS and
ann.

At first sight, it seems to be in conflict with the monotonic
behavior found for the rms radii scaling functions expressed
by Eq. (10). However, we must remind the reader that also
the correlation with S2n is relevant for these 19B quantities,
as the three-body system in this lowest angular momentum
state is sensitive to the short range physics determining the
actual values of the separation energies. This feature is re-
vealed in Fig. 4, where the results for the different radii from
Table I demonstrate a strong correlation with the two-neutron
separation energy. However, the values of the dimensionless
products 1/(aSκnc) and 1/(annκnn) move along these curves,
as well as the different values of the core radius potential
parameter R, which takes the values 2, 2.5, 3 and 3.5 fm,
making the results somewhat scattered in the figure.

In order to organize these results, it is convenient to study
the radii scaling laws for the three-body system in more detail.

D. Scaling analysis for the rms radii

Our task now is to provide the scaling analysis of
the dimensionless products (〈r2

α〉S2n)
1
2 (α ≡ nn, nc, c-2n),

neutron-c.m. (α = n) and core-c.m. (α = c) as a function of
−1/(aSκnc) for the three employed neutron-neutron poten-
tials: Bonn-A, AV18, and MT13. In the present analysis the
scaling functions, as formulated in Eq. (8), are plotted, in what
follows, against 1/(aSκnc). Here one should notice that the
products 1/(annκnn) are implicitly running with S2n.

In Fig. 5 the dimensionless products (〈r2
α〉S2n)

1
2 (α ≡

nn, nc, c-2n) as a function of −1/(aSκnc), for Bonn-A, AV18,
and MT13 potentials are presented. The zero-range limit at
unitarity (〈r2

nn〉S2n)
1
2 |zr = 0.8 and (〈r2

nc〉S2n)
1
2 |zr = 0.7 (see [6]

and references therein) are reasonably close to the present cal-
culations when 1/(aSκnc) approaches zero. It is worth noticing
that both the neutron-neutron scattering lengths as well as
effective ranges are finite, which of course differs from the
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FIG. 5. 19B dimensionless products (〈r2
α〉S2n)

1
2 (α ≡

nn, nc, c-2n) as a function of −1/(aSκnc ), where κnc = (2μncS2n )
1
2 .

Results corresponding to R = 3 fm are indicated by solid lines
for Bonn-A, by empty squares for MT13, and by dotted lines
for AV18 nn potentials. Those with R = 2, 2.5, 3.5 fm obtained
with the Bonn-A potential are denoted by up-triangle, empty
circle, and down-triangle, respectively. Full squares correspond
to the three-body calculations of Ref. [30]. The full circle is
the experimental extraction of Ref. [29]. The full diamond is

the estimated value of (〈 11Li |r2
c-2n| 11Li 〉S11Li

2n )
1
2 (see text for

explanation).

strict unitarity limit, defined by infinite scattering lengths and
vanishing effective ranges.

The effect of the ann, being slightly different for Bonn-A
and MT13 or AV18, might be noticed in the figure, with the
MT13 and AV18 results systematically lower than the Bonn-A
ones. On the other hand, ann for AV18 and MT13 differ only
by 1% and this difference is not enough to make an observable
shift in the figure. The somewhat lower values obtained for
MT13 and AV18 with respect to Bonn-A are due to

1/(annκnn)
1
2 |MT13 < 1/(annκnn)

1
2 |Bonn-A,

which makes the two-neutron halo of 19B more compact for
the MT13 model, consistent with the monotonically increas-
ing behavior expressed by the partial derivatives given in
Eq. (10) for the radii scaling functions.

We compare the scaling functions in Fig. 5 with the
calculation from [30]. The last calculations employed a
Woods-Saxon (WS) plus spin-orbit neutron-17B potential, the
Gogny-Pires-Tourreil (GPT) neutron-neutron one [44] (ann =
−22.12 fm and rnn = 2.83 fm) in conjunction with hyperra-
dial Gaussian three-body potential tuned to fit S2n = 0.5 MeV.
The central part of the WS potential gives aS = −50 fm, and
the strength of the spin-orbit term is determined to fit the
position of a d5/2 resonance at 1.1 MeV above the 17B-neutron
continuum close to the 1− state from shell-model calculations
[20]. Their results are 〈r2

nn〉
1
2 = 7.28 fm and 〈r2

c-2n〉
1
2 = 5.01

fm, giving respectively
√〈r2

nn〉S2n = 0.80 and
√

〈r2
c-2n〉S2n =

0.55, consistent with our results for Bonn-A potential, which
has effective range by 10% smaller. The fine tuning of the
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calculations requires all low-energy parameters to be identi-
cal. Despite of that the comparison shows the extend of model
dependence that the scaling functions may have.

The data with error bars in Fig. 5 were obtained from
the radius extraction performed in [29], where 19B has been
studied by exclusive measurements of 17B +n + n from the
Coulomb breakup reaction with Pb at 220 MeV/nucleon.
Three-body calculations were used to reproduce the soft E1
energy excitation spectrum below 6 MeV, and indicated that
the valence neutrons have a significant dineutron correla-
tion in an s-wave configuration. Furthermore, the 17B +n + n
three-body model calculations performed to analyze the ex-
perimental results using aS = −50 fm and S2n = 0.5 MeV
extracted the value for 〈r2

c-2n〉
1
2 written in (1), which gives

(〈r2
c-2n〉S2n)

1
2 = 0.632 ± 0.026 for 1/(aSκnc) = −0.1325.

We also compared the results for the scaling function given
in Fig. 5 to the estimated 11Li core-2n distance, which is
found within the interval 5.01 ± 0.32 [45] to 6.2 ± 0.5 fm [7],
corresponding to

0.47 �
(〈

11Li
∣∣r2

c-2n

∣∣ 11Li
〉
S

11Li
2n

) 1
2 � 0.59,

using the experimental value S
11Li
2n = 369.15(65) keV [46].

This last value gives 1/(an−9Liκnc) = −0.368 considering the
s-wave virtual state of 10Li to be at −50 keV.

The upper panel of Fig. 6 shows the 19B dimensionless
products (〈r2

α〉S2n)
1
2 (α ≡ n, c) as a function of −1/(aSκnc)

calculated with Bonn-A, MT13, and AV18 considering R = 3
fm in the neutron-core potential. Other values of R equals to 2,
2.5, and 3.5 fm were also used together with Bonn-A poten-
tial. We also present the values estimated with the extracted
matter radius from the experimental data considering 11Li

as a two-neutron halo nucleus for (〈 11Li |r2
n | 11Li 〉S11Li

2n )
1
2 =

0.617(36) [6] and (2/19)(〈 11Li |r2
c-2n| 11Li 〉S11Li

2n )
1
2 , which is

in the range of 0.049 and 0.056 and denoted by “11Li” in the
figure.

The lower panel of Fig. 6 shows the 19B average angles
θα (α ≡ nn, nc) as a function of −1/(aSκnc). Results are
displayed for the neutron-neutron Bonn-A potential consid-
ering R with values of 2, 2.5, 3, and 3.5 fm. For MT13 and
AV18 with the neutron-core potential, R = 3 fm. As can be
seen, the angles are sensitive to the 10% difference in ann

between Bonn-A and AV18 (or MT13). Interestingly, towards
unitarity the relative angle between the neutrons decreases,
as observed by comparing the Bonn-A and AV18 (or MT13)
results. This comes from the swelling of the halo from the
Borromean situation to the unitarity limit, when 1/(aSκnc) is
fixed.

IV. FINAL REMARKS

We conclude from the above results that the two-neutron
halo structure properties are remarkably model independent,
and driven by the two-neutron separation energy and scatter-
ing lengths as long as the size of 17Be is substantially smaller
than the halo size. Indeed, our model confirmed that the range
of the n-17Be potential μ−1 ≈ 1/0.7 fm is appreciably smaller
than the halo size. The different correlations of dimensionless
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FIG. 6. Upper panel: 19B dimensionless products (〈r2
α〉S2n)

1
2

(α ≡ n, c) as a function of −1/(aSκnc ), where κnc = (2μncS2n)
1
2 .

Diamonds are the extracted values from experimental data on 11Li.

By “11Li” we refer to (2/19)(〈 11Li |r2
c-2n| 11Li 〉S11Li

2n )
1
2 (see text for

explanation) Lower panel: average angles θα (α ≡ nn, nc) as a func-
tion of −1/(aSκnc ). In both panels, symbols and lines are the same as
in Fig. 5.

quantities built for the different radii, two-neutron separation
energy, and scattering lengths express limit cycles governed
by the Efimov-like behavior of the shallow halo ground state,
and the proximity to unitarity. Notably, our numerical results
for the associated scaling functions are quite independent of
the radius parameter around R ≈ 3 fm, which regulates the
region where Pauli exclusion principle turns the neutron-core
interaction repulsive.

Assuming that the 17B core satisfies the condition of being
considerably smaller than the neutron halo, we have, actually,
two quantities that are not well known: the two-neutron sep-
aration energy in 19B and the n − 17Be scattering length (in
the hypothesis that one can disregard the spin-spin interaction
leading to the independence on the spin states S = 1 and
S = 2).

We should remark that, in the situation where the spin-spin
interaction would be relevant, in the limit of large scattering
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lengths the scaling functions we have addressed will have now
the dependence on aSκnc with S = 1− and 2−. In the unitary
limit the results will be unchanged as a1 = a2 → ±∞. The
authors of Ref. [23] investigated the effect of wide variations
of a1 in the results obtained for S2n with fixed a2 = −150
fm, and it was shown that it is quite small for −150 �
a1 � −50 fm. Therefore, these calculations suggest that our
results are quite robust even for somewhat wide difference
between a2 and a1 provided we remain close to the unitarity
limit.

Considering the recent data for the 19B radius extracted
from the collision experiment presented in Ref. [29] for
(〈r2

c-2n〉)
1
2 given in (1) and assuming the bounds of

0 < −1/[aS (2μncS2n)
1
2 ] � 0.4,

which gives the range

0.5 �
(〈

r2
α

〉
S2n

) 1
2 � 0.6,

leading to the estimation 0.3 � S2n � 0.45 MeV. If one takes
into account the scaling function for AV18 fitted as(〈

r2
c-2n

〉
S2n

) 1
2 = 0.5738 + 0.4191

aSκnc
+ 0.3188

(aSκnc)2
+ · · · , (14)

one finds S2n � 0.384 ± 0.036 MeV obtained from the ex-
tracted value [29] of 〈r2

c-2n〉
1
2 given in (1) and aS = −150

fm with a 50% error, consistent with the experimental up-
per bound [20]. Note that this value of S2n is well within
the estimation given above and the experimental range
[21,22].

The parametrizations of the scaling functions in the upper
panel of Fig. 6 are given by(〈

r2
n

〉
S2n

) 1
2 = 0.6655 + 0.4426

aSκnc
+ 0.3175

(aSκnc)2
+ · · · (15)

and(〈
r2

c

〉
S2n

) 1
2 = 0.06039 + 0.04440

aSκnc
+ 0.03418

(aSκnc)2
+ · · · , (16)

in units such that h̄ = mn = 1.
The 17B proton and matter radii were extracted in [47] from

the experimental charge-changing cross sections of secondary
beams obtained in the FRS, GSI, and Darmstadt facilities. The
results from Table I in that reference are rex

p = 2.67(2) fm,
rex,scaled

p = 2.63(7) fm, and rex
m = 3.00(6), respectively. This

allows us to obtain both the proton and matter radius of 19B,
by taking into account the previous estimations for S2n and aS

introduced in the fit functions of 〈r2
n〉

1
2 , Eq. (15), and 〈r2

c 〉
1
2 ,

Eq. (16), together with

r
19B
m =

√
17

19

[
rex

m

]2 + 2

19

〈
r2

n

〉
and r

19B
p =

√[
rex

p

]2 + 〈
r2

c

〉
,

which gives

r
19B
m = 3.57 ± 0.08 fm, r

19B
p = 2.74 ± 0.02 fm for

(
rex

p

)
,

r
19B
p = 2.70 ± 0.07 fm for

(
rex,scaled

p

)
. (17)

Finally, in Fig. 7 we just illustrate a geometrical repre-
sentation of the 19B nucleus, taking for distance the scaled

17B

n n

FIG. 7. Geometry of 19B according to the scaled rms radii of
Fig. 5. Results correspond to AV18 and to the inverse scaled scat-
tering length [1/aSκnc] = −0.1325.

rms radii of Fig. 5 at the inverse scaled scattering length
1/(aSκnc) = −0.1325, quoted as the experimentally extracted
value [29], and using our estimated two-neutron separation
energy of 0.384 MeV results in aS = −57 fm, close to the
lower bound of our suggested range of values for aS =
−150 ± 75 fm. The geometric picture gives for the angle with
vertex centered at the 17B nucleus a value of 37◦, close to
our calculation of θnn/2 � 40◦. Furthermore from Fig. 5, we
have at 1/(aSκnc) = −0.1325 the values (〈r2

nn〉S2n)
1
2 = 0.789,

(〈r2
nc〉S2n)

1
2 = 0.654 and (〈r2

c-2n〉S2n)
1
2 = 0.524, resulting in

the values of the rms relative separation distance between
the neutrons, the neutron-core, and core-2n, respectively, of
〈r2

nn〉
1
2 = 8.2 fm, 〈r2

nc〉
1
2 = 6.8 fm, and 〈r2

c-2n〉
1
2 = 5.4 fm. The

latter is within the error of the extracted value [29], as written
in Eq. (1). The matter and proton radius become r

19B
m = 3.5 fm

and r
19B
p = 2.7 fm. These values can be compared to the esti-

mations given in (17).
The difference between our estimations reflects the dis-

agreement between the results from Ref. [29] and our
calculations shown in Fig. 5, that does not allow us to narrow
the knowledge on both the two-neutron separation energy
and the 17B +n scattering length, which calls for further ex-
perimental data and analysis. Despite that, our study of the
universal properties of the two-neutron halo of 19B endorses
the presence of a long-range s-wave correlation between the
two neutrons, as well as among the neutron and the core,
exceeding by far the ranges of the nn and n-core interactions,
which gives further support to the model independence of the
present findings.
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